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Recent experiments on the alkali-intercalated iron selenides have raised questions about the sym-
metry of the superconducting phase. Random phase approximation calculations of the leading
pairing eigenstate for a tight-binding 5-orbital Hubbard-Hund model of AFe2Se2 find that a d-wave
(B1g) state evolves into an extended s± (A1g) state as the system is hole-doped. However, over a
range of doping these two states are nearly degenerate. Here, we calculate the imaginary part of
the magnetic spin susceptibility χ′′(q, ω) for these gaps and discuss how the evolution of neutron
scattering resonances can distinguish between them.

PACS numbers: 74.70.-b,74.25.Ha,74.25.Jb,74.25.Kc

I. INTRODUCTION

Initial experimental reports on the alkali-intercalated
iron selenide materials of nominal composition AFe2Se2

1

indicated a number of surprising results2 which appar-
ently differentiated these materials from their iron chalco-
genide and iron pnictide superconductor cousins. In
contrast to these last systems, nearly all of which have
hole and electron Fermi surface pockets present simulta-
neously, angle-resolved photoemission (ARPES) studies
suggested that there were no hole-like Fermi sheets for
some dopings.3 Secondly, the resistivity of these samples
were all remarkably large, suggesting a proximity to a
metal-insulator transition. Finally, a phase of ordered Fe
vacancies supporting a large antiferromagnetic ordered
moment arranged in a

√
5 ×

√
5 block spin pattern was

reported by elastic neutron scattering.4 The implications
of all these anomalous features for superconductivity in
these systems, which occurs at temperatures as high as
31K, is not presently clear. Indeed, it is not even estab-
lished whether superconductivity coexists with the va-
cancy ordered phase, arises in Fe vacancy-free regions, or
is found in disordered vacancy regions of the multiphase
samples.

From the theoretical standpoint, various authors con-
structed models based on the early ARPES data and in-
vestigated new physics associated with the absence of
the hole pockets. Within spin fluctuation theory, the
consequences of this Fermi surface topology was already
discussed by Kuroki et al.,5 who pointed out that this
band structure is a 2D version of “Agterberg-Barzykin-
Gor’kov” nodeless d-wave superconductivity6, since the
symmetry-enforced nodal lines fall between the Fermi
surfaces. This idea was adopted in the context of the new
systems by several authors. Wang et al.7 predicted based
on a functional renormalization group (fRG) calculation
that a d-wave state would be favorable in such a situation,
with an s± state a close competitor, and suggested that
the latter possibility was due to the “marginal” hole band
just below the Fermi level in their calculations. Maier et

al.8 performed similar calculations in the random phase
approximation (RPA) and also found competing d− and
s−wave order for large electron doping, but only d-wave
pairing stabilized in the absence of hole Fermi pockets9.
These authors also found a strong peak in the dynamical
susceptibility not at the wave vector Q = (π, π) corre-
sponding to the nesting wave vector of the two electron
pockets in the 1-Fe Brillouin zone, but rather close to
(π, 0.6π), the vector connecting the closest flat sides of
the rather square electron pockets. Mazin10 and Khodas
and Chubukov11 have discussed the role of hybridiza-
tion and the appearance of an s± state, in which the
gap changes sign between the hybridized electron pock-
ets. Other authors considered weak-coupling models in-
volving proximity to or coexistence with simple magnetic
stripes,12 with the

√
5×

√
5 block state,13 or considered

similar electronic structure in orbital fluctuation pair-
ing models14. Strong-coupling models predicting fully
gapped s-like states have also been proposed15,16.

A final piece of important experimental information
was obtained when inelastic neutron scattering measure-
ments on RbxFe2−ySe2 performed by Park et al.17 re-
ported a resonance in the superconducting state similar
to that observed in other Fe-pnictide and Fe-chalcogenide
superconductors18 except that it was observed not atQ =
(π, 0) (in the 1-Fe Brillouin zone) but at Q ≃ (π, π/2),
very close to the value predicted by Maier et al.8 Friemel
et al.19 then observed a dispersion of the resonant mode
consistent with band structure calculations on RbFe2Se2,
within the RPA d-wave spin fluctuation picture. This
represents strong support for the itinerant nature of the
mode, and its ultimate origin in the strong scattering
between the electron Fermi pockets in the doped metal-
lic phase. In these experiments, there was no sign of the
iron-vacancy ordering; these authors concluded that their
signal was coming from nonmagnetic, vacancy-disordered
or free phases, and that an itinerant picture of the phe-
nomenon was essentially correct.

It is important to establish experimentally whether or
not a d-wave state is realized in this system, since there
is accumulating evidence that all other Fe-based super-
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conductors have s-wave (albeit probably s±) symmetry.
Observation of a different symmetry in this case could be
consistent with the predictions of spin-fluctuation theory,
which finds an increasingly competitive d-wave instabil-
ity as hole pockets shrink and disappear9, or it could
represent a genuinely new paradigm related to the other
unusual features of the alkali-intercalated chalcogenides.
Recently, Xu et al.20 reported an ARPES measurement
on a KFe2−ySe2 sample with a small Z-centered hole
pocket. If a d-wave gap is present, it must by symmetry
possess nodes on such a pocket. However, the authors of
Ref. 20 were unable to detect significant gap anisotropy
on this pocket, and concluded that the data were incon-
sistent with d-wave gap symmetry. On the other hand,
synchrotron-based ARPES has had a great deal of dif-
ficulty observing gap anisotropy in these systems, even
in situations where other probes have provided strong
evidence for gap nodes (for a discussion, see Ref. 21).
In addition, we argue below that it is difficult to recon-
cile the inelastic neutron scattering data with an s-wave
state. We therefore regard the question of the symmetry
of the gap in these systems as open.
This paper is concerned with exploring ways in which

further neutron scattering experiments on similar sys-
tems could provide information on the gap structure. We
are particularly interested in how such experiments can
distinguish A1g s-wave and B1g (d-wave) gap structures
in systems where the underlying electronic structure con-
sists of two electron sheets and small hole pockets which
could arise upon hole doping. When the AFe2Se2 system
is doped so as to move the hole bands through the Fermi
surface, one expects that as the conventional Fe-pnictide
type Fermi surface, with two electron and two hole pock-
ets is recovered, the system will make a transition from a
B1g (d-wave) state to an A1g (s±-wave) state. However,
RPA calculations find that the B1g pairing is surprisingly
robust and that a near-degeneracy between the A1g and
B1g channels occurs over a finite doping range where the
hole pockets first appear. It is in this doping range that
we will examine how neutron scattering can provide in-
formation on the gap structure.

II. MODEL

In the following, we consider the 5-orbital Hubbard-
Hund Hamiltonian

H = H0 + Ū
∑

i,ℓ

niℓ↑niℓ↓ + Ū ′
∑

i,ℓ′<ℓ

niℓniℓ′

+ J̄
∑

i,ℓ′<ℓ

∑

σ,σ′

c†iℓσc
†
iℓ′σ′ciℓσ′ciℓ′σ (1)

+ J̄ ′
∑

i,ℓ′ 6=ℓ

c†iℓ↑c
†
iℓ↓ciℓ′↓ciℓ′↑

where the interaction parameters Ū , Ū ′, J̄ , J̄ ′ are given
in the notation of Kuroki et al.22. Here we have used spin
rotational invariant parameters Ū = 0.92, Ū ′ = Ū/2 and

J̄ = J̄ ′ = Ū/4. As described in Ref. 8, the tight-binding
Hamiltonian H0 was fitted to the full DFT band struc-
ture of the parent compound KFe2Se2, and the splitting
between the two dxz/dyz bands and the two dxy bands at
the Γ point was artificially enhanced to account for the
ARPES results23. The doping is controlled by adjusting
the chemical potential, i.e. using a rigid band shift. The
Fermi surfaces and orbital weights |〈dℓ|νk〉|2 for electron
dopings of x = 0.15 and 0.05 are shown in Fig. 1. Here, ℓ
is an orbital index with ℓ ∈ (1, 2, 3, 4, 5) corresponding to
the Fe-orbitals (dxz, dyz, dxy, dx2−y2 , d3z2−r2) and ν and
k denote the band and wave vector of the Bloch states.
The pair scattering processes between the β Fermi sur-
faces of Fig. 1a promote B1g(dx2−y2) pairing while scat-
tering processes between the α and β Fermi surfaces of
Fig. 1b give rise to A1g(s

±) pairing. Note that the square
Fermi surface pockets found here allow for the possibility
of nesting at vectors away from (π, π) between the two
electron β− pockets, but that it is the contribution to
the real part of the bare susceptibility χ0 due to the op-
posite signs of the Fermi velocities on these two nearly
parallel Fermi surface edges which provide the dominant
enhancement of Γij within the RPA.
Within the spin fluctuation exchange approach, the

pairing symmetry for a given set of parameters is deter-
mined by the eigenvector of the leading eigenvalue of the
scattering vertex Γ(k,k′) in the singlet channel,

Γij(k,k
′) = Re

∑

ℓ1ℓ2ℓ3ℓ4

aℓ2,∗νi
(k)aℓ3,∗νi

(−k) (2)

× [Γℓ1ℓ2ℓ3ℓ4(k,k
′, ω = 0)] aℓ1νj (k

′)aℓ4νj (−k′).

Here k and k′ are momenta restricted to the electron
and hole pockets k ∈ Ci and k′ ∈ Cj , where i and
j correspond to either the α or β Fermi surfaces, and
aℓν(k) = 〈dℓ|νk〉 are orbital-band matrix-elements. The
vertex function in orbital space Γℓ1ℓ2ℓ3ℓ4 represent the
particle-particle scattering of electrons in orbitals ℓ1, ℓ4
into ℓ2, ℓ3 and in an RPA approximation is given by:

Γℓ1ℓ2ℓ3ℓ4(k,k
′, ω) =

[

3

2
ŪsχRPA

1 (k− k′, ω)Ūs+

1

2
Ūs − 1

2
Ū cχRPA

0 (k− k′, ω)Ū c +
1

2
Ū c

]

ℓ1ℓ2ℓ3ℓ4

.(3)

The interaction matrices Ūs and Ū c in orbital space are
constructed from linear combinations of the interaction
parameters, and their forms are given e.g. in Ref. 24.
Here, χRPA

1 and χRPA
0 are the spin-fluctuation and the

orbital-fluctuation parts of the RPA susceptibility, re-
spectively.
Then, the pairing strength25 λα for various pairing

channels α are given as eigenvalues of

−
∑

j

∮

Cj

dk′
‖

2πvF (k′
‖)
Γij(k,k

′)gα(k
′) = λαgα(k). (4)
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FIG. 1: (Color online) Fermi surfaces and orbital weights for
a doping (a) x = 0.15 and (b) x = 0. In the latter case the
filling is such that hole pockets appear around the Γ point.
Colors represent dominant orbital content: red (xz), green
(yz) and blue (xy).

The eigenfunction gα(k) for the largest eigenvalue de-
termines the leading pairing instability and provides an
approximate form for the superconducting gap ∆(k) ∼
g(k).

At the doping x = 0.15 shown in Fig. 1a, the α hole
pockets surrounding the Γ point are absent, and the
leading pairing instability of Eq. (4) occurs in the B1g

(dx2−y2) channel. However, as holes are added and x de-
creases, the α hole pockets appear as shown in Fig. 1b
for x = 0, and the leading pairing instability can occur
in the A1g (s±) channel.

Figure 2 illustrates the momentum dependence of the
RPA spin susceptibility which drives the pairing along
with the momentum space structure of the two leading
eigenfunctions on the Fermi surfaces for four dopings.
We find that over a range of dopings from approximately
0.1 to 0.0, these two eigenvalues are remarkably close.
Thus with doping or possibly pressure there can be an

evolution from a B1g (dx2−y2) to an A1g (s±) state with
even the possibility of a d+ is state26,27.
As such an evolution proceeds, one would expect to

find a change in structure of the neutron scattering reso-
nant response. In the following we calculate the suscep-
tibility in the symmetry-broken state as28

χ0
ℓ1ℓ2ℓ3ℓ4

(q) = − T

2N

∑

k,µν

Mµν
ℓ1ℓ2ℓ3ℓ4

(k,q) (5)

×{Gµ(k + q)Gν(k) + Fµ(−k − q)F ν(k)}

where the 4-momenta are q = (q, ωm) and k = (k, ωn).
The normal and anomalous Green’s functions are given
as

Gµ(k) =
iωn + ξν(k)

ω2
n + E2

ν(k)
, Fµ(k) =

∆(k)

ω2
n + E2

ν (k)
(6)

Here the matrix elements relating band and orbital space
are

Mµν
ℓ1ℓ2ℓ3ℓ4

(k,q) = aℓ1µ (k+q)aℓ2ν
∗
(k)aℓ3µ

∗
(k+q)aℓ4ν (k) (7)

and the quasiparticle energies for band ν are given by
Eν(k) =

√

ξ2ν(k) + ∆2(k) where ξν(k) denotes the tight-
binding dispersion of band ν. The neutron scattering
cross section is proportional to the imaginary part of the
spin susceptibility in the superconducting state

χ(q, ω) =
∑

ℓ1ℓ2

χRPA
ℓ1ℓ1ℓ2ℓ2

(q, ω) . (8)

The multiorbital RPA spin susceptibility is now given by

χRPA
ℓ1ℓ2ℓ3ℓ4

(q, ω) =
{

χ0(q, ω)
[

1− Ūsχ0(q, ω)
]−1

}

ℓ1ℓ2ℓ3ℓ4
.

(9)
To understand the type of structure that one can ex-

pect to see in inelastic neutron scattering experiments
for such a system in the dx2−y2 , s± and possible interme-
diate d + is states, we have calculated Im χ(q, ω) from
Eqs. (8-9) for some simple parametrizations of ∆(k). As
seen in Fig. 2, the A1g gap exhibits nodes on the electron
sheets and has a gap which we will parameterize using an
extended s-wave (xs) (cos kx+cos ky) form. We will also
consider a simpler isotropic s± gap. The d-wave gap has
the expected (cos kx − cos ky) form except that the gap
on the α2 Fermi surface has a phase factor of −1. This is
because the spin fluctuation scattering of dyz pairs from
both α1 and α2 to the β2 Fermi surface provides the
dominant contribution to the interaction, along with the
scattering of dxz pairs to the β1 Fermi surface. For a
dx2−y2 gap this means that the sign of the gaps on the
regions of the α1 and α2 Fermi surfaces where the dyz
orbital weight is largest will be opposite to that where
the dxz orbital weight is largest. Thus the anti-phase ap-
pearance of the d-wave gaps on the α2 hole Fermi surface
is simply a reflection of the dxz and dyz orbital weights,
which as seen in Fig. 1 are out of phase by π/2 relative
with these weights on the α1 Fermi surface.
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FIG. 2: (Color online) Left column: χ(q, ω = 0) for (top to bottom) dopings x = 0.15, 0.09, 0.05, 0.0 electrons. Next two
columns: The leading and next leading eigenfunction gk at the same dopings. Red and blue colors indicate positive and
negative values, while the symbol size reflects the magnitude. For the interaction parameters that we have taken, the d-wave
and extended s± states are nearly degenerate for a range of dopings between x = 0.1 and 0.0 with a change from d to s±

pairing occuring between x = 0.05 and 0.0.



5

With these considerations in mind, we have parame-
terized the gaps as follows:

∆s±

ν = ∆ν (10)

∆xs
ν (k) = ∆ν(cos kx + cos ky) (11)

∆d
ν(k) = ∆ν(cos kx − cos ky) (12)

∆d+is
ν (k) =

(

∆d
ν(k) + i∆xs

ν (k)
)

/
√
2 (13)

Here the Fermi surface sheet dependent gap amplitudes
∆ν are adjusted so that the maximum amplitude is 0.05
on each sheet. For the s± gap, ∆ν on the α sheets is
positive and on the β sheets negative. For the d-wave,
∆α2

is negative (out of phase) with respect to the ∆α1

gap. In the k-space integrations, Eq. 5, the gaps are cut

off using exp
(

(ξν(k)− µ)
2
/Ω2

0

)

as k moves away from

the Fermi surface with Ω0 = 0.1 eV.
It has been argued that the d-wave cos kx − cos ky for

the gap on the β Fermi surfaces is fragile and acquires
nodes once the Se mediated hybridization between the
electron pockets is taken into account10,11. However the
nodal regions do not make a significant contribution to
the spin resonance and the simple d-wave form of Eq. (12)
provides a suitable representation of the B1g gap for the
5-orbital one Fe per unit cell model. The hybridization
can also alter the usual A1g s± gap giving rise to an A1g

gap which changes signs between the hybridized β pock-
ets. The neutron scattering from this state is expected to
be similar to that of the extended s-wave case, Eq. (11).
To illustrate how the gap structure is reflected in the

inelastic neutron scattering, in Fig. 3 we show the neu-
tron scattering response χ′′(q, ω) for an electron doping
x = 0.09. This is a doping in the range where the A1g

and B1g instabilities are close to each other and where
small changes can lead to an evolution of one state into
another or to even the formation of an xs+id state. Thus
it represents an interesting testing ground to explore the
neutron scattering resonances. Results for momentum
transfers q1 = (π, 0.16π) and q2 = (π, 0.7π), correspond-
ing to the peaks in the dynamical sysceptibility of Fig.
2, are shown in Figs. 3a and b, respectively. In the nor-
mal state, at low frequencies, the imaginary part of the
susceptibility can be approximated by

χ′′(q, ω) ∼ χ′(q, 0)
ωΓ(q)

ω2 + Γ2(q)
(14)

or more generally as a sum of such forms. In the super-
conducting state, spectral weight is pushed upward as
the gap opens and if the BCS coherence factor arising
from the (GG+FF ) structure of Eq. (5) is finite, a spin
resonance appears.
The s± gapped phase shows the expected resonance

response for a momentum transfer q1 in which an elec-
tron is scattered from the α2 Fermi surface where the
gap is positive to the β1 Fermi surface where the gap is
negative. The extended s-wave xs gap shows a similar
resonance which arises from scatterings between the α2
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FIG. 3: (Color online) Comparison of neutron response of
superconducting states given in Eq. (10)–13) for single doping
x = 0.09 (µ = −0.0305). Left: χ′′(q = (π, 0.16π), ω); Right:
χ′′(q = (π, 0.69π), ω).

and the upper part of the β1 Fermi surface where the
xs gap is negative. For scatterings with a momentum
transfer q2 = (π, 0.69π) shown in Fig. 3b, the sign of
the s± gap is the same on β1 and β2 and the vanishing
of the coherence factor suppresses the resonance. How-
ever, for the extended xs-wave, there is a weak response,
which for a slightly shifted value of momentum trans-
fer q ∼ (π, 0.66π) shows a resonance reflecting scattering
from the bottom “positive” gap region of the β2 Fermi
surface to the top of the β1 Fermi surface where the xs
gap is negative. The Brillouin zone intensity difference
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plots which will be discussed below provide another way
to see this.

Turning next to the d-wave gap, Fig. 3b shows a reso-
nance for q2 = (π, 0.69π) associated with the scattering
between the electron β1 and β2 Fermi surfaces. Inter-
estingly, at a lower energy there is also a resonance for
q2 = (π, 0.16π). This resonance at ω ∼ ∆0 corresponds
to the smaller peak in the susceptibility seen for x = 0.09
in Fig. 2. Here the d-wave gap on part of the α2 hole
sheet is out of phase with the gap on the β1 sheet, so the
coherence factor is non-vanishing and a resonance can
appear. The xs+ id gap also shows a resonance response
for both q1 and q2. However, in this case, the energy of
the resonance at q1 is closer to that of the xs gap and at
q2 closer to that of the d-wave gap as one would expect.

Important information helping to identify the gap sym-
metry and structure can be obtained from the qualitative
way in which the resonance structures at the different
wave vectors disperse with energy. In Fig. 4 we show
a set of plots of χ′′(q, ω) for the various gap structures
given by Eqs. (10)–(13) along a cut with qx = π. These
susceptibility maps provide an alternative way of look-
ing at the response from the fixed momentum, variable
frequency plots shown in Figs. 3a and b. The map for
the s± gap exhibits structure in the (0, π) and (π, 0) re-
gions associated with scattering from the α hole Fermi
surfaces to the β electron Fermi surfaces. In the simple
isotropic s± case, this resonance is near (π, 0.16π) and
ω ≈ 1.75∆0. At higher energies above 2∆0, a significant
broad intensity appears also at larger values of qy due to
pair breaking quasiparticle scattering processes between
the β sheets.

The map for the extended xs-wave gap state exhibits
a similar resonance peak to the s± case in the (0, π)
and (π, 0) regions due to α to β scattering. However,
as already seen in Fig. 3a, the resonance occurs at a
lower energy than for the s± gap. In addition, the ex-
tended xs state also has resonances for q ∼ (π, 0.66π) and
(0.66π, π). These arise from scattering processes between
the β1 and β2 electron sheets, whereby an electron scat-
tered from the lower part of the β2 Fermi surface to the
upper part of the β1 Fermi surface with q ∼ (π, 0.66π)
scatters between regions for which the xs gap changes
sign. Then at threshold the coherence factor for this
scattering process is unity and a resonance can appear.
In Fig. 4, one sees that at higher energies the branch dis-
persing towards qy = π/2 has larger intensity than the
branch dispersing towards qy = π.

The d-wave map shows a strong resonance for ω <∼ 2∆0

at (π, 0.69π) and (0.69π, π) as expected from the ω scan
at q = (π, 0.69π) shown in Fig. 3b. This resonance arises
from β1 to β2 scatterings, and is seen to have higher
intensity towards qy = π as ω increases. In addition,
as seen in the ω scan at q = (π, 0.16π), the d-wave gap
also exhibits weaker resonances associated with α2 to β
scattering processes. These arise because the π-phase
shift in the sign of the d-wave gap on the α2 Fermi surface
gives rise to a resonance for scattering an electron from

the α2 Fermi surface to the β1 Fermi surface.
While the q-maps provide a clear way to distinguish

between an s± and d-wave state, the extended xs gap
and the d-wave gap both show resonances from α–β
and β–β scattering. On the basis of the differences
in the spectral weight and resonance energies alone, it
would be difficult to distinguish between xs and d-wave
states. However, for the xs case, the β–β resonances
which onset near (π, 0.66π) and (0.66π, π) show more in-
tensity along the branch dispersing towards (π, 0) and
(0, π), respectively, while for the d-wave case the reso-
nances, which onset near (π, 0.69π) and (0.69π, π), are
stronger towards (π, π). This difference in dispersion
arises from an interplay between the BCS coherence

factor (1 − ∆µ(k+q)∆ν(k)
Eµ(k+q)Eν(k)

) and the energy conserving δ-

function δ(ω−Eµ(k+q)−Eν(k)), which control the scat-
tering phase space. For the xs case, where the resonance
onsets for q ∼ (π, 0.66π), the coherence factor selects
scattering processes in which electrons scatter from the
bottom of the β2 Fermi surface to the top of the β1 Fermi
surface. In this case, as ω increases, the ky separation of
the scattering states decreases and the xs resonance is
stronger towards (π, 0). For the d-wave case, there is a
relative change of the sign of the gap between the entire
β1 and β2 Fermi surfaces. In this case, as ω increases and
the k integration for χ′′(q, ω) runs over a range of differ-
ent energy cuts of the band energies, the peak response
shifts towards the commensurate wave vector q = (π, π)
connecting the centers of β1 and β2 Fermi surfaces. It
is interesting to note that the recent data of Friemel et
al.19 suggest a weak dispersion of the resonance towards
(π, π), providing additional support for d-wave symme-
try.
Finally, there is the question of identifying the xs+ id

state. While the gap map for an xs + id gap is clearly
different from the s± gap and one might differentiate it
from the xs case by examining the dispersion of the res-
onances, the difficulty is separating it from the d-wave
case. That is, while there are clearly differences between
the xs+ id and d-wave gap maps shown in Fig. 4b, these
are quantitative differences which depend upon the mag-
nitudes of the gaps which are chosen on the various Fermi
surfaces. The xs + id and d-wave gaps can be distin-
guished qualitatively only at low energies, where χ′′(q, ω)
will reflect the full gap in the xs + id case, as opposed
to the nodal d-wave state. For the q-ω maps shown in
Fig. 4, qx = π and the d-wave nodes are not connected
by any qy. However, nodal excitations can be probed by
neutrons at other wave vectors. In addition, other exper-
imental probes of low-energy quasiparticles can be used
to distinguish the d and xs+ id states.
While we have presented concrete calculations within a

particular model and for a given set of interaction param-
eters, leading to resonances at specific energies and wave
vectors, it is important to stress that the actual resonance
energies, widths, etc. may differ due to uncertainties in
doping, band structure, interactions, or other details. In
fact, the analysis presented here suggests that samples
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FIG. 4: (Color online) Imaginary part of the dynamical susceptibility χ′′
s (q, ω) plotted for qx = π as function of qy , ω for various

model pair states for x = 0.09.

differing in doping by very small amounts can have dif-
ferent symmetry order parameters. It is therefore impor-
tant that experiments like ARPES and neutron scatter-
ing be performed on the same sample in order to draw
robust conclusions. Here we have tried to focus on dif-
ferences between various gap symmetries and structures
which can allow for qualitative distinctions via measure-
ments of the neutron resonance at different dopings, and
made predictions for the evolution of this resonance with
doping and energy. In conclusion, the AFe2Se2 materials
may exhibit an A1g (s±-wave), B1g (d-wave), or possibly
xs+ id gap. In the region where these phases are nearly
degenerate, they can give rise to resonances associated

with α to β as well as β to β scattering processes. In this
case, one can distinguish the A1g state from the B1g state
by examining the dispersion of the β to β resonance.
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