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We explore the role of charge reservoir layers (CRLs) on the superconducting transition tem-
perature of cuprate superconductors. Specifically, we study the effect of CRLs with efficient short
distance dielectric screening coupled capacitively to copper oxide metallic layers. We argue that
dielectric screening at short distances and at frequencies of the order of the superconducting gap,
but small compared to the Fermi energy can significantly enhance Tc, the transition temperature
of an unconventional superconductor. We discuss the relevance of our qualitative arguments to a
broader class of unconventional superconductors.

I. INTRODUCTION

The superconducting properties of the cuprates are
widely believed to be determined by the electrons in the
copper-oxide (CuO2) layer. This is confirmed by exper-
iments that have identified these electrons as the low
energy degrees of freedom1. Furthermore, the study of
simplified low energy effective models, such as the single-
band Hubbard model and its descendants have provided
overwhelming evidence in favor of this view. The ro-
bust broken symmetry phases found in the cuprates, such
as antiferromagnetism and d-wave superconductivity, are
unequivocally obtained as ground states of these models
in appropriate limits.

However, assuming that the CuO2 layers in different
cuprate materials are electronically similar, the origin of
substantial diversity of their optimal transition temper-
atures (i.e. Tc at optimal doping) is an important issue
that remains poorly understood. For instance, the opti-
mal Tc of LSCO is 40 K, whereas that of the single layer
Hg-2201 compound is more than twice as large. It is dif-
ficult to ignore this spectacular variation, despite the fact
that Tc is a non-universal quantity. Indeed, various the-
ories have been proposed to address this issue: the pre-
vailing view is that alterations of the electronic structure
of the CuO2 layer itself must be responsible for the dif-
ferences in optimal Tc. For instance, the variations could
occur due to differential amounts of disorder in the CuO2

layer. Another popular approach to the problem involves
relating changes in Tc to differences in copper-apical oxy-
gen bond lengths2,3, which in turn induce subtle changes
in the structure of the Fermi surface4–6.

A more radical proposal7,8 invokes the role of charge
reservoir layers (CRLs), which are spatially separated
from the CuO2 layer, in determining the optimal Tc.
The CRLs are coupled to the CuO2 layer capacitively.
Taken at face value, the notion that CRLs affect Tc is not
unreasonable: systems with CRLs such as the mercury
cuprates have higher optimal Tcs than materials such as
LSCO, which do not possess CRLs. Moreover, materials
with different CRLs also have substantially different op-
timal Tcs. However, the mechanism by which the CRLs
affect Tc is unclear. Here, we attempt to place the pos-
sibility that CRLs can affect Tc on more firm theoretical
footing. The work in Refs. 7 and 8 suggested that

resonant pair tunneling due to negative U centers was re-
sponsible for this enhancement. Here, however, we take
a very different approach: we argue instead that if reser-
voir layers were highly polarizable, they can significantly
alter the effective pairing interaction (and therefore Tc)
of unconventional superconductors.
The intuition underlying our argument can be stated

as follows. Any realistic system will always have
both onsite and longer range repulsive electron interac-
tions. Whereas the onsite interactions (as emphasized in
Hubbard-like models) reflect atomic physics at the short-
est distance scales, longer range interactions reflect the
solid state environment in which the low energy degrees
of freedom are embedded: they are effective interactions
among the essential degrees of freedom generated by “in-
tegrating out” the environment. While the onsite repul-
sive interactions are directly responsible for the uncon-
ventional pairing, more extended repulsive interactions
have the opposite effect - they weaken the scale at which
pairing occurs9. Therefore, if the environment (i.e. the
CRL in the present context) were highly polarizable, it
could act to weaken longer range interactions in the CuO2

layer and therefore to enhance Tc.
While the discussion here is framed largely in the con-

text of the cuprates, we believe that the robust quali-
tative effects on Tc emphasized here are relevant to a
broader class of materials exhibiting unconventional su-
perconductivity. Some of the effects described here could
also be explored in artificially engineered systems consist-
ing of hybrids of distinct parent materials.
The outline of the paper is as follows. In Section II,

we review phenomenological arguments that lead to the
effective Hamiltonian constructed in Section III. Sec-
tion IV discusses the superconducting properties of the
system of interest in various limits. We present our con-
clusions and outline future directions in Section V.

II. RELEVANT PHENOMENOLOGY OF

MULTI-LAYERED CUPRATES

In this section, we discuss phenomenological arguments
that inspired us to construct and analyze the model
Hamiltonian of Section III. Fig. 1 shows the optimal
Tc of several families of multi-layer cuprate supercon-



ductors, each having different CRLs. In these systems,
each unit cell consists of n-CuO2 layers stacked along the
c-axis and is separated from the next by a CRL. The CRL
is separated from the outermost CuO2 plane (OP) by an
insulating oxide layer, which suppresses single electron
tunneling between them. Thus, the CRL and OP form a
naturally occurring “oxide interface”, and their coupling
is primarily capacitive. For a family of materials with
the same CRL the dependence of Tc on n is remarkably
universal: it increases from n = 1, and decreases beyond
an optimal value of n ≈ 3. For n > 5, Tc(n) ≈ Tc(n = 1).
Several theories have been proposed to address the fur-
ther enhancement at n ≈ 3 - see for instance Refs. 10
and 11. By contrast, the point we stress here is that, as
is clear from Fig. 1, for families with different CRLs, the
optimal Tc itself varies drastically. For a recent summary
of the experimental data of multilayer cuprates, see Ref.
12.
From simple electrostatic considerations, it follows

that the OP layers are more overdoped whereas the IP
layers are more underdoped. This is also consistent with
the quantum chemistry of these materials: the IP layers
do not have apical oxygens and therefore are closer to
half-filling than the OP layers. Indeed, this is confirmed
by the fact that antiferromagnetism has been experimen-
tally observed in the IPs13. With increasing n, supercon-
ductivity occurs mainly on the OPs and becomes more
two dimensional; the 3-layer system consisting of two
OPs sandwiched by a CRL are separated from the next
unit cell by a large number of intervening antiferromag-
netic layers. This point of view is strongly substantiated
by the fact that the vortex melting curves of multi-layered
cuprates are two-dimensional in character, and are inde-
pendent of n for n > 514. The fact that Tc at large n is
close to the value at n = 1 gives us further justification
for the fact that the relevant degrees of freedom as far
as superconductivity is concerned, are the CRL and OP
layers. We are led, therefore, to consider a simple model
Hamiltonian built only out of these degrees of freedom.
Within the context of this simple model, we will study
how the dielectric properties of the CRL can affect Tc of
the OP electrons.

III. MODEL HAMILTONIAN

If the CRL were to affect Tc of the OP electrons by
screening longer range interactions, its dielectric func-
tion must satisfy specific requirements. Firstly, the di-
electric function should be large over a range of frequen-
cies, kBTc . ω ≪ EF. Secondly, the dielectric screening
must be efficient over a broad range of momenta up to
scales comparable to the inverse lattice spacing. A very
simple way in which the CRLs could exhibit such prop-
erties is if they were metallic, or if they consisted of a
liquid of dipole moments that can fluctuate and are able
to screen the OP electron fluid. Very little is known
from experiments about the dielectric properties of the
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FIG. 1. Tc in several families of multilayered cuprate super-
conductors [Reproduced with permission from J. Phys. Soc.
Jpn 76, 094711 (2007)].
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FIG. 2. (a) The n-layer Hg cuprate consists of n − 2 inner
planes (IP), two outer planes (OP), and a CRL. In this family,
Tc exhibits no variation with n beyond n > 5 and is close to
Tc(n = 1) [Reproduced with permission from J. Phys. Soc.
Jpn 76, 094711 (2007)]. (b) For sufficiently large n, the inner
planes are undoped and the outermost plane exhibits super-
conductivity. The minimal description in this limit reduces
to that of a bilayer consisting of an OP layer and a CRL as
shown in (b).

CRLs and further work is needed to clarify the situa-
tion. From a theoretical standpoint, electronic structure
calculations have found the possibility that CRL bands
are close to being metallic15, and become metallic un-
der pressure16,17. We will not speculate on the issue fur-
ther here and will instead focus on the consequences that
would follow if the CRLs had the dielectric properties de-
scribed above.
Let ck,σ create an electron in the OP (Fig. 2b) and let

dk,σ create an electron in the CRL. We express the parti-
tion function of this system as a Grassman path integral
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of the form

Z =

∫

Dc̄kσDckσDd̄kσDdkσe
−

∫
β

0
dτL

L = Lcrl + Lop + Lop-crl (1)

The action consists of 3 terms: 1) a contribution purely
from the CRL, 2) one purely from the OP and 3) a cou-
pling between the CRL and OP. For purpose of illustra-
tion, we treat the CRL as a free fermion system, whereas
the OP action consists of both kinetic and potential en-
ergy:

Lcrl =
∑

kσ

d̄kσ [∂τ + ξd,k] dkσ

Lop =
∑

kσ

c̄kσ [∂τ + ξc,k] ckσ +
1

2

∑

q

V1(q)n̂c(q)n̂c(−q)

(2)

where n̂c(q) denotes the electron density in the OP layer,
and ξc,k, ξd,k are the kinetic energies relative to the Fermi
level of the OP and CRL layer, respectively. Generically,
the coupling between the OP layer and the CRL will con-
sist of a direct single electron tunneling matrix element
vk from the OP to the CRL as well as Coulomb interac-
tions between them:

Lop-crl =
∑

k

[

vkd
†
kσckσ + h.c.

]

+
∑

q

V2(q)n̂d(−q)n̂c(q)

(3)

The low energy effective action for electrons in the OP
layer is obtained by integrating out the electrons in the
CRL. One therefore obtains

Leff =
∑

kσ

c†kσ [(∂τ + ξc(k)) + Σ(k, ω)] ckσ

+
∑

q

Veff(q)n̂c(q)n̂c(−q) + · · · (4)

where

Σ(k) = v∗k(∂τ + ξd,k)
−1vk

V
(op)
eff (q) = V1(q)−

1

2
V 2
2 (q)χ(q, ω) (5)

and χ(q, ω) is the charge susceptibility of the CRL elec-
trons, which in turn is related to its dielectric function.
Here, the “ · · · ” involve non-linear susceptibilities that
we have neglected in the spirit of RPA (linear-response):
moreover, these terms produce irrelevant corrections to
the effective action to be treated below. We note that
the direct hybridization between the OP and CRL pro-
duces a self-energy correction to the Green’s function of
the OP electrons. Therefore, if the CRL were sufficiently
disordered, the disorder would be introduced into the OP.
The fact that an oxide barrier is present in between the
OP electrons and the CRL electrons is likely to make
the hybridization small, and we shall neglect it in what
follows.

In the analysis of the effective action of Eq. 4 in
the next section, we will make use of the following con-
crete form: for the non-interacting kinetic term H0 =
∑

k,σ ξc(k)c
†
k,σck,σ, we assume a square lattice including

nearest (t) and next nearest neighbor hybridization (t′)
for the OP layer, i.e. ξc(k) = −2t(coskx + cos ky) +
4t′ cos kx cos ky − µ. Our goal here is to illustrate the
role of longer range interactions; it will suffice to treat
the interactions in Eq. 4 as being finite-ranged as in an
extended-Hubbard model:

H = H0 +Hint,

Hint = U
∑

i,σ

c†i,σci,σ +
U1

2

∑

〈i,j〉,σ,σ′

ni,σnj.σ′

+
U2

2

∑

〈〈i,j〉〉,σ,σ′

ni,σnj.σ′ , (6)

where ni,σ denotes the OP fermionic occupation operator
of spin σ at site i of the square lattice. Within this de-
scription, the effect of capacitive screening from the CRL
is to change the ratio U1/U and U2/U in (6). This will
be the starting point for our subsequent analysis. In the
spirit of our phenomenological approach, we will largely
be focusing on the effect of U1/U ; while Tc is affected by
U2/U , the dx2−y2 state is more directly affected by the
ratio U1/U .

IV. SUPERCONDUCTIVITY

In this section, we study the pairing scale associ-
ated with the model (6) in several different limits and
find the same qualitative trend in each case. Firstly,
in the limit where the interactions within the OP lay-
ers are weak compared to the kinetic energy, we dis-
cuss asymptotically exact perturbative renormalization
group results9,18. In this limit, the normal state is a well-
behaved Fermi liquid and superconductivity is the only
instability of this system. We next consider the interme-
diate coupling regime. In this regime, there are no small
parameters, and therefore are no well-controlled meth-
ods with which to attack the problem. However, there is
an unbiased approach known as the functional renormal-
ization group (fRG), which treats all possible ordering
tendencies on equal footing. This approach has provided
us with important guidance and intuition regarding the
pairing tendencies of the cuprates and pnictide super-
conductors19–26. Lastly, we consider the limit of strong
coupling in which the low energy behavior of the system
is dictated by the proximity to a Mott insulating phase.
In this limit, there do not exist any controllable analytic
treatments. However, there are approximate treatments
based on the idea of spin-charge separation and electron
fractionalization. These methods, known as slave particle
mean-field theories are the simplest means of obtaining a
system with a large Fermi surface, but with a low super-
fluid density and provides us with physical intuition as
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to the nature of the underdoped cuprates27–33. We stress
below that in all three limits, when longer range interac-
tions are screened, the scale at which superconductivity
develops is enhanced.

A. Asymptotically exact perturbative

renormalization group treatment at weak coupling

In the weak-coupling limit U ≪ W , where W is the
kinetic bandwidth, superconductivity develops out of a
well-behaved Fermi liquid, and is the only generic insta-
bility of the system, as was first demonstrated in Ref.
34. In a modern formulation of this problem18, the prob-
lem is solved in two stages. In the first stage, one first
introduces an unphysical, artificial cutoff Ω0 and inte-
grates out all modes with energy E > Ω0. The cutoff
is chosen so that W exp (−1/ρU) ≪ Ω0 ≪ U2/W and
the modes can be integrated out perturbatively in U/W
to as high a degree of precision that is desired. When
this is accomplished, the remaining electronic modes lie
parametrically close to the Fermi surface, and induced at-
tractive interactions due to the particle-hole continuum
are generated in the low energy effective action. In the
second stage, the perturbative RG flows of the result-
ing effective action are computed and marginally relevant
couplings destabilize the Fermi liquid to produce the su-
perconducting instability below a scale

Tc ∼ We−1/aU2

, (7)

where a is a number of order unity that involves the en-
tire spectrum of particle-hole fluctuations. These results
are asymptotically exact: the pairing scale is expressed
as an asymptotic series in the bare couplings and the
leading corrections to the expression above can easily be
computed.
When only onsite interactions are present, the s-wave

state in which Cooper pairing occurs on the same lat-
tice site is disfavored; the induced attractive interactions
due to the particle-hole fluctuations, however, favor un-
conventional superconducting states. For electrons in a
nearly half-filled tetragonal lattice, the predominant in-
stability is towards dx2−y2 superconductivity18.
When longer-range interactions are present, the in-

duced attraction generated from the particle-hole con-
tinuum must overcome the bare repulsive forces in order
for unconventional superconductivity to occur. The in-
terplay between these bare long range repulsive forces
and the induced attractive interactions results in a rich
phase diagram that was studied in detail in Ref. 9. Here,
we summarize the main conclusions of this work. Since
we are working in the limit as U,U1, U2, · · · all approach
zero, and since the effective interactions form an asymp-
totic, not a convergent, series in these interactions, the
result sensitively depends on the way in which the limit is
taken. If we set U1 to approach zero as U1 ∼ U2, there is
direct competition between the induced attractive inter-
actions O(U2) and U1, which exponentially weakens the

pairing strength associated with the dx2−y2 superconduc-
tor. However, the superconducting state itself remains
robust for a finite range of U1. On the other hand, if U1

scales as U1 ∼ U in this limit, induced attractive interac-
tions cannot overcome the bare repulsion and the result
is that the dx2−y2 pairing is completely lost. In general,
as the range of the repulsive interaction is increased, the
separation between Cooper pairs also increases35.
In summary, in the limit U ≪ t, longer range repul-

sive interactions substantially weaken the pairing scale
at which dx2−y2 superconductivity occurs; therefore, if
a polarizable medium were to be placed in proximity to
the metal, the superconducting pairing strength would
be exponentially enhanced.

B. Functional renormalization group treatment at

intermediate coupling

In the weak-coupling limit treatment above, there
generically isn’t any competition between unconventional
pairing and non-superconducting orders, unless one fine-
tunes the band structure. In the intermediate coupling
regime, longer range interactions have two effects: they
lower the pairing scale, as in the weak-coupling case, but
they also enhance competing orders, as we discuss below.
In this subsection, we discuss both effects and show that
both act to lower the transition temperature.
As an adaptation of the Wilsonian RG for inter-

acting Fermi systems19,20,36, the functional renormal-
ization group (FRG) of the two-dimensional Hubbard
model has been introduced by different groups21–23,37.
Within FRG, the flow of the two-particle vertex function
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FIG. 3. (color online) (a) FRG parquet flow equation of the
two-particle vertex VΛ. The dotted derivative denotes ∂

∂Λ
V Λ,

the dashed internal line is the single scale propagator ∂
∂Λ

G0,Λ.
(b) Patching scheme (N = 64, counterclockwise) for a typical
cuprate Fermi surface at t′ = 0.3t and electron concentration
ne = 0.98.
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V Λ(k1,k2,k3,k4) is studied as a function of the energy
cutoff parameter Λ, where k1 and k2 (k3 and k4) denote
the ingoing (outgoing) particles (Fig. 3a). Λ denotes the
energy scale up to which high energy modes have been
integrated out to provide an effective two-particle inter-
action vertex. Its initial conditions are given by the bare
interaction in (6). The largest scale Λc at which the
RG flows break down will signal a Fermi surface insta-
bility in a given interaction channel. While the abso-
lute magnitude of Λc can differ from Tc, the variation
of Λc upon changing system parameters is indicative of
relative variations of Tc. The momenta ki entering the
vertex function V Λ are constrained to take N finite val-
ues in the Brillouin zone, which is divided into patches
(Fig. 3b). The flow equation of the two-particle vertex
then becomes a system of coupled N3 integro-differential
equations, which are then solved numerically (Fig. 3a)37.
As we ignore all self-energy effect in the flow, the single-

particle Green function G0,Λ = C(Λ)
iω−ǫ(k) only changes with

respect to the cutoff function C(Λ)37 .
The main approximations of the FRG are given by (i)

neglecting the self energy corrections imposed by the two-
particle vertex, (ii) discarding the frequency dependence
of the vertex, (iii) limited momentum resolution due to
the finite patch number N , and (iv) neglecting higher or-
der diagrams. It is instructive to see how the weak cou-
pling ansatz in Section IVA and the FRG are connected:
in the limit of infinitesimal U , the approximations (i),
(ii), and (iv) become irrelevant, and the precision along
(iii) can be enhanced according to a regular numerical
momentum integration in the Brillouin zone.
For intermediate coupling, superconductivity generi-

cally competes with density-wave type instabilities: at
high Λ, the main feature emerging in the renormaliza-
tion group flow of the interaction vertex are particle-hole
fluctuations, which then seed superconducting fluctua-
tions34. The phase diagram for local Hubbard interac-
tions has been obtained in Ref. 23. Nearby nesting, SDW
order is dominant for sufficiently large U , while dx2−y2

superconductivity wins either by doping or enhancement
of t′. While the FRG is an unbiased method, it can
be reliably trusted only when U < W . Below, we set
U = 2t, and vary U1/U while remaining close to half-
filling (ne = 1). While the parameters we’ve chosen may
not directly be applicable to the cuprates, our goal here
is to illustrate the competition between superconductiv-
ity and density wave orders, and the general trend for
the resulting superconducting pairing strengths as U1/U
is varied.
dx2−y2-wave superconductivity stays the leading su-

perconducting instability for intermediate coupling when
we consider U and U1 interactions according to (6). Λc

decreases as U1 is enhanced (Fig. 4) because the long-
range part of Coulomb interactions considerably affects
the critical scale of unconventional superconductivity at
intermediate coupling. The sensitivity of Λc to longer
range interactions is strong when competing orders are
present in the particle hole channel: in the vicinity of
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FIG. 4. (color online) Critical scale ΛSC
c as a function of

U1/U , with fixed parameters U=2t, ne = 0.98, t′ = 0.3t. Λc

decreases significantly for finite U1.

half filling, enhancing U can provide a change from SC
to SDW order; furthermore, U1/U > 0.6 drives the sys-
tem into a charge density wave (CDW) phase whose Λc

increases for higher U1. In the overdoped regime, com-
peting orders in the particle hole channel are generally
suppressed due to absence of Fermi surface nesting. How-
ever, we still find ΛSC

c to slightly decrease upon enhancing
U1 which is due to reminiscent competing particle-hole
fluctuation effects.

C. Strong coupling

We now turn to the limit where the onsite and ex-
tended electron-electron interactions are much larger
than their kinetic energy. Specifically, we start by in-
vestigating (6), and assume t′ = 0 for simplicity. In
the strong coupling limit, we take the onsite interaction
U/t → ∞. In this limit, close to half-filling, one projects
the system onto the lower Hubbard band consisting only
of singly occupied sites. The mixing between the Hub-
bard bands are eliminated via a canonical transformation
and a t/U expansion, which leads to the following effec-
tive Hamiltonian38,39:

Heff = P



−t
∑

〈ij〉

c†iσcjσ +
∑

ij

Vij(ni − 1)(nj − 1)



P

+ J
∑

〈ij〉

[

Si · Sj −
1

4
ninj

]

, (8)

where Vij takes on the values U1 for nearest neighbor
and U2 for next nearest neighbor repulsion and P is the
Gutzwiller projection operator onto the subspace with-
out any doubly occupied sites. The exchange coupling
J = 4t2/(U − U1) depends weakly on the longer range
interactions and sets the scale for the low energy spin
dynamics of the system near half-filling. It is important
to stress that unlike the onsite interactions, the extended
interactions do contribute to the dynamics of the lower
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Hubbard band. This will certainly hold true in the ap-
proximate, yet physically motivated treatments of this
problem that we consider below.
A method that is frequently used to handle the projec-

tion involves the introduction of auxiliary ‘slave’ particles
fiσ, bi defined via

c†iσ = bif
†
iσ. (9)

The physical electron operator is written as a product
of a charged bosonic operator bi and a neutral fermion
operator fiσ. The projection is implemented via the con-
straint

∑

σ

f †
iσfiσ + b†ibi = 1 (10)

so that, e.g. matrix elements of operators involv-
ing the product nfinb,i, where nfi(nbi) are the slave
fermion(boson) densities, vanish in the projected Hilbert
space. The constraint is implemented by introducing a
U(1) gauge field whose fluctuations are neglected in the
simplest mean-field theories.
The mean-field treatment involves a series of approx-

imations. Firstly, the constraint is satisfied only on av-

erage, i.e.
∑

σ〈f
†
iσfiσ〉 + 〈b†ibi〉 = 1. Secondly, in the

superconducting phase, the slave bosons condense and
exhibit off-diagonal long-range order. Therefore, the op-
erator bi is replaced by a c-number 〈bi〉 →

√
δ, where δ

is the concentration of holes, and near half-filling, δ ≪ 1.
The resulting Hamiltonian does not involve the projec-
tion operator P and can be written in the form

H =−tδ
∑

〈ij〉σ

(

f †
iσfjσ + h.c.

)

+ J
∑

〈ij〉

[

Si · Sj −
1

4
ninj

]

+
∑

ij

Vij(ni − 1)(nj − 1) (11)

Here, density and spin operators involve only the spinon
degree of freedom and the subscript “f” on the density
operator has been eliminated for simplicity. As a conse-
quence, the longer range interactions are “felt” also by
spinons, despite the fact that they represent neutral par-
ticles.
The spinon Hamiltonian above still involves quartic

terms: the last approximation involves treating it varia-
tionally via an unrestricted Hartree-Fock approximation.
Specifically, we introduce a trial Hamiltonian of the form

Htr =
∑

kσ

ǫkf
†
kσfkσ +

1

2

∑

kσσ′

[

∆̃kf
†
kσ(iτ

y
σσ′)f

†
−kσ′ + h.c.

]

(12)

where ∆̃k is a variational parameter corresponding to the
“gap” due to pre-formed spinon pairs. The variational
free energy F0 = Ftr + 〈H −Htr〉tr is extremized, which

leads to the following self-consistent gap equation for ∆̃k,
which is the main result of this section:

1

J − U1
=

∑

k

(cos kx − cos ky)
2 1

2Ek

tanh

[

βEk

2

]

(13)

where Ek =
√

ǫ2k + ∆̃2
k. The physical order parame-

ter corresponding to the superconducting state is ∆ij =

δ∆̃ij . From the gap equation, it follows that the magni-
tude of the spinon gap decreases linearly as the nearest
neighbor repulsion U1 increases. However, since the gap
has dx2−y2 symmetry, it is relatively unaffected by the
second-neighbor repulsion. Similar results were found in
DMRG studies of extended Hubbard models on ladder
systems9. An additional effect of longer range interac-
tions is that they disfavor superconductivity by enhanc-
ing the tendency towards competing orders such as flux
phases and density-wave orders: we have observed this
competition in an explicit Hartree-Fock analysis of the
spinon Hamiltonian above and will discuss our results
elsewhere.

The longer range interactions have another significant
consequence, which is purely quantum mechanical in ori-
gin. They suppress charge fluctuations and in turn en-
hance phase fluctuations40. This is most easily seen from
an alternative mean-field decoupling of the extended t–J
Hamiltonian above in which the system is expressed in
terms of the slave boson degrees of freedom. When longer
range interactions are repulsive (attractive), the super-
fluid density decreases(increases) linearly with U1, U2 · · · .
In this regime, longer range components of the elec-
tron interactions affect Tc linearly. Thus even in the
strong coupling limit which is relevant to the underdoped
cuprates, screening from a proximate polarizable media
can act to raise Tc.

V. DISCUSSION AND CONCLUSION

There are many factors that play a role in optimiz-
ing Tc: after all, since it is a non-universal quantity, it
will depend sensitively on small variations of the micro-
scopic properties of a material. To make quantitative
predictions of Tc, a complete understanding of the micro-
scopic pairing mechanism is required, taking into account
all material-specific details. Clearly, this is an impossi-
ble task at present. Alternatively, by searching for ro-
bust qualitative phenomena that depend on microscopic
physics in a simple parametric fashion, and by looking at
relative trends of pairing strengths, one could in princi-
ple uncover new strategies for optimizing Tc in existing
unconventional superconductors.

Indeed, this type of pursuit has led us to under-
stand how altering the properties of the CuO2 layers
can optimize Tc. Examples include ideas that focus on
the relative influence of the pairing scale and superfluid
density10,41–43 in optimizing Tc, as well as on the effect
of delocalizing Cooper pairs in layered structures via in-
terlayer tunneling11 . These scenarios may have much to
do with the universal features of the Tc curves in Fig. 1.
However, these ideas focus on the properties of the CuO2

layers and cannot address the question of why, for in-
stance the optimal Tc of Hg-based cuprates are much
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larger than LSCO and LBCO which do not have CRLs.
By similarly focusing on robust qualitative effects on

Tc, we have shown that highly polarizable media, when
coupled capacitively to a metal, can act to raise the tran-
sition temperature of an unconventional superconductor.
We have shown this by considering the problem in vari-
ous limits and arguing within the phenomenological con-
text of extended lattice Hubbard models, that the longer
range components of the repulsive interactions are always
detrimental to d-wave superconductivity. We stress here
that this result does not require us to invoke a sharply
defined bosonic pairing ‘glue’.
At present, very little is known experimentally about

the CRLs. It would therefore be of much interest in this
context to obtain the dielectric properties of the CRL
using resonant x-ray spectroscopic methods. The dielec-
tric properties of CRLs can also be investigated theo-
retically in first principles calculations, which we believe
are worth undertaking. If the CRLs did possess the re-
quired dielectric properties, the behavior of Tc would be
non-monotonic as a function of uniaxial pressure, applied
along the c-axis. As the CRLs move closer to the OP
layers, Tc would increase due to the mechanism that we
discussed above. However, if the CRLs were too close to
the OP layers, even onsite interactions would be screened;
this in turn would lower Tc.
While we have been motivated here by material specific

considerations involving the role of the charge reservoir
layers, our findings are likely to apply to a broader class
of unconventional superconductors. With this in mind,
it will be vital to explore these ideas in artificially engi-
neered interfaces between metals and polarizable media
where the complications due to material properties are
less pronounced. An example is an interface between
amorphous dipolar liquids (i.e. amorphous mixtures of

ferroelectric and anti-ferroelectric subsystems) and corre-
lated metals. A particularly exciting example is the case
of a 2DEG with metallic gates where screening due to
the gates may enable the observation of unconventional
superconductivity. In this context, by tuning the ratio
of the bandwidths of the 2DEG relative to that of the
metallic gates, it will be possible, in principle, to over-

screen the Coulomb interactions resulting in attraction.
We shall pursue these studies in a future publication.

By contrast, the effects of screening on Tc that we con-
sider here are unlikely to apply to conventional electron-
phonon superconductors. Even in these systems, the at-
tractive interaction due to electron-phonon coupling, λ,
must overcome the renormalized Coulomb pseudopoten-
tial µ∗. However, the range of the Coulomb interaction
has virtually no consequence for Tc: the retarded inter-
action is usually local in real space and is insensitive to
any subtle momentum-dependence of µ∗. Furthermore,
the quantity µ∗ depends mainly on the ratio of ωD/EF

and hardly depends on the bare Coulomb interaction. It
therefore follows that the screening mechanisms we con-
sider here would likely not affect its magnitude.
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