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We show that the substitutional vacancy in graphene forms a dynamical Jahn-Teller center. The
adiabatic potential surface resulting from the electron-lattice coupling was computed using density-
functional methods and subsequently the Schrödinger equation was solved for the nuclear motion.
Our calculations show a large tunneling splitting 3Γ estimated to be about 64 cm−1. The effect
results in a large delocalization of the carbon nuclear wave functions around the vacancy leading to a
significant broadening of the Jahn-Teller active sp2σ electron states. The tunneling splitting should
be observable in electron paramagnetic resonance and two-photon resonance scattering experiments.

PACS numbers: 81.05.ue, 71.70.Ej, 31.30.-i

I. INTRODUCTION

In spite of its deceptively simple honeycomb lattice
structure, graphene has quickly become a new paradigm
for testing a variety of ideas in condensed matter physics.
The much celebrated linear band structure of graphene1

leads to a host of unusual behaviors2–5 such as Klein tun-
neling, chiral electrons, minimum conductivity, negative
refraction, half-integer quantum Hall effect, and new fea-
tures in the Kondo and RKKY interactions.6,7 Vacancies
in the carbon based systems have been of considerable
interest for quite some time now, especially in the con-
text of magnetism without magnetic atoms.8–14 Quite
remarkably, it has been shown that a vacancy introduces
a quasi-localized midgap state in the π bands with ∼ 1/r
decay on account of the particle-hole symmetry.9,15 An
interesting consequence of this is the partial occupation
of the vacancy-induced σ-band states, which leads then
to a Jahn-Teller (JT) distortion. The JT distortion could
be static or dynamic. In the latter, the potential barrier
between the different equivalent minima in the nuclear
configuration space is small enough that the nuclei tun-
nel between the various minima leading to several inter-
esting effects, while in the static JT effect, the nuclei
are stuck to one minima or the other. In this paper, we
show that the vacancy forms a dynamical JT center in
graphene owing to the small quantum mechanical barrier
for nuclear tunneling.

II. JAHN-TELLER COUPLING AND THE

ADIABATIC POTENTIAL SURFACE

Density-functional calculations9 show that the vacancy
introduces four electrons into the graphene bands as il-
lustrated in Fig. 1. The JT effect comes from the partial
occupation of the doubly-degenerate sp2σ dangling bond
states on the carbon triangle surrounding the vacancy
and their coupling to the two vibrational modes of the

triangle, given by the E ⊗ e JT Hamiltonian17
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where the terms are the nuclear kinetic energy, the elas-
tic energy, and the linear and the quadratic JT cou-
pling terms. Here the pseudospin ~τ describes the two
JT active, doubly-degenerate electronic states |v1〉 and
|v2〉 originating from the three sp2σ dangling bonds on

the carbon triangle: |v0〉 = (σ1 + σ2 + σ3)/
√
3, |v1〉 =

(−σ2 + σ3)/
√
2, |v2〉 = (2σ1 − σ2 − σ3)/

√
6, with ener-

gies E0 = −2t and E1,2 = t and symmetries A1 and E,
respectively, with the −t being the σ-electron hopping
between the neighboring sites on the triangle, and |v1〉
transforms like x and |v2〉 like y. On the other hand, the
pz orbitals, responsible for the linear ‘π’ Dirac bands, in-
troduce the quasi-localized midgap state, which becomes
singly-occupied due to Hund’s coupling, leaving a lone
electron to occupy the σ-derived doubly-degenerate E
state. This explains the relative positions of the vacancy
states shown in Fig. 1. Density-functional calculations
yield a net magnetic moment of about 1.7µB and may be
understood as follows. The Hund’s-rule coupling between
the Vσ and Vπ electrons leads to a S = 1 state with
a magnetic moment of 2µB, which is reduced by about
0.3µB due to the anti-ferromagnetic spin-polarization of
the π band itinerant states in the vicinity of the vacancy
as schematically illustrated in Fig. 1.
Turning now to the three vibrational modes of the
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12,17 Q0 is the stretching mode and the

doubly-degenerate Q1 and Q2 modes are JT active, split-
ting the upper two Vσ bands as shown in Fig. 1. The pa-
rameters in the Hamiltonian are the carbon massM , the
elastic energy K, and the linear and quadratic JT cou-
pling parameters g and G, respectively. Diagonalization
of the potential terms in Eq. 1 leads to the well-known
adiabatic potential surface (APS) for the nuclear motion

E± =
1

2
Kρ2 ± ρ

√

g2 +G2ρ2 + 2gGρ cos(3φ), (2)
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where ρ =
√

Q2
1 +Q2

2 and φ = tan−1(Q2/Q1) are the po-
lar coordinates and E± denote the two potential sheets.
Without the quadratic coupling (G = 0), one gets the
Mexican hat APS, while with it we have three minima in
the (Q1, Q2) space (Fig. 2). The electronic eigenfunction
for the lower sheet is17

|ψe〉 = [sin(φ/2)|v1〉+ cos(φ/2)|v2〉]× eiφ/2, (3)

where the phase factor assures single-valuedness as one
moves around the origin and leads to a Berry phase.

III. DENSITY-FUNCTIONAL COMPUTATION

OF THE ADIABATIC POTENTIAL SURFACE

In order to study the APS, we have computed the to-
tal energy as a function of the vibronic coordinates using
the spin-polarized density functional all-electron linear
augmented plane-waves (LAPW) method20 and the gra-
dient approximation (GGA) for the exchange-correlation
functional.21 We used a 32-atom supercell with a single
vacancy and obtained a fully relaxed structure, which
yielded a planar structure with an isosceles triangle for
the carbon atoms surrounding the vacancy with two long
bonds (2.66 Å) and one short bond (2.41 Å). This is
equivalent to the distortion: Q0 = 0.08 Å, Q1 = 0.166
Å, and Q2 = 0. We then took a series of structures
with varying distortions, Q1 and Q2, and in each case
optimized the rest of the carbon atoms in the supercell.
We note that while the literature is divided regarding
whether the relaxed structure with a vacancy is planar
or non-planar, the three-fold symmetry of the adiabatic
potential surface occurs in either case, being tied to the
symmetry of the honeycomb lattice itself. Throughout
the calculations, the atomic sphere radius (RMT) was
fixed at 0.63 Å, while the LAPW basis functions were
cutoff at RKmax = 4.6, with approximately 3500 basis
functions at each k point, and we retained the angular
momentum expansion inside the atomic sphere up to lmax

= 6. The basis set included 2s, 2p valence functions for
the C atoms.
The calculated energies are shown in Fig. 2, which

yields the JT distortion radius ρ0 = 0.165 Å, the JT sta-
bilization energy EJT= 110 meV and the tunneling bar-
rier height β=19 meV. Comparison of these results with
Eq. (2) yields the stiffness constant K = 9.3 eV / Å2 and
the linear and the quadratic JT parameters g = 1.46 eV/
Å and G = 0.38 eV/ Å2, respectively. For the case of
LaMnO3, a well-known system with a strong JT interac-
tion, while the K and g are about the same, the warp-
ing parameter G = 2.0 eV/ Å2 is significantly large,22

which results in a static JT effect with the nuclei stuck to
one potential minimum. In contrast, the weaker warping
term G in graphene leads to a small barrier height for
nuclear tunneling and consequently to the dynamic JT
effect, where the nuclei tunnel between the three minima
in the APS.

IV. TIGHT-BINDING NUCLEAR HOPPING

AND THE BERRY PHASE

The basic features of the collective nuclear-electronic
motion may be described by adopting a simple tight-
binding approach, familiar from the electronic struc-
ture theory. We write the collective wave function
as the linear combination |Ψ〉 = c1 φ1(R) ψ

e
1(R, r) +

c2 φ2(R) ψ
e
2(R, r)+ c3 φ3(R) ψ

e
3(R, r), where R(r) is the

nuclear (electronic) coordinate, φi(R) solves the nuclear
Schrödinger equation in the vicinity of the potential min-
ima,

[TR + Vi(R)]φi(R) = E0φi(R), (4)

and ψe
i (R, r) satisfies the electronic Schrödinger equation

for the fixed nuclear position R ≡ (Q1, Q2). The elec-
tronic wave function is restricted to the Hilbert space
(|v1〉, |v2〉) and has the form Eq. (3) for a given nu-
clear coordinate R. Thus the energy eigenstates assume
the Born-Oppenheimer form |Ψ(R)〉 = Φn(R)|ψe(R, r)〉,
where Φn(R) = c1φ1(R) + c2φ2(R) + c3φ3(R) is a linear
combination of the nuclear orbitals.
The eigenstates can then be obtained from the diago-

nalization of the 3× 3 tight-binding Hamiltonian

H =





E0 Γeiφ Γe−iφ

Γe−iφ E0 Γeiφ

Γeiφ Γe−iφ E0



 , (5)

where the phase factor eiφ will be discussed momen-
tarily, E0 is the on-site energy, and Γ is the nu-
clear hopping integral in the adiabatic approximation
Γ = 〈φ1(R)ψe(R, r)|∆V (R)|φ2(R)ψe(R, r)〉 ≈ −∆V ×
F . In obtaining the last result, the normalization
〈ψe(R, r)|ψe(R, r)〉 = 1 has been used,

F =

∫

φ∗1(R)φ2(R)d
3R (6)

is the Frank-Condon factor, and the deviation of the
lower APS potential from the well potential, ∆V (R) =
V−(R)−Vi(R), has been approximated by its value −∆V
at the saddle point (marked by a cross in the bottom
panel in Fig (2)), since that’s where most of the contri-
bution to the integral comes from.
The magnitude of the nuclear hopping Γ may be esti-

mated by assuming a one-dimensional motion of the nu-
clei in the azimuthal direction, along the circle of radius
ρ0 and by computing the quantities ∆V and F . The 1D
motion is reasonable since by expanding the adiabatic po-
tential V− around the potential minima, the spring con-
stant for azimuthal motion is found to beK ′ = 9G, which
is about half of the spring constant K for radial motion.
This corresponds to a phonon frequency of ~ω ≈ 58 meV
for radial motion and ≈ 34 meV for the azimuthal mo-
tion. The latter is of the same order of magnitude as
the tunneling barrier of 19 meV, which again indicates
strong tunneling between the three minima. Now, taking
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the nuclear wave functions as the 1D simple harmonic os-
cillator wave function localized at the potential minima:
φ(x) = (πl2)−1/4 exp [−x2/(2l2)], where l = ~/

√
MK ′

and x is the length along the azimuthal direction, the
Frank-Condon factor becomes simply the overlap integral
between two displaced harmonic oscillator wave func-
tions, with the result: F = 2−1/2 exp [−a2/(4l2)], where
a = 2πρ0/3 is the distance between two minima along
the circle. Meanwhile, the potential difference between
the minimum and the saddle point can be found to be
∆V = ρ20 × (π2K ′/18 − 2G). Plugging in the numerical
values, we find F ≃ 0.13 and ∆V ≃ 0.035 eV, so that the
hopping integral Γ ≈ ∆V × F = −37 cm−1.
Finally, in addition to the hopping integral, the adia-

batic motion of the electron results in a fictitious mag-
netic field seen by the nuclei with the vector potential23

~A = −~

q
Im〈ψe(R, r)|~∇Rψe(R, r)〉, (7)

which adds a phase factor, the Berry phase, to the hop-
ping amplitude in the Hamiltonian (5). The modified
hopping in the presence of the magnetic field, from point
a to b, is given by the expression24

Γ = Γ ~A=0
× exp

[ iq

~

∫ b

a

~A · d~s
]

. (8)

It immediately follows from Eqs. (3) and (7) that ~A =
−2−1

~q−1êφ, so that the phase factor in Eq. (8) is sim-

ply eiφ = eiπ/3. This phase factor, the Berry phase,
is very important as without this, the symmetry of the
ground state is incorrectly predicted. Diagonalization of
the Hamiltonian Eq. (5) with the correct phase factor
yields a doubly-degenerate nuclear ground-state with en-
ergy Γ, with the singly-degenerate excited state at energy
−2Γ, so that the energy separation is 3|Γ| = 111 cm−1.
This crude but conceptually rich tight-binding result

may be compared to the exact, brute-force diagonaliza-
tion of the full Hamiltonian Eq. (1) by expanding the
combined nuclear-electronic wave function |Ψ〉 in a com-
plete basis set17,25

|Ψ〉 =
N
∑

n=0

N−n
∑

m=0

[

Anm
(c†1)

n

√
n!

(c†2)
m

√
m!

|0〉|v1〉

+ Bnm
(c†1)

n

√
n!

(c†2)
m

√
m!

|0〉|v2〉
]

, (9)

where c†1, c
†
2 create harmonic oscillator states along the

Q1, Q2 axes centered at the origin and Anm and Bnm

are the expansion coefficients. This procedure requires
no additional consideration of a fictitious magnetic field
and also yields the full solutions in addition to the lowest
three states obtained from the tight-binding theory. The
results are shown in Fig. (3). The tunneling splitting
obtained from the difference between the ground and the
excited state energies has the magnitude 3|Γ| = 86 cm−1,
which compares very well with the tight-binding result.

V. NUCLEAR WAVE FUNCTION

The nuclear probability density in the configuration
space (Q1, Q2) may be written as

|ΨN(Q1, Q2)|2 =
∑

nm

(|Anm|2+|Bnm|2)|φn(Q1)|2|φm(Q2)|2,

(10)
where φn is the nth harmonic oscillator eigenfunction and
the expansion coefficients Anm and Bnm are obtained
from the solution of Eq. 9. The results for the ground
state, shown in Fig. (4), indicate the confinement of
the nuclear wave function at the three minima of the
APS with a significant component in the barrier region
in between the minima.
The real space wave function |ΨN(r)|2 can be com-

puted from the corresponding quantity |ΨN (Q1, Q2)|2 in
the configuration space. The result is shown in Fig. (5),
which indicates a significant spread of the nuclear wave
function of the carbon triangle, about 0.1 Å from the
equilibrium positions. We note that this is not washed
out by the lattice thermal vibrations, which causes the
nuclear vibrational amplitude, estimated from the ex-
pression 1

2
KQ2 = 3

2
kBT to be about 0.05 Å at room

temperature.
The spread of the nuclear wave function broadens the

energy of the JT split electronic states as well, so that
they are not sharp δ-function states any longer. In
the adiabatic approximation, the electronic density-of-
states is given by ρ(E) =

∑

Q1Q2
|ΨN(Q1, Q2)|2× [δ(E−

ε−(Q1, Q2))+δ(E−ε+(Q1, Q2)), where ε± denote the en-
ergies of the two JT split states in the expression (2) but
without the elastic energy term. The results are shown
in the inset of Fig. (5), which predicts a rather large
width, of the order of 0.20 eV, due to the JT effect. Thus
these states should appear as rather broad states in the
density-of-states. In contrast to this, the broadening of
the midgap V π state is expected to be rather small. In
fact, it is exactly zero if only the nearest-neighbor hop-
ping is retained.15 This is borne out by the less than
5 meV width of the midgap state, seen in the scanning
tunneling experiments.16

VI. DISCUSSIONS

The above analysis included just one pair of vibra-
tional modes Q1 and Q2 corresponding to the atoms in
the first shell around the vacancy as described in the
Hamiltonian Eq. 1. There are more such modes cor-
responding to the farther shells. For instance, there is
also a pair of modes in the second shell26 and so on.
It is difficult to treat the JT problem when multiple
vibrational modes are present (the so-called multimode
problem27–29) and often the single-mode approximation
is made.18,19 In the present case, due to the localized na-
ture of the JT-active states (dangling sp2 bond orbitals
on the first shell atoms), the JT coupling to modes be-
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longing to further neighbor shells is expected to be quite
weak. The coupling is further weakened because of the
small hybridization between the σ and the π states; In
fact, the coupling is strictly forbidden by symmetry for
the planar structure. As a result, the coupling of the
vibronic modes belonging to the higher neighbor shells
to the JT-active electronic states is only indirect, viz.,
via the structural relaxation of the first shell atoms. To
study this, we have computed the vibronic coupling pa-
rameter g′ for the Q1 and Q2 modes of the second shell
atoms26 from the density-functional calculations, which
confirms that even for the second shell, the coupling is
already quite small with g′ ≈ g/6. This being the case,
the single-mode approximation should be accurate and it
captures the essential physics in the present case.
A second point is that even in the single-mode problem,

since all atoms in the crystal are involved in the vibration,
the effective mass of the vibrational mode is not just the
mass of the carbon atom as used above, but could be
several times larger. The effective mass is given by the
expression 1/2MeffQ̇

2 = 1/2M
∑

i(ẋ
2
i + ẏ2i ), where M

is the atomic mass, the summation goes over all atoms
in the solid, and xi, yi represent the displacements for
the given vibronic amplitude Q. If just the first shell is
retained, thenMeff simply equalsM , which follows from
the normalization convention of the vibronic modes with
respect to the first shell of atoms. The displacements of
the atoms fall off rapidly with distance from the vacancy,
e.g., as 1/r2 for 3D and 1/r for 2D lattices within the
linear elastic continuum theory,30 so that most of the
contribution to the effective mass should come from the
first few shells.
From our density-functional calculations, we can esti-

mate the effective mass if we neglect the contributions
of the shells beyond the fifth shell. The effective mass is
estimated from the expression Meff =

∑

mMm, where
Mm = νm × (∆rm/∆Q)2 is the contribution to the effec-
tive mass from the mth shell, νm is the number of atoms,
and ∆rm = 〈[(∆x)2 + (∆y)2]〉1/2 is the average devia-
tion of the positions of the atoms belonging to the mth

shell. In deriving this expression, we have made the lin-
ear approximation, valid for small oscillations, viz., that
Q̇/ẋi ≈ Q/xi, etc. The results listed in Table I show that
the contribution to the effective mass rapidly converges
with the shell distance, yielding the value Meff ≈ 1.8M .
The higher mass would reduce the tunneling splitting by
the factor (Meff/M)1/2, so that 3|Γ| ≈ 64 cm−1 instead

of the 86 cm−1 value computed earlier using the bare
mass M .

The large value of the tunneling splitting as compared
to the strain splitting, the typical value of which31 is
δ ∼ 10 cm−1, results in the delocalization of the nuclear
wave function. If the reverse were true, then the nuclei
would be more or less stuck in one or the other potential
well due to the removal of the degeneracy of the three
APS minima by the local strain caused by the invariable
presence of defects. This would therefore lead to a static
distortion of the nuclear framework resulting in the static
JT effect. For the dynamical JT effect, the tunneling
splitting must be strong enough to overcome the strain
splitting, so that the nuclei can tunnel between all APS
minima, which is the case for graphene.

VII. CONCLUSION

In conclusion, we showed that the substitutional va-
cancy in graphene forms a dynamical JT center owing to
a weak potential barrier for tunneling between the three
minima in the adiabatic potential surface. The doubly-
degenerate nuclear ground state with the tunneling split-
ting of about 64 cm−1 originates from the combined
nuclear-electronic motion, which may be cast in terms of
a Berry phase acquired due to a fictitious magnetic field
experienced by the nuclei caused by the adiabatic mo-
tion of the electrons. The splitting should be observable
in the electron paramagnetic resonance and two-photon
resonance scattering experiments, which have been used
to study the JT effects in the triatomic molecules. The
quantum mechanical spread of the nuclear wave func-
tion is predicted to lead to a significant broadening of
the JT split dangling bond states. Recently, it has been
proposed32 that the entanglement between the nuclear
and electronic motion in a dynamical JT system may be
exploited in quantum computation, leading to the possi-
bility of yet another novel application for graphene.
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and C. Daul, in Vibronic Interactions and the Jahn-
Teller Effect, Prog. Theor. Chem. and Physics B23, Eds:
M. Atanasov, C. Daul, and P. L. W. Tregenna-Piggott
(Springer, 2012).

30 See, for example, E. H. Brandt, Phys. Rev. B 56, 9071
(1997) and references therein.

31 F. S. Ham, in Electron Paramagnetic Resonance, edited by
S. Geschwind (Plenum, New York, 1972).
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Figures

FIG. 1: (Color online) Vacancy induced σ and π electron
states (Vσ and Vπ) with the occupied states shown by dots
with arrows (left). The nominal 2µB (S = 1) magnetic mo-
ment due to the localized states is reduced substantially due
to the anti-ferromagnetic spin polarization of the band states,
indicated by πl ↑↓, in the local neighborhood of the vacancy.
Right part shows the JT active electron states, |v1〉 and |v2〉,
and the vibrational modes of the carbon triangle that they
couple to. σi denotes the dangling sp2σ bond orbital on a
carbon atom adjacent to the vacancy.

FIG. 2: (Color online) Total energy as a function of the vi-
bronic distortion Q1 computed from the DFT (red dots) and
fitted to the adiabatic energy E

−
in Eq. (2)(full line) (Top).

Shown also are the computed JT stabilization energy EJT , the
barrier height β for nuclear tunneling, and the magnitude of
the JT distortion ρ0. The triangles indicate the configurations
at the three extrema. Bottom figure shows the corresponding
energy contours in the Q1−Q2 plane (the adiabatic potential
surface), with the three equivalent minima (dots) separated
by the tunneling barriers (crosses). The contour values are:
−0.11+0.001× (2n) in units of eV, where n = 0, 1, ..., 7 labels
the contours and Γ denotes the nuclear hopping integral in
the tight binding description.

FIG. 3: (Color online) Eigenvalues obtained by diagonaliza-
tion of Eq. (1) using the basis set Eq. (9) as a function of
the scaled coupling strengths λg and λG. Numbers inside the
figure indicates the degeneracies. For λ = 0, eigenstates of
the two-dimensional harmonic oscillator are reproduced.

FIG. 4: (Color online) Nuclear ground-state probability den-
sity |ΨN (Q1, Q2)|

2 in the configuration space, indicating the
localization of the wave function near the three minima of the
adiabatic potential surface.

FIG. 5: (Color online) Nuclear probability density |ΨN (r)|2

in the ground state showing the symmetric distortion of the
carbon atoms from the ideal position of an equilateral triangle
(solid line). The nuclei move in a correlated manner so that
the most probable configuration is one of the three isosceles
triangles (one of which is indicated by the dashed lines) corre-
sponding to the three minima of the APS. The nuclear motion
of the nearby atoms show much smaller deviation from their
equilibrium positions. The inset shows a significant broaden-
ing, computed within the adiabatic approximation, of the JT
active electron states due to the spread of the nuclear wave
function.

Tables

TABLE I: Average displacement of a carbon atom ∆rm (in Å)
in the mth shell surrounding the vacancy for the JT distortion
Q1 = 0.24 Å. νm denotes the number of atoms in the shell
and Mm is the shell contribution of the effective mass.

Shell no. (m) 1 2 3 4 5
νm 3 6 3 6 3

|∆rm| 0.139 0.072 0.055 0.033 0.021
Mm 1.00 0.53 0.15 0.11 0.02
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