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ABSTRACT  
 
Directed-assembly of an array of Ru nanoclusters (NC’s) is achieved by deposition of 
Ru at around room temperature on a single layer of graphene supported on Ru(0001). 
In this system, directed-assembly is guided by the periodic moiré structure of the 
buckled graphene sheet. Behavior is analyzed utilizing both Scanning Tunneling 
Microscopy and atomistic lattice-gas modeling together with Kinetic Monte Carlo 
simulation. We elucidate the kinetics of NC nucleation and growth, specifically 
assessing the coverage dependence of the NC density and height distribution. In 
addition, we provide a detailed characterization of the development of short-range 
spatial-order within the NC array, identifying a tendency for “row formation”. 
 
1. INTRODUCTION 
 
A single (mono-) layer of graphene (MLG) supported on transition metal substrates 
generally displays a periodically modulated moiré structure due to lattice mismatch with 
the substrate [1,2]. Examples of such transition metal substrates include Ir(111) [3-6], 
Ru(0001) [7-28], and Rh(111) [29]. Modulation of supported MLG offers the possibility 
for directed-assembly of metal nanoclusters (NC’s) by vapor deposition of the metal 
onto the graphene sheet. The formation of such NC arrays in turn has application for 
model catalyst studies where control of not just the size, but ideally also the spatial 
arrangement of metal NC’s is desired. Demonstration of the directed-assembly concept 
for metal NC’s on supported MLG was provided initially for deposition of Ir on 
MLG/Ir(111) [3], and subsequently for other metals on MLG/Ir(111) [6]. Directed-
assembly has also been achieved for deposition of various metals on MLG on other 
transition metal supports. The latter include studies of the deposition of Pt [22-25], Ru 
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[26], Pd [25], and Rh[25] on MLG/Ru(0001), and of the deposition of Ni on 
MLG/Rh(111) [29].  

Our interest here is in the formation of metal NC’s on MLG/Ru(0001). Analysis of 
this class of processes benefits from previous development of structure models for 
MLG/Ru(0001). Such models, which are based on input from both experiment [7-16] 
and Density Functional Theory (DFT) analysis [8,15,17], have provided a detailed 
characterization of the graphene moiré structure. The experimentally determined area of 
the moiré cell is AM ~ 7.794 nm2 [7]. A commonly employed structure model compatible 
with this AM-value and which we adopt for our atomistic simulations corresponds to a 
(12x12)C/(11x11)Ru moiré cell [7,8,10,15,24,25]. The area of the Ru(0001) surface unit 
cell is given by ARu = 0.0634 nm2 (aRu = 0.2706, bRu = 0.428 nm). Thus, the area of the 
moiré cell in units of ARu satisfies A*M = AM/ARu = 122.9 which is in reasonable 
agreement with the above structure model value of A*M = 121. Note that there are also 
other reasonable choices for a MLG/Ru(0001) structure model [9,10,16,17]. 

The moiré cell for MLG/Ru(0001) is a parallelogram composed of an adjacent 
pair of equal-sized upright and inverted equilateral triangles with a side length of LM ≈ 
2.98 nm [ 8,15,25,26]. Three distinct regions in this moiré cell are characterized as 
follows: atop regions (the vertices of triangles) where C-atom rings surround Ru surface 
atoms; ‘hcp’ and ‘fcc’ regions (the centers of inverted and upright triangles, respectively, 
as shown in a schematic provided later in the text) where C-atom rings surround the hcp 
and fcc hollow sites on Ru(0001). The atop locations are higher by ~0.15 nm than the 
hcp and fcc regions [17].  

A key feature for directed-assembly of NC’s for a variety of metals including Ru 
[26], Pt [22-25], and Rh [25] on MLG/Ru(0001) is that the fcc regions act as traps 
directing the assembly of metal nanoclusters at these locations.  This feature is of 
particular relevance in the current study. For contrast, we note that Co NC’s nucleate in 
both fcc and hcp regions [27], and Au forms large 2D islands extending over multiple 
moiré cells [25,28] on MLG/Ru(0001). 

The specific focus of this paper is on a detailed analysis of the directed 
nucleation and growth of Ru NC’s during Ru deposition at 309 K on MLG/Ru(0001). 
Related analysis of the evolution on NC densities is limited in the previous literature 
[3,23,25], and no appropriate atomistic-level modeling and simulation has been 
performed. Analysis of NC diameter and height distributions is more common 
[3,22,25,26,29]. One might anticipate that the most insight into the underlying energetics 
should come from analysis of the regime where only a fraction of moiré cells are 
occupied, even after deposition of a significant coverage of Ru. In this regime, Ru atoms 
are not simply trapped within the moiré cell where they were deposited. Rather, there 
exists significant transport between moiré cells which is a key factor in determining the 
number, size, and spatial arrangement of NC’s. It is appropriate to note that the classic 
study of Ir NC on MLG/Ir(111) [3] corresponded to a regime where inter-cell transport 
was not significant on the time-scale of deposition. 

In Sec.2, we describe the details of our Scanning Tunneling Microscopy (STM) 
experiments and present key STM images. Quantitative analysis of experimental results 
is presented in Sec.3. We not only provide a systematic analysis of the coverage 
dependence of the mean NC density, and NC height distribution, but also quantify the 
spatial arrangement and ordering of NC’s. In Sec.4, we develop our atomistic lattice-gas 
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model for NC formation which accounts for the periodic modulation of the supported 
graphene sheet. This model has broader applicability to metal NC formation on 
MLG/Ru(0001), but here it is applied only for the Ru/MLG/Ru(0001) system. Results for 
model behavior from Kinetic Monte Carlo (KMC) simulation are presented in Sec.5, and 
a detailed comparison is made with experiment. Conclusions are provided in Sec.6. 
 
2. EXPERIMENTAL DETAILS AND STM IMAGES 
 
The experiments were performed in an ultra-high vacuum (UHV) system with a base 
pressure of 1·10-10 mbar. Clean Ru(0001) surfaces were obtained by cycles of Ar 
sputtering (0.5 keV Ar+, 4 μA·cm-2, t = 15 min) and subsequent flashing to 1600 K. In 
order to obtain a defect-free graphene overlayer, it is essential to remove any remaining 
carbon impurities from the Ru sample by cycles of oxygen adsorption followed by 
annealing at 1500 K. For this work, we grow only a partial graphene layer by exposing 
the Ru(0001) to an ethylene pressure of 5⋅10-9 mbar at 1000 K for 15 minutes. The 
temperatures were measured with a pyrometer type IMPAC IGA140 (300 – 2000 °C). 
Scanning Tunneling Microscopy images were acquired in the constant current mode, 
with typical tunnel currents / voltages of 40 – 100 pA / 1 - 2 V (applied at the sample). 

Ru is deposited onto the partially graphene-covered Ru(0001) surface with an 
electron beam evaporator (Omicron, EMF3). Ru nanoclusters form on the graphene 
covered parts of the surface (Fig.1a, top part), as well as on the uncovered parts of the 
surface (Fig. 1a, bottom part). From the graphene-free areas of the Ru(0001) surface, 
we determine the coverage (θ) of the evaporated Ru, with θ specified in monolayers 
(ML) with respect to the Ru(0001) surface. However, for deposition around 300 K, the 
Ru islands are very small (Fig.1a, bottom part). Thus, due to tip convolution, the 
coverage is always overestimated in STM measurements from these small structures. 
Therefore, before the coverage measurement, the surface is annealed at 670 K after 
cluster formation for one minute to allow for larger hexagonally shaped island formation, 
as shown in Fig.1b. The temperature during evaporation was measured with a type K 
thermocouple pushed against the Ru crystal. 

As noted in Sec.1, graphene growth on Ru(0001) has been studied previously [7-
21]. The graphene layer starts growing at the lower Ru step edge and forms mostly 
defect free monolayer sheets extending over several terraces [7,13]. The arrows in 
Fig.1c and 1d show defect sites, which consist of dislocations within the graphene layer 
[7,21] or impurities below the graphene sheet. From images for higher Ru coverages, it 
is evident that these defect sites are preferred nucleation sites for the Ru NC’s. 
However, for the following statistical analysis of NC nucleation, their effect is negligible 
since their density corresponds to only about one in 1000 moiré cells (or one in  
~100,000 of all the possible adsorption sites). As also noted in Sec.1 and illustrated in a 
figure below, for deposition around 300 K, Ru nanoclusters are only formed in the fcc 
region of a moiré unit cell [26]. No preference for nucleation at or near step edges of the 
underlying Ru(0001) surface could be observed (compare Fig. 1c and 1d).  
Results are reported here only for deposition of Ru at 309 K. Fig.1c-g shows a 
sequence of STM images of Ru NC arrays corresponding to Ru coverages of 0.005, 
0.01, 0.03, 0.05 and 0.15 ML, respectively. Fluxes were in the range of ~0.01 to ~0.1 
ML/min, but we note that additional experiments indicate a weak dependence on flux. 
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At low θ, only a few clusters well separated from each other are found on the 
surface. Some small one-layer-high NC’s are only weakly resolved with STM within a 
moiré unit cell. Examples of these are marked with dotted circles in Fig.1c, and one 
example is enlarged in the inset. Other larger one-layer-high NC’s are clearly visible 
already at low θ. Increasing θ leads to an increase in the number of NC’s on the moiré 
template, as well an increase in their size. Inspection of Fig.1e suggests that some of 
these larger NC’s seem to form lines consisting of two to four clusters, a feature seen 
more clearly for higher θ in Fig.1f and 1g. See Sec.3 for further analysis. 

Finally, we note that under our experimental conditions, at most one Ru NC 
occupies each graphene moiré cell (and the NC nucleate only in the fcc region). Thus, it 
is convenient to describe the NC density in terms of the fraction of occupied moiré sites. 
This so-called filling factor (FF) notation [23] was used in previous studies [3,6,23].  
Sometimes FF is quoted as a percentage of occupied cells (rather than as a fraction) so 
the maximum FF of 100 % corresponds to a cluster density of 1/AM = 0.128 nm-2. 

 
3. ANALYSIS OF EXPERIMENTAL RESULTS 

3A. NC FILLING FRACTION AND HEIGHT DISTRIBUTION 
 

In Fig. 2, we show the evolution of the filling factor, FF, with increasing coverage, θ, for 
Ru deposition at 309 K from the coverages depicted in Fig. 1a-g. The absolute error in 
the FF is approximately 3% as determined by the standard deviation of FF-values 
between 3 - 6 STM images (with an average of ~1000 moiré cells per image). Small 
errors or uncertainties due to a variation of the substrate temperature (±3 K) during the 
evaporation, as well as due to any flux instability of the evaporator are not represented 
in this error assessment. Fig.2 also shows the dependence on θ of the mean size, sav, 
of the NC’s (measured in atoms). Data comes from six separate deposition experiments 
for the coverages shown, as described in Sec.2. 

As noted above, the filling factor, FF = FF(θ), is equivalent to a conventional NC 
density, N = N(θ). For example, one has that N(θ) = FF(θ)/(100⋅A*M) when measuring FF 
as a % and island density as the number of NC per adsorption site on the underlying 
Ru(0001) support. Note that island density, N(θ), and mean size, sav = sav(θ), measured 
in atoms, are not independent quantities. Rather, they are related by sav(θ) = (θ-θ1)/N(θ), 
where θ is the total coverage and θ1 is the coverage of isolated diffusing Ru adatoms 
which are not yet incorporated into NC’s (both coverages measured in ML as described 
above). Since typically θ1 << θ for high adatom diffusivity (except for very low θ), one 
obtains the simple relation sav(θ) ≈ 12100⋅θ/FF(θ) using the model value for A*M and FF 
as a %. However, we still show both FF and sav versus θ in Fig.2, as the possibly simple 
θ-dependence of one quantity could elucidate the less-simple variation of the other. For 
example, Fig.2 reveals a quasi-linear variation of the average NC size sav(θ) ≈ 8+195⋅θ 
for 0.04≤θ≤0.2. This implies that FF has the non-linear form FF(θ) ≈ 12100⋅θ/(8+195⋅θ) 
over this θ-range. We emphasize, however, that for lower coverages θ→0+ where θ1 ~ 
θ, one must have that FF(θ) →0 and sav(θ) →2 (as the smallest possible NC’s are 
dimers). 

We now comment on general expectations for the θ-dependence of FF for metal 
NC’s on MLG supported on transition metal substrates. The general theory of nucleation 
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of NC’s via deposition on surfaces [30,31] suggests a short initial “transient regime” 
where the adatom density and thus the NC nucleation rate and FF grow strongly. This is 
followed by a “steady-state regime” with a rough balance between the gain of adatoms 
due to deposition and loss predominantly due to aggregation. Early in the steady-state 
regime, strong nucleation of NC’s persists and FF continues to grow. Later, a higher NC 
density can greatly reduce the adatom density. This in turn can effectively terminate 
nucleation resulting in a post-nucleation “growth regime” with roughly constant FF and a 
simple proportionality sav(θ) ∝ θ. One simple scenario for metal NC’s on MLG/Ru(0001) 
is that the growth regime could reflect the saturation of the FF at 100%.  

From the (noisy) data in Fig.2 for Ru NC on MLG/Ru(0001), it is tempting to 
identify a crossover coverage θ* ~ 0.1 ML for the onset of the “growth regime”. 
However, our modeling described below does not find a clear crossover. By way of 
contrast, STM studies for Ir NC on MGL/Ir(111) reveal that θ* ≈ 0.05 ML at 350 K [3] 
corresponding to saturation of FF ≈ 100%. As an aside, the plot in Ref. [3] of FF in % 
and Sav in atoms for Ir/MLG/Ir(111) uses a common scale, just as in Fig.2, allowing 
convenient comparison of behavior in these systems. For Rh NC on MGL/Ru(0001), 
STM studies reveal θ* ≈ 0.8 ML at 300 K [25] where FF ≈ 24%.  

Fig.3 presents results for the dependence of the Ru NC height distribution on the 
coverage θ of Ru deposited on MLG/Ru(0001) at 309 K (from the same experiments 
used above in the analysis of FF). Specifically, we consider the filling factor, FF(h), 
measured as a percentage (%) of moiré cells populated with NC of a specific height, h, 
measured in atomic layers. Thus, one has that FF = FF(h=1)+FF(h=2)+FF(h=3)+… The 
qualitative evolution is as expected with h=1 NC’s first dominating, then h=2 NC’s, then 
the populations of taller NC’s dominating. One might anticipate that a stable 2-layer NC 
requires at least 7 Ru atoms (i.e., 2 bonded nearest-neighbor atoms in the second layer 
requiring a supporting base of 5 Ru atoms in the first layer). Our simulation analysis 
indicates that observed behavior is consistent with this threshold size for 2-layer NC’s. 
In Sec.5, we will also deduce threshold sizes for 3-layer and higher-layer NC’s.  
 
3B. ANALYSIS OF SHORT-RANGE ORDER IN THE NC ARRAY 
 
Next, we provide a detailed characterization of the arrangement of NC’s on the 
Ru(0001)-supported graphene layer. We assess the populations or densities of various 
local motifs of NC’s such as nearest-neighbor (NN) pairs or “dimers”, and various 
configurations of “trimers”. We obtain the dimer density, D, from the total number of NN 
dimers divided by the number of moiré cells and divided by the number of distinct 
orientations (3 for dimers). Thus, D corresponds to the probability that a pair of NN 
moiré cells will be both populated by NC’s. Consequently, D would equal (FF)2 for a 
random distribution of NC’s with FF measured as a fraction of filled cells. In addition, we 
consider the densities of linear trimers (LT), bent or elbow trimers (BT), and triangular 
trimers (TT), also obtained as the total number of such species divided by the number of 
moiré cells and also divided by the number of distinct orientations (3 for LT’s, 6 for BT’s, 
2 for TT’s). Thus, these quantities correspond to the probability that a selected triple of 
moiré cells with the appropriate configuration are all occupied by NC’s. Thus, LT, BT, 
and TT would all correspond to (FF)3 for a random distribution of NC’s.  
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Results shown in Fig.4 for the probabilities for all these motifs versus FF 
measured as a fraction (and also as a function of coverage, θ, in the insets). To a first 
approximation, the dependence on FF might be characterized by  

 
D ~ (FF)2 and LT, BT, TT ~ (FF)3.       (1) 

 
This behavior corresponds to a random distribution of NC’s, although there are clear 
deviations as discussed in detail below. However, first here we wish to draw attention to 
the coverage-dependence of FF illustrated in the insets, and in particular to the near-
proportionality  
 

LT, BT, TT ∝ θ.          (2) 
 
To interpret this feature, consider the nucleation and growth of NC’s with a critical size i 
(above which clusters are stable). Standard nucleation theory implies that FF ~ θi/(i+2) in 
the predominant quasi-steady-state regime where there is a rough balance between 
gain of diffusing adatoms on the surface due to deposition and loss due to aggregation 
[30,31]. Consequently, LT, BT, or TT ~ (FF)3 ~ θ3i/(i+2). Consequently, the observed 
linear dependence corresponds to a critical size i=1, as might be expected for 
nucleation at ~ 300 K given the strength of Ru-Ru adatom interactions.  The conclusion 
that FF ~ (θ)1/3 also explains the sub-linear variation of D with θ. It should be noted that 
usually critical size is assessed by considering flux dependence of the NC density or the 
shape of the size distribution [31]. However, here we have another possibility, e.g., 
through analysis of trimer probabilities. 

The feature that the dimer and trimer probabilities in Fig.4 are below those 
expected for a random distribution of NC’s reflects “anti-clustering” of NC’s. Anti-
clustering is also a general feature of NC nucleation on unstructured surfaces [30,31] 
which should extend to nucleation on structured substrates in the regime of interest 
here. NC’s act as sinks for diffusing adatoms. Consequently, the adatom density is 
reduced in the vicinity of existing NC’s, and more specifically in this case in the moiré 
cells which neighbor NC’s. This, in turn, reduces the rate of NC nucleation in such 
neighboring moiré cells, and thus the population of NC’s nearby other NC’s. One might 
regard this feature as corresponding to an “effective repulsion” between NC’s. More 
detailed consideration indicates that the density of diffusing adatoms should be more 
strongly depleted in a moiré cell adjacent two NC’s, and thus the formation of a 
triangular trimer from a dimer should be more strongly inhibited than the formation of 
linear or bent trimers. Results in Fig.4 are entirely consistent with this prediction. A 
refined analysis would suggest a slight preference for linear over bent trimers, but this 
appears to be a negligible effect. 

One can quantify this behavior in terms of conditional filling fraction, FFc, where 
this and other quantities are measured below as a fraction (rather than as a %).  To 
define this quantity, consider a neighboring pair of moiré cells. Suppose that one of 
these is specified to be populated by a NC, then FFc gives the conditional probability 
that its neighbor is populated by a NC. It follows that  

 
FFc  ≡ D/FF (so that D = FF⋅FFc).       (3) 
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Note that FFc < FF (FFc > FF) corresponds to anti-clustering (clustering). A Kirkwood-
type superposition approximation [32] or pair-approximation [33] adapted for the 
statistics of trimers predicts that  
 

LT ≈ BT ≈ (D)2/FF = FF⋅(FFc)2 but that TT ≈ (D)3/(FF)3 = (FFc)3.   (4) 
 
Consequently, TT is expected to be smaller within this approximation than LT or BT 
(which are identical). These trends are entirely consistent with experimental 
observations. However, the Kirkwood approximation cannot capture with quantitative 
precision the spatial correlations in the NC distribution. See Table I. We shall see that 
exactly the same type of discrepancy with the Kirkwood estimates arises in our 
simulation results, a feature which supports the effectiveness of our modeling. 

Another feature apparent from the STM images is a propensity for the formation 
of straight rows of neighboring NC’s, at least for higher values of FF. Although perhaps 
counter-intuitive, this behavior is actually consistent with the above observations on 
anti-clustering of NC’s. Insight into this behavior follows from two observations: 
(i) For a scenario where most NC’s are incorporated into long non-adjacent linear rows 
of NC’s, one obtains FFc(r=1) = 1/3 independent of FF. Thus, when FF > 1/3, formation 
of non-adjacent rows corresponds to anti-clustering and should be expected given the 
above discussion. For FF < 1/3, there should be no propensity for row formation. 
(ii) For higher FF’s where at least short segments of isolated rows have already formed, 
consider the nucleation of nearby NC’s. Cells along the edge of the row have two 
neighboring NC’s and thus a lower adatom density than cells at the end with one 
neighboring NC. As a result, nucleation is inhibited along the sides relative to the end.  

Both the above observations rely on the feature that the moiré cells form a 
triangular grid with coordination number 6. Thus, the propensity for row formation would 
be absent (or at least greatly reduced) for a square grid. 

Extending the considerations of item (ii) above, there are three cells at the end of 
a row of NC’s with a single neighboring NC, one aligned with the NC row, and the other 
two at an angle of 60° all with a single neighboring NC.  The adatom density in these 
cells should be similar, but that in the aligned cell should be slightly higher. This in turn 
should enhance the growth of linear rather than bent rows, recalling that nucleation is 
very sensitive to adatom density [30,31]. 

We can also extend the above consideration of dimer statistics to more general 
features of short range order (SRO) associated with 2-point spatial correlations in the 
array of NC’s. Specifically, extending the definition of FFc, we let FFc(r) denote the 
conditional probability that a moiré cell is occupied by a NC given that it is separated by 
r from another cell which is specified to be occupied. One determines distinct values for 
separations r = |r| = 1, √3, 2, √7, 3,… measured in units of the nearest-neighbor (NN) 
cell separation. Then, the above conditional filling fraction is recovered from FFc = 
FFc(r=1). Traditional SRO parameter(s) are defined as  
 

α(r) = {FFc(r)/FF} – 1 > 0 (< 0) for clustering (anti-clustering).    (5) 
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The experimental results are presented in Fig.5 showing the variation of α(r) with FF. 
The data correspond to anti-clustering with α(r) <0, although this feature quickly 
weakens (i.e., spatial correlations become very small) for increasing r>1. 

Finally, we offer some brief comments on the dependence of SRO on coverage 
or FF. There is little analysis of the coverage dependence of spatial correlations in 
classic surface nucleation theory [30,31], and in any case this would be of limited use 
for the current study. It is clear that α(r) → 0 (vanishing correlations), as FF → 0 (low 
NC population), and as FF → 1 (maximal population). Maximum amplitudes occur at 
intermediate FF. Substantial noise in the experimental data precludes a clear picture, so 
we defer further discussion until the following section on modeling. 
 
4. ATOMISTIC MODELING: DIRECTED-ASSEMBLY OF NC’S 
 
Our atomistic lattice-gas modeling for Ru NC formation on MLG/Ru(0001) assigns the 
adsorption sites, k, for isolated diffusing Ru adatoms as a triangular lattice (coordination 
number 6) corresponding to hollow sites in the center of the C-rings of the graphene 
sheet. Deposition of Ru occurs randomly on these sites at an experimentally determined 
rate, and diffusion of isolated Ru adatoms occurs via hopping to one of the six 
neighboring sites. Consistent with the (12x12)C/(11x11)Ru model for MLG/Ru(0001), 
the key energetic parameters characterizing Ru adsorption vary with a 12x12 periodicity 
reflecting the moiré structure of the modulated graphene layer. Given our focus on low 
coverages well below the coalescence regime, we adopt a convenient and efficient 
“point island model” which can accurately describe key aspects of nucleation and 
growth in this regime [34-36]. This model tracks the size of each island, but does not 
describe island structure, rather just treating each island as occupying a single site. In 
addition, we treat both nucleation and aggregation as irreversible (two Ru atoms form a 
stable nucleus for a NC corresponding to a critical size of unity) given the experimental 
evidence presented in Sec.3 for critical size i=1. Also, all NC’s of two or more Ru atoms 
are treated as immobile (but see discussion below of post-deposition effects).  
 
4A. BENCHMARK MODEL: “THERMODYNAMICALLY DIRECTED” NC ASSEMBLY  
 
Now we describe in more detail our benchmark model in which directed assembly of Ru 
NC’s in the fcc regions is thermodynamically driven. We assume that the adsorption 
energy, Eads(k), for Ru adatoms at adsorption sites k varies periodically across the moiré 
cell illustrated in Fig.6a. The strongest binding corresponds to a global minimum, 
Eads(fcc), of Eads occurring at the center of the fcc half-cell. Weaker binding at the center 
of the hcp half-cell generally corresponds to a local minimum in Eads which is above the 
fcc value by Δ. Binding can be even weaker along the linear fcc-hcp boundary with a 
saddle point in Eads occurring at the center of this boundary above the fcc value by δ ≥ 
Δ. The weakest binding, corresponding to a global maximum in Eads above the fcc value 
by δ+δ*, generally occurs at the atop sites of the moiré cell (when δ*>0).  

The above behavior is captured by expressing the adsorption energy in the form 
Eads(k) = Eads(fcc) + Ep(k), where again k labels the adsorption sites and the energy 
function Ep(k) ≥ 0 describes the coarse-scale periodic variation of Eads across the 
moiré cell [37]. This coarse-scale energy variation is indicated in Fig.6b by the thick 
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dashed lines. The three key energy parameters, Δ, δ, and δ*, are also indicated. The 
fine-scale variation of the adsorption energy as the lateral adatom position varies 
continuously between neighboring adsorption sites is also indicated in Fig.6b by the 
oscillatory thin solid curve. 

The energetic input to the model is exclusively through specification of the 
activation barrier, Eact(i→f), to hop from an “initial” site ‘i’ to an adjacent “final” site ‘f’. In 
our benchmark model, we choose the form  
 
Eact(i→f) = Ed + [Eads(f)-Eads(i)]/2 = Ed + [Ep(f)-Ep(i)]/2.      (6) 
 
The parameter Ed corresponds to a constant “average” local diffusion barrier in the 
sense that it gives the average of the barriers for forward and reverse hops between an 
adjacent pair of sites. Actual barriers for hopping vary just slightly from Ed given the slow 
variation of Ep. Roughly speaking, one can think of (6) as corresponding to a fixed 
energy difference between the adsorption site energies, Eads, and the transition state 
energies, ETS. One can also regard Ed as the barrier which would apply in flat regions of 
the modulated graphene sheet, and also plausibly Ed corresponds to the barrier for Ru 
diffusion on an unsupported graphene sheet.  

This specification (6) of Eact is consistent with detailed-balance given our 
prescribed variation of the adsorption energy. This specification may be translated into 
the detailed picture of fine-scale variation of the adsorption energy shown in Fig.7. The 
hopping rate are selected to have the Arrhenius form h(i→f) = ν exp[-Eact(i→f)/(kBT)] 
with a common prefactor ν = 1013/s. 

A consequence of the choice (6) is that the quasi-equilibrium density of adatoms 
(if NC nucleation is suppressed) would be maximized in the fcc regions as these have 
the strongest binding. Since the local NC nucleation rate scales as the square of the 
local adatom density (for i=1), this rate is enhanced in those regions of higher density. 
This explains the thermodynamically-directed assembly of NC’s. We caution that it will 
be necessary to choose Δ sufficiently large to avoid significant formation of NC’s in the 
hcp region. 

Finally, we discuss the ramifications of the choice (6) for long-range diffusive 
transport. For δ>Δ, the effective barrier to cross from the fcc to the hcp region is Eeff = 
Ed+δ with a saddle-point in Eact at the midpoint of the linear fcc-hcp boundary. See 
Fig.6b. The effective additional barrier in the reverse direction is E′eff = Ed+δ-Δ. The 
model describes biased diffusion on the surface with a preference (i.e., higher rates) for 
hopping towards the center of the fcc and hcp regions which are global or local minima 
of Eads. We expect the FF to be strongly dependent on Ed and δ, but less so on δ*.  
 
4B. ALTERNATIVE ENERGY VARIATIONS FOR DIRECTED ASSEMBLY 
 
Generic continuum formalisms of directed-assembly have considered behavior for four 
distinct forms of the coarse-scale variation of two key energies: the adsorption energy, 
Eads, and the energy at the transition state, ETS, for hopping between adjacent sites [38]: 
(I) in-phase periodic variation of both Eads and ETS as in our benchmark model of 
Sec.4A; (II) periodic variation of Eads and constant ETS; (III) out-of-phase periodic 
variation of Eads and ETS; (IV) constant Eads and periodic variation of ETS. In the 
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continuum description, diffusion has the local barrier Eact = ETS - Eads (which is constant 
for case (I) as in the model in Sec.4A), but there is also a drift term in cases with a 
gradient in Eads. Our following discussion of the behavior of these various models 
extends the characterization in Sec.4A to note that the local NC nucleation rate is given 
by the local hop rate or diffusion rate times the square of the local adatom density. 

All of cases (I)-(III) incorporate a thermodynamic driving force for directed 
assembly with NC’s at the minima of Eads, since at this location  the quasi-equilibrium 
density of adatoms is maximized. In case (II), this tendency for directed assembly is 
reduced by slower diffusion in the fcc regions, given the above observation that the 
nucleation rate is reduced for slower diffusion. In case (III), this reduction is even 
stronger and can completely eliminate directed assembly, or redirect assembly to the 
regions with the highest diffusion barrier.  

To elucidate the effect of variable diffusivity, it is most convenient to consider 
case (IV), where the quasi-equilibrium adatom density is constant across the surface. 
Thus, directed-assembly is purely kinetically-driven and occurs in regions of highest 
diffusion rate (or lowest barrier). This is in some sense the opposite of case (I). Of 
interest is the strength of directed-assembly in case (IV) and whether the experimentally 
observed behavior can be achieved for a reasonable choice of energetic parameters. 
To craft such a model (IV), one can again utilize a coarse-scale periodic function Ep with 
a minimum in the fcc region as shown in Fig.6b. Now the model input energetics 
involves a barrier to hop from site  ‘i’ to neighboring site  ‘f’ with the distinct form 
Eact(i→f) = Eact(f→i)  =  Ed0 + [Ep(f)+Ep(i)]/2, where Ed0 now corresponds to the minimum 
diffusion barrier occurring just in the fcc region. The Arrhenius form of the hop rate is 
consistent with detailed-balance for constant Eads. We will briefly describe results for this 
alternative model in Sec.5C. 

Finally, one should ask which case best describes the actual behavior for 
Ru/MLG/Ru(0001)? The general expectation, supported by limited DFT analysis, is that 
Eads varies with strongest binding in the fcc region [26]. While there is no comprehensive 
analysis for Ru/MLG/Ru(0001), a study of a related system [39] suggests that there is 
some tendency for in-phase variation of Eads and ETS as in Case (I). Thus, we focus on 
this benchmark model below. 
 
5. KINETIC MONTE CARLO (KMC) SIMULATION RESULTS 
 
Analysis of the above models is achieved by Kinetics Monte Carlo (KMC) simulation 
where one implements random deposition of Ru atoms and hopping of Ru adatoms with 
probabilities proportional to the physical rates for these processes. Again, nucleation of 
Ru NC’s is irreversible occurring when two diffusing adatoms meet, and aggregation 
with Ru NC’s is also irreversible. Thus, these processes do not introduce extra rates, 
noting that in the point-island model [34] there is no need to describe periphery 
diffusion. One complication is that an isolated Ru adatom in a half- moiré cell can 
undergo rapid correlated diffusion within a single half-cell (with high hop rates towards 
the center in the benchmark model). This can significantly increase the computational 
expense of the simulation, which can become prohibitive for smaller Ed. Results are 
presented for our benchmark model incorporating thermodynamically-driven 
assembly unless otherwise stated. 
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5A. KMC RESULTS FOR NC FILLING FACTOR 
 
Our initial goal is to determine whether experimentally observed values for filling factor 
(FF) can be obtained with a reasonable choice of energetics in our benchmark atomistic 
model. One previous DFT study [40] for Ru on free-standing graphene indicated the 
strongest binding at the hollow site in the center of the C-ring, as indicated above. It 
also indicated weaker binding by 0.72 eV above a C atom, and by 0.75 eV above a C-C 
bond. This implies a diffusion barrier of Ed = 0.72 eV for hopping between hollow sites 
over C atoms. A subsequent study by this group reported a substantially higher barrier 
closer to 1 eV [41]. However, simulation results for our model with Ed of 0.70 eV or 
above produced FF significantly larger than experiment (unless values for other 
parameters were selected to be very low which resulted in NC population of the hcp 
regions). We find that reducing Ed to the range 0.58-0.65 eV yields good agreement for 
reasonable values of other parameters. This apparent discrepancy prompted our own 
DFT analysis for Ru adsorption and diffusion on free-standing graphene obtaining a 
revised value of Ed = 0.62 eV consistent with estimates from KMC. See the Appendix. 

Simulations were performed varying model parameters and comparing results 
against experiment. These indicate that it is possible to obtain a reasonable match to 
the experimentally observed variation of FF versus θ, at the same time essentially 
exclusively populating the fcc regions with NC’s at 309 K [42]. One such choice of 
parameters using Ed = 0.62 eV which matches our DFT result is: δ = 0.28 eV, δ* = 0.15 
eV, and Δ = 0.20 eV. Fig.8 shows simulated NC distribution with these parameters for 
two values of FF = 24% and 48%. Fig.2 compares behavior for FF versus θ for these 
parameters with experiment.  An alternative parameter choice is motivated by the 
proposal of Sutter et al. [26] that the Ru adsorption energy in both hcp and atop regions 
is weaker than that in fcc regions by a similar amount of ~0.4 eV. This motivates 
consideration of choices with δ=Δ and δ*=0, and we find that selecting Ed=0.58 eV and 
δ=Δ=0.40 eV also matches experiment. The plot of FF versus θ for this case is almost 
identical to the above choice. Other possible choices are discussed in detail below. 

From our simulation analysis, in addition to reliable values for FF, we can readily 
determine uncertainties in estimates of FF (given below in %) for measurements or 
simulations with a finite (limited) system size. The relevant formulation derives from a 
fluctuation-correlation relation [31] for the number, M, of NC’s expected in a finite 
system of L×L moiré cells: 
 
<(M-<M>)2> ~ c(θ) L2 so <(FF-<FF>)2> ~ 104 c(θ) L-2.     (7) 
 
We find that c(θ) ≈ 0.028, 0.086, 0.045 for θ = 0.01, 0.05, 0.15 ML, respectively. Thus, 
the uncertainty in FF estimated from a standard deviation σFF ≈ 100c1/2/L ~ 0.2% is 
small for a simulation in a 100x100 cell system. Our results come from averaging Ntrial 
such simulations further reducing the uncertainty by a factor of (Ntrial)-1/2. 

As indicated above, there is not a unique choice of energetic parameters which 
alone reasonably matches experiment. Thus, some relevant trends observed from 
extensive simulations upon varying model parameters are reported below: 
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(i) Varying Ed and δ in opposite directions, roughly preserving Eeff = Ed + δ, can maintain 
the match with, e.g., FF ≈ 48.1% at θ ≈ 0.15 ML in experiment. In Table II, we give two 
examples of this behavior, one for fixed Δ=0.2 eV and δ*=0.15 eV, and the other for Δ=δ 
and δ*=0 (cf. [26]). However, constraining Ed to around our DFT value limits the choice 
of the other parameters.  
 

(ii) The sensitivity of FF to δ* and Δ should be weaker than to δ (allowing one parameter 
to vary and holding the others fixed). Specifically, FF will increase strongly with δ, as 
this increases the effective barrier to long-range transport, Eeff. The same is not true for 
varying δ* and Δ. The weakest dependence of FF is with δ*, as changing δ* does not 
affect the potential energy surface along the diffusion path, but presumably does 
change the effective prefactor. These trends are confirmed in Table III. 

We now provide some additional discussion of the more subtle aspects of the 
model parameter dependence. First, consider the dependence of FF on Δ keeping the 
other parameters fixed. As Δ increases, this reduces the residence time in hcp regions 
and thus enhances long-range mass transport. One might think that this would reduce 
FF. However, the opposite trend occurs (see Table III). Presumably for lower Δ, the hcp 
regions act as a “reservoir” for Ru adatoms lowering their density in fcc regions and thus 
lowering the nucleation rate in those regions which in turn lowers FF. Second, we 
consider further behavior upon varying Ed and δ in opposite directions while keeping FF 
fixed. Note that as Ed increases, the effective barrier Eeff = Ed + δ must be made smaller. 
Why? Increased Ed lowers the nucleation rate which must be compensated for by 
enhancing long-range transport. 

It should be noted, however, that for all of these parameter choices matching the 
experimental FF, we expect the other basic features of the model behavior discussed 
below (height distributions, short range order, size distributions) to be fairly robust. 
 
5B. KMC RESULTS FOR NC SIZE AND HEIGHT DISTRIBUTIONS  
 
Next, we use our atomistic modeling to estimate the evolution of the NC height 
distribution during deposition. It should be emphasized that our “point island” modeling 
does not explicitly describe the structure of the NC’s, but rather only their sizes. Thus, 
some additional hypothesis is needed to convert size to structure or height. We will 
assume that there are reasonably well-resolved “threshold” sizes Sh→h+1 (measured in 
atoms) for the transition from NC height h to h+1 layers for h= 1, 2,…. Thus, the picture 
is that when a NC reaches a threshold size Sh→h+1, it quickly converts to the greater 
height h+1. Consider the extreme case with a very strong propensity for 3D NC 
formation, but where stable NC and requires at least one nearest-neighbor pair of Ru 
atoms in the top-most layer. Accounting for hcp stacking, one has S1→2 =7, S2→3 =17, 
S3→4 =33, etc. [43]. However, the observed behavior does not match this choice. 

From our atomistic point-island simulations, we can generate the complete NC 
size distribution, FFs (the filling factor for NC’s of s atoms), where one has that FF =        
∑s≥2 FFs. A scaled version of this distribution is shown in Fig.9. This distribution has the 
standard shape expected for irreversible NC formation [31,34,35]. It is significantly 
broader than the Poisson distribution which applies if there is no transport between 
moiré cells [3], and for which the width of the corresponding scaled distribution 
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decreases with increasing mean NC size. Thus, given a selection of the Sh→h+1, we can 
determine FF(h=1) = ∑2≤s<S1→2 FFs, FF(h=2) = ∑S1→2 ≤ s < S2→3 FFs, etc. and their 
variation with θ for comparison with experiment. As indicated above, the smallest viable 
choice of Sh→h+1 listed above is not consistent with experiment. However, we find that a 
choice Sh→h+1 = 7, 26, 60, 80,… for h=1, 2, 3, 4,… does provide a reasonable match. 
See Fig.3.  
 
5C. KMC RESULTS FOR NC SHORT-RANGE ORDER 
 
One advantage of our atomistic simulation model is that we can characterize not just FF 
behavior as in Fig.2, but also the spatial arrangement of NC’s from analysis of images 
like Fig.8, for comparison with experiment. Specifically, we can analyze the probabilities 
of dimer and various trimer configurations, as well as general 2-point SRO parameters. 
Simulation results track experimental behavior as shown in Fig.3 and Fig.4. It is 
instructive to also compare the probabilities of various trimers measured directly from 
KMC simulations with the predictions from the Kirkwood approximation consistently 
using the dimer probability from simulations. Table IV reveals that the Kirkwood 
approximation correctly predicts qualitative trends but not quantitative values with 
exactly the same type of discrepancy as was found in the analysis of the experimental 
data. This supports the effectiveness of our model in capturing experimental behavior. 

Obtaining sufficiently precise results for this analysis is more challenging, as we 
are interested in intrinsically small quantities like SRO parameters, or in comparing 
close quantities such as D versus (FF)2 or various trimer probabilities. As a result, it was 
necessary to average results from multiple simulations (Ntrial = 12) for a 100x100 moiré 
cell system. To give some insight into these uncertainties, we mention that the standard 
deviation in trimer probabilities for simulations in a 100x100 cell system varies from σT ~ 
0.0003 for θ=0.01 to σT ~ 0.001 for θ=0.05 to σT ~ 0.001-0.002 for θ=0.15. However, 
discrimination of very small differences in probabilities for linear and bent trimer 
configurations requires multiple trials. For the SRO parameters, α(r), the standard 
deviation for simulations in a 100x100 cell system are of the order σα ~ 0.002-0.004. 
Since these standard deviations vary like 1/L, the use of smaller STM images for 
extracting results produces significant uncertainties in experimental estimates. 
However, our simulation analysis of the SRO behavior uses sufficient trials (Ntrial=12) to 
effectively eliminate uncertainties and provide a clear picture of the variation of SRO 
parameters with FF and of the decrease in the magnitude of these quantities with 
increasing r (see Fig.4).  

Finally, we briefly comment further on the propensity for formation of NC rows at 
higher values of FF, which is clear from both experimental and simulation images of NC 
spatial distributions. Consider the quasi-steady-state density for diffusing atoms in the 
vicinity of the end of an already formed row of NC’s (see Fig.10). Solution of the 
appropriate steady-state diffusion equation treating the NC’s in the row as sinks for 
diffusing atoms reveals that the adatom density is much lower on the edge fcc moiré 
half cells (ej) than at the end bent (b) or straight (s) half cells. (In this analysis, it is 
necessary to also impose a suitable effective outer boundary condition, or to include an 
effective loss term, to account for adatom capture by other NC’s.) The density at s is 
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slightly higher than at b. Thus, NC nucleation is relatively inhibited at ej, and enhanced 
at b and s (slightly more at the latter). 

 
5D. ADDITIONAL KMC RESULTS: PROPENSITY FOR DIRECTED-ASSEMBLY 
 
How great a thermodynamic driving force is required to direct assembly of NC almost 
exclusively to the fcc regions? The benchmark model for thermodynamically-
directed assembly requires Δ above ~0.1 eV (i.e., adsorption in hcp regions is less 
favorable by ~0.1 eV or above). For example, with the parameter choice Ed = 0.62, δ = 
0.28, δ* = 0.15, which matches experiment for Δ = 0.20 with FF = 48.1% at θ = 0.15 ML 
at 309 K, one finds that the fraction of NC in the hcp region or on the fcc-hcp boundary 
increases to ~1% upon lowering Δ to 0.15 eV (where FF = 45.1%), and to ~4% upon 
lowering Δ to 0.10 eV (where FF ≈ 43.5%). With the alternative choice Ed = 0.68 eV, δ* = 
0, and Δ = δ, the fraction of hcp or fcc-hcp boundary NC increases from ~1.4% when Δ 
≈ 0.15 (with FF ≈ 48% matching experiment), to ~6% (with FF ≈ 40%) when Δ = 0.10 
eV, to ~26% (with FF ≈ 39%) when Δ = 0.05 eV.  
 Finally, we briefly present some results from our alternative model for 
kinetically-directed assembly where Eads is constant. We choose the Ru adatom 
diffusion barrier to smoothly increase from a minimum value of Ed0 in the center of the 
fcc half-cell to a value of Ed+ε at the fcc-hcp boundary and to maintain this higher value 
throughout the hcp half-cell. Specifically, we choose Eact(i→f) = Eact(f→i)  =  Ed0 + 
[Ep(f)+Ep(i)]/2, where the parameters in Ep are now set to δ = Δ = ε and δ* = 0. First, we 
note that we can recover the experimentally observed FF = 48.1% at θ = 0.15 ML at 309 
K for a range of Ed0 and ε varying these in opposite directions, e.g., Ed0 = 0.62, 0.65, 
0.66, 0.67,… eV and ε = 0.26, 0.19, 0.16, 0.12,… eV, respectively. However, the 
fraction of NC’s nucleated in hcp or fcc-fcp boundary regions naturally increases (~0%, 
0.4%, 1%, 3%, 30%, respectively) with decreasing ε.  
 
6. CONCLUSIONS 
 
Key aspects of STM observations of Ru NC formation on Ru(0001)-supported 
monolayer graphene are described by fully atomistic modeling. This modeling 
incorporates reasonable energetic parameters to describe adsorption and diffusion of 
Ru adatoms accounting for the coarse-scale periodic modulation due to the moiré 
structure.  Specifically, we can describe the increase in the number of NC (i.e., the filling 
factor) during deposition, as well as that of the NC size and height distributions. Of 
particular interest is a subtle spatial ordering including a propensity for “row formation” 
in the NC array. This is also characterized in detail by considering both the populations 
of various distinctive local motifs of NC’s as well as traditional SRO parameters.  
 
APPENDIX: DFT ANALYSIS FOR Ru ON FREE-STANDING GRAPHENE 

Our first-principles calculations are performed based on the density functional theory 
(DFT) with generalized gradient approximation (GGA) in the form of PBE (Perdew-
Burke-Ernzerhof) [44] implemented in the VASP [45-47] (Vienna Ab-initio Simulation 



 

15 
 

Package) code, including spin polarization and dipole moment corrections [48]. Valence 
electrons are treated explicitly and their interactions with ionic cores are described by 
PAW [49,50] (Projector Augmented Wave) pseudopotentials. The wave functions are 
expanded in a plane wave basis set with an energy cutoff of 600 eV. 

The adatom/free-standing single-layer graphene system is modeled by one 
adatom in a 4x4 parallelogram graphene supercell and with periodic boundary 
conditions [51,52]. The primitive cell of graphene is a parallelogram with two carbon 
atoms. The lattice constant obtained from the first-principles calculation is 2.46 Å, which 
agrees well with experimental value. The dimension of the supercell in the direction 
orthogonal to the graphene sheet is 15 Å which allows a vacuum region of about 12 Å to 
separate the atoms in the supercell and their replicas. The calculations are performed 
for adatoms positioned on graphene at the top of a carbon atom, labeled top (T) site, at 
the middle of a carbon-carbon bond, labeled bridge (B) site, and at the hexagonal 
center site, labeled hollow (H) site, respectively. A k-point sampling of 6x6x1 Monkhorst-
Pack grids in the first Brillouin zone of the supercell and a Gaussian smearing with a 
width of σ=0.05 eV are used in the calculations. All atoms in the supercell are allowed to 
relax until the forces on each atom are smaller than 0.01 eV/Å. The supercell 
dimensions are kept fixed during the relaxation. 

The adsorption energy Eads is defined as the difference between the energy of 
the relaxed adatom/graphene system and that of the isolated perfect graphene sheet 
and an isolated adatom. To minimize the error in the adsorption energy calculations, the 
energies of the isolated perfect graphene sheet and an isolated atom are also 
calculated using the same supercell, plane wave basis, and k-point sampling as those in 
the calculations for the adatom/graphene systems. We obtain Eads(H) = -1.97 eV, 
Eads(T) = -1.35 eV, and Eads(B) = -1.21 eV. 

In principle, the diffusion barriers should be obtained by examining the potential 
energy surfaces for the adatoms on the substrate. However, in the case of adatoms on 
graphene, the adsorption geometry is relatively simple due to the high symmetry of the 
graphene lattice. Thus, the diffusion barrier Ed = 0.62 eV (in this case corresponding to 
hopping between H sites over the T site) can be accurately evaluated by examining the 
energy difference between the different adsorption sites [51,52]. 
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FIGURE CAPTIONS 
 
Fig. 1: (a) Interface between graphene and the bare Ru substrate. Cluster formation on 
the graphene (top) and Ru island formation on the substrate (bottom), θ = 0.15 ML, FF 
= 45.5 %; 100×50 nm2 (b) hexagonally shaped Ru islands, formed on the bare Ru 
substrate after annealing for 1 min. at 700K; 100×50 nm2. Sequence of STM images of 
Ru clusters grown on MLG/Ru(0001): (c) θ = 0.005 ML, FF =13.5 %, 100×100 nm2; the 
dotted circles indicate some small single-layer clusters highlighted in the inset; (d) θ = 
0.01 ML, FF = 17.5 %, 100×100 nm2; (e) θ = 0.03, FF = 26.1 %, 80×80 nm2; (f) θ = 0.05 
ML, FF = 34.5 %, 100×100 nm2; (g) θ = 0.15 ML, FF = 47.6 %, 100×100 nm2. 
 
Fig. 2: Coverage-dependence of filling factor, FF (in %), and mean NC size, sav (in 
atoms), for Ru deposition at 309 K with fluxes ranging from ~0.01 to 0.1 ML/min. 
Experimental results are denoted by symbols, and KMC simulations (described in Sec.4 
and 5) by smooth curves. Simulation parameters are: Ed = 0.62 eV, δ = 0.28 eV, Δ = 
0.20 eV, δ* = 0.15 eV, F = 0.20 ML/min.  
 
Fig. 3: Coverage-dependence NC height distribution described by the filling factors 
FF(h=1,2,…) of NC’s for various specific heights h (measured in layers). Experimental 
results are denoted by symbols, and simulations (described later) by smooth curves. 
 
Fig.4: Coverage-dependence of the probability of NC dimers and of linear, bent, and 
triangular NC trimers in the Ru NC array. Experimental results are denoted by symbols, 
and simulations (described later) by smooth curves. 
 

Fig.5: Dependence on FF of 2-point SRO parameters α(r) in the Ru NC array 
corresponding to r = 1, √3, 2, √7, and 3 (in units of the moiré cell lattice constant). 
Experimental results are denoted by symbols, and simulations (described later) by 
smooth curves. 
 
Fig.6 (a) Schematic of the graphene moiré unit cell; (b) 1D schematic of the binding 
energy variation for an Ru adatom across the moiré cell for our benchmark model 
showing the coarse-scale variation described by Ep (dashed thick curve ) and fine-
scale variation (oscillatory thin curve). The 2D variation of Ep in the small triangle 
corresponding to 1/6 of the fcc half- moiré cell with x- and y-axes shown is described by                      
Ep = δ sin2[2√3x/LM] + δ* sin2[2y/LM]. Behavior in 1/6 of the hcp half- moiré cell is 
described by Ep = Δ + (δ-Δ) sin2[π√3x/LM] + δ* sin2[πy/LM]. 
 
Fig.7 Fine-scale variation of the potential energy surface in the benchmark model for 
an Ru adatom hopping between neighboring adsorption sites, i and f, on MLG/Ru(0001). 
 
Fig.8. Spatial arrangement and SRO of NC’s from KMC simulation of the benchmark 
model with Ed = 0.62, δ = 0.28 eV, δ* = 0.15 eV, and Δ = 0.20 eV at 309 K. 
 
Fig.9. Scaled NC size distribution where the area under the scaled plot is unity [31]. The 
total number of NC’s used to obtain this low-noise data is also indicated. 
 
Fig.10. Adatom diffusion and capture near the end of a row of NC’s. The figure labels 
edge (ej), end bent (b) and straight (s) fcc half- moiré cells. 



 

19 
 

 
TABLES 

Coverage 
[ML] 

FF 
[%] D(expt) TT(expt) TT 

(Kirkwood) BT(expt) LT(expt)    BT,LT 
(Kirkwood) 

0.01 17.5 0.029 0.0021 0.0044 0.0018 0.0031 0.0047 
0.03 26.1 0.062 0.0078 0.0135 0.0085 0.0090 0.0148 
0.05 34.5 0.110 0.0215 0.0320 0.0254 0.0260 0.0348 
0.15 47.6 0.203 0.0697 0.0775 0.0789 0.0789 0.0866 

 
Table I: Comparison of experimental trimer probabilities (TT=triangular, BT=bent/elbow, 
LT=linear) with predictions from the Kirkwood-approximation (which incorporates the 
experimental dimer probabilities and FF values). 

 
Δ=0.2 
δ*=0.15 

   Δ=δ 
δ*=0 

     

Ed 0.60 0.62 0.64 Ed 0.58 0.60 0.62 0.65 0.68 
δ 0.34 0.28 0.22 δ 0.40 0.35 0.305 0.23 0.145 
 
Table II. Parameter choices matching FF ≈ 48.1% at θ ≈ 0.15 ML in experiment by 
varying Ed and δ in opposite directions. All energies in eV. 
 
   δ - 0.28           FF – 48.1     Δ - 0.15         FF – 48.1    δ* - 0.20          FF – 48.1 
    -0.03                -9.2      -0.05                -3.0      -0.05                 -2.7 
    -0.01                -3.2      -0.01                -0.6      -0.01                 -0.9 
    +0.01               +3.5      +0.01               +0.5     +0.01                +0.3 
    +0.03              +10.0      +0.05               +4.8     +0.05                +0.9 
 
Table III. Sensitivity analysis of FF [in %] to various energetic parameters varying 
parameters one at a time about Ed = 0.62, δ = 0.28 eV, δ* = 0.15 eV, and Δ = 0.20 eV. 
 
 
Coverage 

[ML] 
FF 
[%] D(KMC) TT(KMC) TT 

(Kirkwood) BT(KMC) LT(KMC)    BT,LT 
(Kirkwood)

0.01 18.65 0.0326 0.0019 0.0054 0.00269 0.00284 0.00573 
0.03 28.76 0.0769 0.0101 0.0191 0.01285 0.01303 0.02058 
0.06 36.26 0.1222 0.0243 0.0383 0.02993 0.03038 0.04121 
0.15 47.84 0.2147 0.0700 0.0903 0.08188 0.08192 0.09631 

 
Table IV: Comparison of trimer probabilities (TT=triangular, BT=bent/elbow, LT=linear) 
from KMC with predictions of the Kirkwood approximation (based on dimer probability 
and FF values from KMC). 




























