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Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze in-
teracting Majorana systems on general networks and lattices in an arbitrary number of dimensions,
and derive new universal spin duals. We prove that these interacting Majorana systems, quantum
Ising gauge theories, and transverse-field Ising models with annealed bimodal disorder are all dual to
one another on general graphs. This leads to an interesting connection between heavily disordered
annealed Ising systems and uniform Ising theories with nearest-neighbor interactions. As any Dirac
fermion (including electronic) operator can be expressed as a linear combination of two Majorana
fermion operators, our results further lead to dualities between interacting Dirac fermionic systems
on rather general lattices and graphs and corresponding spin systems. Such general complex Majo-
rana architectures (other than those of simple square or other crystalline arrangements) might be
of empirical relevance. As these systems display low-dimensional symmetries, they are candidates
for realizing topological quantum order. The spin duals allow us to predict the feasibility of various
standard transitions as well as spin-glass type behavior in interacting Majorana fermion or elec-
tronic systems. Several new systems that can be simulated by arrays of Majorana wires are further
introduced and investigated: (1) the XXZ honeycomb compass model (intermediate between the
classical Ising model on the honeycomb lattice and Kitaev’s honeycomb model), (2) a checkerboard
lattice realization of the model of Xu and Moore for superconducting (p + ip) arrays, and a (3)
compass type two-flavor Hubbard model with both pairing and hopping terms. By the use of our
dualities (tantamount to high dimensional fermionization), we show that all of these systems lie
in the three-dimensional Ising universality class. We further discuss how the existence of topologi-
cal orders and bounds on autocorrelation times can be inferred by the use of symmetries and also
propose to engineer quantum simulators via such Majorana wire networks.

PACS numbers: 05.30.-d, 03.67.Pp, 05.30.Pr, 11.15.-q

I. INTRODUCTION

and more concrete ways in which zero-energy Majo-

Majorana (contrary to Dirac) fermions are particles
that constitute their own anti-particles.! Early quests
for Majorana fermions centered on neutrinos and fun-
damental issues in particle physics that have yet to be
fully settled. If neutrinos were Majorana fermions then
neutrinoless double 8 decay would be possible and thus
experimentally observed. More recently, there has been
a flurry of activity in the study of Majorana fermions
in candidate condensed matter realizations,? 7 including
lattice'® 2% and other®? systems inspired by the prospect
of topological quantum computing.?!?? In the condensed
matter arena, Majorana fermions are, of course, not fun-
damental particles but rather emerge as collective exci-
tations of the basic electronic constituents. The systems
discussed in this work form a generalization of a model?’
that largely builds and expands on ideas considered by
Kitaev®'82! including, notably, the feasibility of creat-
ing Majorana fermions at the endpoints of nanowires.?3
A quadratic fermionic Hamiltonian for electronic hopping
along a wire in the presence of superconducting pairing
terms (induced by a proximity effect to bulk supercon-
ducting grains on which the wire is placed) can be ex-
pressed as a Majorana Fermi bilinear that may admit free
unpaired Majorana Fermi modes at the wire endpoints.?3
Kitaev’s proposal entailed p-wave superconductors.®

More recent and detailed studies suggest simpler

rana modes might explicitly appear at the endpoints of
nanowires placed close to (conventional s-wave) super-
conductors. Some of the best known proposals”?!! en-
tail semiconductor nanowires (e.g., InAs or InSh?*) with
strong depolarizing Rashba spin-orbit coupling that are
immersed in a magnetic field that leads to a competing
Zeeman effect. These wires are to be placed close to su-
perconductors in order to trigger superconducting pair-
ing terms in the wire. By employing the Bogoliubov-de
Gennes equation to study the band structure, it was read-
ily seen how Majorana modes appear when the band gap
vanishes.”?11 Along another route, it was predicted that
zero-energy Majorana fermions might appear at an in-
terface between a superconductor and a ferromagnet.519
Majorana modes may also appear in time-reversal invari-
ant s-wave topological superconductors.'®

If zero-energy Majorana fermions may indeed be har-
vested in these or other ways’” then it will be natural
to consider what transpires in general networks made of
such nanowires. The possible rich architecture of struc-
tures constructed out of Majorana wires and/or particu-
lar junctions may allow for interesting collective phenom-
ena as well as long sought topological quantum comput-
ing applications.?"22 Interestingly, as is well appreciated,
the braiding of (degenerate) Majorana fermions realizes a
non-Abelian unitary transformation that may prove use-
ful in quantum computing providing further impetus to



this problem. In the current work, we consider general
questions related to Majorana Fermi systems that may
be constructed from nanowire architectures. In order to
understand many of these and other systems, it is nec-
essary to study interacting Majorana fermion systems.
To facilitate this goal, we will introduce and employ new
dualities between interacting Majorana fermion theories
and earlier heavily studied spin systems.

A. Summary of new results

A principal aim of this article is to derive new duali-
ties between interacting Majorana fermion systems and
Pauli (S = 1/2) spin models and to explore consequences
of these dualities. As many S = 1/2 spin models have
been heavily investigated throughout the years, the new
dualities that we will report on will allow a valuable tool
for, nearly immediately, obtaining numerous hitherto un-
known results for a multitude of interacting Majorana
fermion systems. Towards this end, we will invoke a gen-
eral framework for dualities that does not require the in-
corporation of known explicit representations of a spin in
terms of Majorana fermions nor Jordan-Wigner transfor-
mations that have been invoked in earlier works.!%:20:25
The bond-algebraic approach,2632 that we employ to
study general ezact dualities and fermionization,3%3! al-
lows for the derivation of earlier known dualities as well as
a plethora of many new others for rather general networks
(or graphs) in arbitrary dimensions and boundary condi-
tions. It is important to note, as we will return to explic-
itly later, that as Dirac fermions can be expressed as a
linear combination of two Majorana fermions, our map-
pings lead to dualities between standard (non-Majorana)
fermionic systems and spin systems on arbitrary graphs
in general dimensions. These afford new non-trivial ex-
amples of fermionization in more that one dimension.

Among several new exact dualities that we introduce
here we note, in particular, the following:

e A duality, in arbitrary dimension, between the
Majorana fermion system corresponding to an ar-
bitrary network of nanowires on superconducting
grains and quantum Ising gauge (QIG) theories.

e Gauge-reducing emergent dualities,®' in arbitrary
number of dimensions, between granular Majo-
rana fermion systems on an arbitrary network
and transverse-field Ising models with annealed ex-
change couplings. In two dimensions, this duality,
along with the first one listed above, indicates that
an annealed average over a random exchange may
leave the system identical to a uniform transverse-
field Ising model.

e A further duality between a particular Majorana
fermion architecture and a nearest-neighbor quan-
tum spin S = 1/2 model which, in some sense, is

intermediate between an Ising model on a honey-
comb lattice and the Kitaev honeycomb model.'®
We term this system the “XXZ honeycomb com-
pass model.” This will allow us to illustrate that
the classical version of this quantum XXZ honey-
comb spin system is the classical three-dimensional
(3D) Ising model in disguise. Similar results hold
for a model of (p 4 ip) superconducting grains on
the checkerboard lattice.

Among the new potential applications of the bond-
algebraic formalism, we mention:

e The prospect of engineering of topological quantum
matter out of properly assembled Majorana net-
works. This is relevant for the potential realization
of a topological quantum computer. We will out-
line a general procedure for the design of various ar-
chitectures of nanowires on superconducting grains
that support topological quantum order (TQO).3?
Our considerations will not be limited to the use of
perturbation theory, e.g.,?° but will rather rely on
the use of symmetries and exact generalized dual-
ities associated with these granular and other sys-
tems defined on general networks.

e Viable assembly of quantum simulators out of Ma-
jorana networks to study, for instance, dynamics
of quantum phase transitions. We show how to
simulate the transverse field Ising model chain and
Hubbard-type models on the square lattice (which
are shown to belong to the 3D Ising universality
class).

As one of the key issues that we wish to address
concerns viable TQO, boundary conditions may be of
paramount importance. Boundary conditions are inher-
ently related to the character (and, on highly connected
systems, to the number) of independent d-dimensional
gauge-like symmetries.  Imposing periodic or other
boundary conditions on a system can lead to vexing prob-
lems in traditional approaches to dualities and fermion-
ization. By using bond-algebras, we can circumvent these
obstacles and construct exact dualities for both infinite
systems and for finite systems endowed with arbitrary
boundary conditions. Other formidable barricades, such
as the use of non-local string transformations, can be
overcome as well within the bond-algebraic approach to
dualities.?! The validity of any duality mapping can, of
course, be checked numerically by establishing that the
spectra of the two purported dual finite systems indeed
coincide. The matching of the spectra serves as a defini-
tive test since dualities are (up to global redundancies)
unitary transformations! that preserve the spectrum of
the system.



B. Outline

The remainder of this paper is organized as follows. In
Section II, we briefly review recent work concerning Ma-
jorana nanowires on the square lattice. This discussion
affords an introduction and motivation for the general
architectures that we will discuss in this work. All sec-
tions that follow report on our new results. In Section
III, we introduce a generalization of the square lattice
architecture and consider an arbitrary network of super-
conducting grains and majorana nanowires. This will
lead us to consider a general high dimensional interact-
ing Majorana theory. In Section IV, we analyze the sym-
metries of our theory and discuss their implications for
general observables, TQO, and autocorrelation times. In
the few sections that follow, we will focus on our new du-
alities (or high dimensional fermionization). In Section
V, we discuss dualities on general networks. We illustrate
how our general interacting Majorana theories are dual
to both QIG theories (Section V A) and to annealed quan-
tum random transverse field Ising models (Section V B).
We discuss general physical implications of these dualities
(including a new duality between Ising gauge and quan-
tum random transverse field Ising models as well as the
phase diagrams of the interacting Majorana theories) in
Section V C. In Section VI, we derive new dualities for
square lattice Majorana systems. We show that these
are related to spin models on the honeycomb (Section
VIA) and checkerboard (Section VIB) lattices. These
dualities (especially perhaps our duality and consequent
analysis for the honeycomb lattice quantum spin model)
are somewhat unexpected and afford a new counterpart
to systems such as Kitaev’s honeycomb model'® which
exhibit lattice direction dependent spin interactions. In
Section VII, we illustrate that, on the square lattice, the
standard Hubbard interaction term in electronic systems
is identical to the Majorana interactions in the theory
that we analyze. By use of our dualities, this will allow
us to prove that Hubbard type theories on the square lat-
tice exhibit 3D Ising behavior. We further discuss how it
may be possible to simulate the standard Hubbard model
on the square lattice by a Majorana nanowire array. In
Section VIII, we summarize our new results. Certain
technical details have been relegated to the appendices.

II. A REVIEW OF THE SQUARE LATTICE
MAJORANA WIRE SYSTEM

In this section, following Ref. [20] we review a square
lattice array of Josephson-coupled nanowires on super-
conducting grains. All of the results that we will re-
port in all later sections of this article which follow this
brief review are new. A schematic of the array studied
in Ref. [20] is presented in Fig. 1. As we will elabo-
rate on in Section III, our general-dimensional extension
of this Hamiltonian is given by Eqs. (5),(6), and (8)
with ¢, (i = 1,2) denoting Majorana operators (satis-

fying the standard Majorana algebra of Eq. (4)) asso-
ciated with nanowire endpoints. Within the generalized
scheme, these nanowires are placed on superconducting
islands that occupy the vertices r of a general (even-
coordinated) network, with links I connecting the islands.
The ends of the nanowires are placed so that each link
l connects two Majorana fermions ¢y, ¢jo from different
wires. Each link carries an arbitrary but fixed orienta-
tion, just for the purpose of labelling the Majoranas on
it: As one traverses a link in the specified direction, ¢y
comes before ¢ (see Fig. 1).

FIG. 1. A decorated square lattice (with unit vectors e; and
ez) in which each site is replaced by a tilted square (repre-
senting a superconducting grain at site ). Two nanowires
(solid blue diagonal lines) are placed on each grain. The
grains are coupled to each other via Josephson couplings.
A local (gauge) symmetry operator of the model is Gp =
(iciy1a,2) (Fagiag2) (iagicig2) (iciy1¢1,2), where P defines the
minimal closed loop. See text.

For example, in Fig. 1, two parallel nanowires are
placed on each superconducting grain. These grains are
placed on the sites r of a square lattice matrix. The two
nanowires on each grain yield four Majorana fermionic
degrees of freedom, placed on the edges of the oriented
links of the lattice. The Majorana fermions on different
superconducting grains, sharing a link, are coupled to
each other by Josephson junctions. Prior to introducing
the Josephson couplings, each grain is shunted to main-
tain a fixed superconducting phase and is capacitively
coupled to a ground plate. Consequently, there are large
fluctuations in the electron number operator. However,
the electron number parity is conserved. The sum of the
two dominant effects: (i) inter-grain Josephson couplings
and (ii) intra-grain constraints on the electron-number
parity, complemented by exponentially small capacitive
energies, leads to a simple effective Hamiltonian. The
intra-grain constraint on electron number (even/odd)



parity is more dominant than inter-grain effects. The
parity operator is P, = (—1)" with n, the total num-
ber of electrons on grain r. This electron number parity
can be of paramount importance in interacting Majo-
rana systems.'™!? In grains having two nanowires each,
the electronic parity operator is quartic in the Majorana
fermions; it is just the ordered product of the four Majo-
rana fermions at the endpoints of the nanowires on top
of the grain at site r,

Pr = ciasicyacy2, T el sl (1)
(we write » € [ to indicate that r is one of the two
endpoints of ). This gives rise to a term in the effective
Hamiltonian of the form?2°

Hy=—hY_ Py, (2)

with the sum taken over all grains, whose total number
is N,.. This term is augmented by Josephson couplings
across inter-grain links I, leading to a Majorana Fermi
bilinear term involving the coupled pair of Majoranas

{(ar, az)},

H1 = —JZiCllle. (3)
l

Fermionic parity effects are more dominant than Joseph-
son coupling (h > J) effects. Invoking perturbation
theory, for small (J/h), it was found?® that, to lowest
non-trivial order, the resultant effective Hamiltonian was
identical to that of Kitaev’s toric code model,?! thus es-
tablishing that such a system may support TQO. Unfor-
tunately, for (J/h) < 1, spectral gap is small and the
system is more susceptible to thermal fluctuations and
noise. A Jordan-Wigner transformation was invoked?’
to illustrate that these results survive for finite (J/h).

III. GENERAL NETWORKS OF
SUPERCONDUCTING GRAINS AND
NANOWIRES

All of the results reported in this and all following sec-
tions are new. In Section II, we succinctly reviewed the
effective Hamiltonian for the square lattice array,? de-
picted in Fig. 1, of Josephson-coupled granular supercon-
ductors carrying each two nanowires. This architecture
serves as a useful case of study. There is more to life,
however, than square lattice arrays (although we will re-
turn to these later on in this work). We consider next
rather general architectures in which each node r (super-
conducting grain) has an even number of nearest neigh-
bors to which it is linked by Josepshon coupling, see Fig.
2. These general networks include, of course, any two di-
mensional lattice of even coordination, e.g, those of Figs.
1, and 3, as special cases.

The architectures that we consider are realized by plac-
ing at each vertex r of a graph-theoretical network a

FIG. 2. A general network of superconducting grains with an
even coordination number of each vertex. The local coordina-
tion number ¢, of any superconducting grain centered about
site r is equal to the number of endpoints of all nanowires
that are placed on that superconducting grain. The domi-
nant Josephson tunneling paths between inter-grain nanowire
endpoints are highlighted by solid lines. Shown here is a two-
dimensional projection of the network.

finite-size superconducting grain. On each of these grains
there are z, nanowires. These nanowires provide 2z, Ma-
jorana fermions, one for each wire’s endpoint. Inter-grain
Josephson tunneling is represented by a link involving
Majoranas coming from different wires on different is-
lands. We place the nanowires on every grain in the
network so that each endpoint of a nanowire is near the
endpoint of another nanowire on a neighboring grain, to
maximize Josephson tunneling. Thus, the coordination
number ¢, of grain r in these graphs is ¢, = 22,..3* The
general situation is depicted in Fig. 2.

FIG. 3. A triangular network of superconducting grains
(hexagons) on each of which we place three nanowires.

The basic inter and intra-island interactions have dif-
ferent origins. For ease of reference, we reiterate these
below for arbitrary networks:

e there is a Josephson coupling J; associated with
each inter-grain link ! of the network connecting
different superconducting grains, and



e an intra-grain charging energy h, associated to
each island at site r.

In a general, spatially non-uniform, network the spatial
distribution of couplings J; and charging energies h,. need
not be constant.

The algebra of Majorana fermions is defined by the
following relations:

{ctiscvir} = 200,105, CL- = qy. (4)
5

With all of the above preliminaries in tow,?® we are now
ready to present the effective Hamiltonian for the systems
under consideration,

Hy = —i Z Jicicre — Z " P, (5)
1 r

where

rely, - l,,  (6)

Pr =172 €y, Clyiy = €l g, s
is the product of all Majorana fermion operators asso-
ciated with the superconducting grain at site r, ordered
in some definite but arbitrary fashion (differing orderings
produce the same operator up to a sign).3

The index i, can be either i, = 1 or i,, = 2, depend-
ing on the particular orientation that has been assigned
to the links in the network. More precisely, i, = 1 if [,
points away from r, and 4,, = 2 if [,,, points into r. The
factor 4*m2 is introduced to render P, self-adjoint. Since

mian  (7)

and ¢, = 2z,., we set the integer z,, to be the number of
nanowires counted modulo 2,

(Cllil e Clqriqr)-r = (_1)(1?((17‘71)/26[11-1 RN

0 if z, is even
Zra = { 1 if 2z, isodd - (8)
As we remarked earlier, the operators P,. are related to
the operators n, counting the total number of electrons
on the grain r as

P’!‘ = (_l)nTv (9)

thus measuring the parity of the number of electrons at
site . Hamiltonian (5) constitutes an arbitrary dimen-
sional generalization of the sum of the two terms in Egs.
(2, 3). In the following, we call the operators {ic;ici2}
and {P,} the bonds of the Hamiltonian Hy.30:3!

IV. TOPOLOGICAL QUANTUM ORDER IN
MAJORANA NETWORKS

A notable question regarding systems of Majorana
fermions is concerned with viable TQOs. We briefly sum-
marize elements of TQO needed for this paper. Disparate
(vet inter-related) definitions of TQO appear in the lit-
erature. One of the most striking (and experimentally

important) aspects of TQO is its robustness against local
perturbations or, equivalently, its inaccessibility to local
probes at both zero and finite temperatures.?® Some of
the best studied TQO systems are quantum Hall fluids.??
Several lattice models are also well known to exhibit
TQO, including the spin S = 1/2 models introduced by
Kitaev.'®2! As in our earlier works, we will use the ro-
bustness or insensitivity to local probes? as our working
definition of TQO. In the context of the Majorana lattice
systems (and general networks) that we investigate here,
one currently used approach for assessing the presence of
TQO? is observing whether a fortuitous match occurs,
in perturbation theory, between (a) the studied nanowire
systems with (b) Hamiltonians of lattice systems known
to exhibit TQO. While such an analysis is highly insight-
ful, it may be hampered by the limited number of lattice
systems (and more general networks) that have already
been established to exhibit TQO.

In this work, we suggest a different method for
constructing Majorana system architectures displaying
TQO. This approach does not require us to work to-
wards an already examined lattice system that is known
to exhibit TQO. Instead, our recipe invokes direct conse-
quences of quantum invariances. Symmetries can man-
date and protect the appearance of TQO?? via a gen-
eralization of Elitzur’s theorem.?637 Specifically, when-
ever d-dimensional gauge-like symmetries’> are present
(most importantly, discrete d = 1 or continuous d = 1,2
symmetries), finite temperature TQO may be mandated.
Zero-temperature TQO states protected by symmetry-
based selection rules can be further constructed. A sym-
metry is termed a d-dimensional gauge-like symmetry if
it involves operators/fields that reside in a d-dimensional
volume.?6:33:37 The use of symmetries offers a direct route
for establishing TQO that does not rely on particular
known models as a crutch for establishing its presence.

For the particular case of the square lattice (D = 2),
the interacting Majorana Hamiltonian Hy with peri-
odic (toroidal) boundary conditions was found to ex-
hibit 0-dimensional local, d = 1-dimensional gauge-
like, and 2-dimensional global symmetries.2’ These sym-
metries, inherently tied to TQO?? and dimensional
reduction,?%3337 also appear in the more general net-
work renditions of the granular system just described in
the previous section. They are also manifest for the in-
teracting Majorana systems embedded in any spatial di-
mension D > 2 when different boundary conditions are
imposed.38

Global Symmetry:

The Hamiltonian Hy of Eq. (5) displays a global symme-
try @, given by the product of all the Majorana Fermion
operators in the system. We can write @) in terms of
bonds as

Q: Hprv (10)

since each Majorana is contributed by some island. The



order of the bonds in @ is not an issue, since
[Py, Prr] =0, (11)

for any pair of sites v, 7’. The conserved charge Q repre-
sents a Zo symmetry of the system,

Q*=1. (12)

Beyond this global symmetry, the system of Eq. (5)
exhibits independent symmetries that operate on finer,
lower-dimensional regions of the network. Of particular
importance to TQO are d = 1 and d = 0-dimensional
symmetries, and so we turn to these next.

d = 1 symmetries:

The d = 1 dimensional symmetry operators of the Majo-
rana system are given by

Qe = [Jliena),

lee

Qo) =1, (13)

where £ is a continuous contour, finite or infinite and
open or closed depending on boundary conditions, en-
tirely composed of links. That these non-local operators
are symmetries is readily seen once it is noted that (a)
each of the terms (or bonds) in the summand of Eq. (5)
defining Hpy involves products of an even number of Ma-
jorana fermions and (b) by the second of Eqs. (4), effect-
ing an even number of permutations of Majorana fermion
operators in a product incurs no sign change. For exam-
ple, for a network of linear dimension L along a Cartesian
axis, the contour £ spans O(L') sites and is thus a d = 1
dimensional object. This is the origin of the name d = 1
symmetries. Some of these d = 1 symmetries may be
related to (appear as products of) the local symmetries
discussed next, depending on the topology enforced by
boundary conditions. Some others are fundamental and
cannot be expressed in terms of those local symmetries.
d = 0 symmetries:

For the models under consideration, local, also called
gauge, d = 0 symmetries are associated with the ele-
mentary loops (or plaquettes) P of the wires, see Fig. 1
for an example. That is, when considering the supercon-
ductors as point nodes, the links I form a network with
minimal closed loops P. The associated local symmetries
are given by

Gp = H(icllclg), G%g =1. (14)

lep

Repeating the considerations of (a) and (b) above, we
see that, for any elementary plaquette P, the product of
Majorana Fermi operators in Eq. (14) commutes with
Hy, since it shares an even number (possibly zero) of
Majorana fermions with any bond in the Hamiltonian.
By multiplying operators Gp for a collection of plaque-
ttes P that, together, tile a region bounded by the loop
T', it is readily seen that this product is also a symmetry,
as in standard theories with gauge symmetries.

The symmetries above lead to non-trivial physical con-
sequences:

(A) By virtue of Elitzur’s theorem®® and its d >
0 generalizations?6:33:37 all non-vanishing correlators
(ITaeg Ca) with S a set of sites a must be invariant under
all of the symmetries of Eqs. (13,14). That is, d = 0, 1-
gauge-like symmetries cannot be spontaneously broken.
As we alluded to earlier, one consequence of the non-local
symmetries such as the d = 1 symmetries of Eq. (13) is
the existence of TQO.33:38

(B) Bounds on autocorrelation times. As a conse-
quence of the d = 1 symmetries of Eq. (13), and the
aforementioned generalization of Elitzur’s theorem as it
pertains to temporal correlators,2® the Majorana Fermi
system will exhibit finite autocorrelation times regard-
less of the system size. Of course, for various realiza-
tions of dynamics and geometry of the disorder, differ-
ent explicit forms of the autocorrelation times 7 can be
found. For instance, by use of bond-algebras, Kitaev’s
toric code model is identical to that of a classical square
plaquette model as in Ref. [40]. Similarly, Kitaev’s toric
code model?' can be mapped onto two uncoupled one-
dimensional Ising chains.?”2833 Different realizations of
the dynamics can lead to different explicit forms of 7
in both cases, however, finite autocorrelation times are
found in all cases (as they must be). Similarly, more
general than the exact bond algebraic mapping and di-
mensional reductions that we find here, by virtue of d = 1
symmetries of Eq. (13), autocorrelation functions involv-
ing Majorana fermions on a line £ must be bounded by
corresponding ones in a d = 1 dimensional system.2

V. ARBITRARY-DIMENSIONAL MAJORANA
ARCHITECTURES

In this Section, we provide two spin duals to the inter-
acting Majorana system described by the effective Hamil-
tonian Hy of Eq. (5) on arbitrary lattices/networks.
This applies to finite or infinite systems and for arbi-
trary boundary conditions. These two dual systems are
(1) QIG theories for D = 2 systems, and more general
spin gauge theories in higher-dimensions, and (2) a fam-
ily of transverse-field Ising models with annealed disor-
der in the exchange couplings (each model representing
a single gauge sector of Hy). The dualities will be estab-
lished in the framework of the theory of bond algebras
of interactions,3?3! as it applies to the study of general
dualities between many-body Hamiltonians. The gen-
eral bond algebraic method relies on a comparison of the
algebras, in the respective two dual model, that are gen-
erated by the corresponding local interaction terms (or
bonds) in these theories.? 32 For the problem at hand,
the Hamiltonian H)y, is built as the sum of two sets of
Hermitian bonds

iciic2, Pr, (15)

where I and r are links and sites of the network sup-
porting Hy (P, was defined in Eq. (6)). In this paper,
we will only consider the bond algebra Ay generated by



these bonds. We can then obtain dual representations
of Hy by looking for alternative local representations of
Anm. But first we have to characterize Ay in terms of
relations.

The problem of characterizing a bond algebra of inter-
actions is simplified by several features brought about by
physical considerations of locality. The first consequence
of locality is that interactions are sparse, meaning that
each bond in any local Hamiltonian commutes with most
other bonds and is involved in only a small number of
relations (or constraints) that link individual bonds to
one another. Hence the number of non-trivial relations
per bond is small. The second consequence is that re-
lations in a bond algebra can be classified into intensive
and extensive, and most relations are intensive. We call
a relation intensive if the number of bonds it involves is
independent of the size of the system, and extensive if the
numbers of bonds it involves scales with the size of the
system. Since extensive relations could potentially lead
to unphysical non-local behavior, they are typically few
in number and may reflect the topology of the system
regulated by the boundary conditions, as we will illus-
trate repeatedly in this paper. As there are (2z,) Ma-
jorana modes (or, equivalently, z, fermionic modes) per
grain, the Majorana theory of Eq. (5) and the algebraic
relations listed above are defined on a Hilbert space of
dimension dim Hy = 2% Vr

Next, we characterize the bond algebra Ay as the first
step toward the construction of its spin duals. The in-
tensive relations are:

1. for any 7 and [
(ican)® =1 = (P32, (16)
2. for r,r’ €1,
{Pryician}t = 0= {Pw,iciici}, (17)
3. forrel;, i=1,2,---,qr,

{PT,iClilcliQ} =0. (18)

Thus in the bulk, or everywhere for periodic boundary
conditions, each island anticommutes with four ¢, (the
coordination of r) links, and each link anticommutes with
two islands. The presence or absence of extensive re-
lations depends on the boundary conditions. For peri-
odic (toroidal) or other closed boundary conditions (e.g.,
spherical), we have one extensive relation

HPT - aH(icllle)v o = :l:la (19)
r l

since each Majorana Fermion operator appears exactly
once both on the left and right-hand side of this equa-
tion, but not necessarily in the same order. The constant
a adjusts for the potentially different orderings, and the
overall powers of i on each side of the equation. Notice

that [[,. Pr = Q is the global Zs symmetry operator. In
contrast, for open or semi-open (e.g., cylindrical) bound-
ary conditions, the islands on the free boundary have
Majorana fermions that are not matched by links (that
is, that do not interact with Majoranas on other islands).
Hence the product

(HP,) (H(icuclg)> =B (20)
r l

reduces to the product B of these Majoranas on the free
boundary. The operator B may or may not commute

with the Hamiltonian, depending on the details of the
architecture at the boundary, see Fig. 4, but either way
Eq. (20) does not represent an extensive relation in the
bond algebra (rather it just states how to write a partic-
ular operator as a product of bonds). If [Hu,B] =0, B
represents a Zs boundary symmetry independent of the
local symmetries.

FIG. 4. Two architectures with open boundary conditions.
In either case, the operator B of Eq. (20) is the product of
all the uncoupled Majoranas on the boundary indicated by
open circles, but [Huw, B] = 0 only for the system shown in
the panel on the left.

A. Duality to quantum Ising gauge theories

In this Section we describe a duality relating the
Hamiltonian Hy to a system of S = 1/2 spins. The
spin degrees of freedom are placed on the (center of the)
links of a network identical to the one associated to Hy,
and are described by Pauli matrices o}, 07, 0f. The goal
is to introduce interactions among these spins that sat-
isfy the same algebraic relations as the bonds of Hy. Let
us introduce the Hermitian spin bond

Pr= ][ o (21)

{l|rel}



For example, for the special case of the square lattice
discussed in the Introduction,

Pr = oy, 07,01,01,, 1€l 13,14 (22)
The set of spin bonds
of, P (23)

satisfy the following intensive relations

1. for any r and 1

(o) =1=(Pr)? (24)
2. forr, v’ €1,
{Pr.oi} = 0= {Pr.of}, (25)
3. forrel;, i=1,2,-- ¢,
{Pr,of} =0, (26)

everywhere for closed boundary conditions, and every-
where in the bulk for open or semi-open boundary con-
ditions. These relations are identical to the intensive re-
lations for the bonds of Hy. In the Ising gauge theory,
the bond algebraic relations listed above are defined on
a space of size 2*~Vr. (That this is so can be easily seen
by noting that there are N; = z,.N,. links each endowed
with a spin S = 1/2 degree of freedom of.) As it so hap-
pens, this Hilbert space dimension is identical to that of
the Majorana system of Hy. Putting all of the pieces
together, we see that the spin Hamiltonian

Hoe=—Y_ Jiof = > heP, (27)
l r

is unitarily equivalent to Hy, provided the extensive rela-
tions are matched as well. For open or semi-open bound-
ary conditions, the same follows provided that the inten-
sive relations on the boundary also properly match. In
the following, we focus on periodic boundary conditions
(of theoretical interest in connection to TQO), and leave
the discussion of open boundary conditions (of interest
for potential experimental realizations of these systems)
to the Appendix A. We remark that more standard Ma-
jorana fermion representations of spins, similar to those
discussed in Appendix B, do not lead to the simple new
dualities that we now derive.
As just explained, the mapping of bonds

iz = oy, Pr Pr (28)
preserves the intensive algebraic relations. In particular
it maps the local symmetries of Eq. (14) to local sym-
metries of Hqig,

Gp = H(icllclg) — H O'f = Gsﬁp. (29)

lepP leP

To assess the effect it has on the extensive relation of Eq.
(19) (and the global symmetry), notice that (for periodic
boundary conditions)

H(icllclg) — Halm = QS (30)
l

l

with [Qgs, Hqic] a global symmetry of Hqg, and
[17-~I]7P-=1 (31)
r r

It follows that, as it stands, the mapping of bonds of
Eq. (28) is a correspondence, but not an isomorphism of
bond algebras. The simplest way to convert it into an
isomorphism is to modify one and only one of the bonds
P, of the spin model at some arbitrary site rq, so that

ﬁro = aQS H ULZ (32)

{l|roel}

(o was defined in Eq. (19)) while for any other site
T # 70, P, remains unchanged. The introduction of
this modified bond does not change the intensive rela-
tions, since Qg commutes with every bond (original or
modified). Moreover,

17— P I[P = 005 (33)

r#r)

and the extensive relation of Eq. (19) is now, with the
modified definition of Py, preserved, since (o = 1)

[1of =P I] P (34)
l

r#£r)

Hence there is a unitary transformation Uy such that
UsHul] = Hoc, (35)

with Hgqic containing the single modified bond ’ﬁro.

In the duality between the systems of Egs. (5, 27),
the dimensions of the their Hilbert spaces are identical.
Since we count two Majorana modes (or, equivalently,
one Fermionic mode) per link, the Hamiltonian Hy is
defined on a Hilbert space of dimension dim Hy = 2™,
with NV} denoting the total number of links in the net-
work. On the other hand, the spin system has one spin
S = 1/2 degree of freedom per link, hence the dimension
of the Hilbert space on which Hgqjg is defined is also 2™V,
Notice that the need to introduce the modified bond 75,.0
in the dual spin theory is irrelevant from the point of ex-
ploiting the duality to study the ground-state properties
of Hy (or wiceversa, to study the ground-state proper-
ties of Hqig), since for finite systems the ground state
|2) must satisfy Qg|Q) = |Q2). The ease with which we
established the duality between Majorana systems and
QIG systems for general lattices and networks illustrates
how efficient the bond-algebraic construct is.



The duality just described is extremely general, valid
in particular for any number of space dimensions D. In
the following we describe explicitly one particularly im-
portant special instance, that of D = 2. On a square

o z z z z
HQIG - _hT‘UaQSGlo,l010,2010,3010,4 -

that we recognize as the standard, D = 2, Zs QIG
theory,"* up to the modified bond at ry (Qs = [], 07
and « is determined according to Eq. (19)), see Fig. 5.

FIG. 5. Duality to a D = 2 Zs QIG theory, where spins are
represented as crosses. Hamiltonian Hy of Eq. (36) repre-
sents a particular fermionization of the Hqc gauge theory.

Hence, we may regard the Hamiltonian of Eq. (36)
as an exact fermionization of the Zs QIG theory with
periodic boundary conditions (and one modified bond).
It is interesting to compare this fermionization with a
slightly different one®® that exploits the Jordan-Wigner
transformation in the limit of infinite size. This approach
yields the Majorana Hamiltonian?® (in our notation)

Hpss = — Z Ji(tenan) — Z hrci2ci1¢152¢1,1,  (38)
l (g

where 11, 12,15,1lg are shown in Fig. 1. The two-body in-
teraction cp,aC151CL42C1,1 45 different than the two-body in-
teraction in Hy, since it involves three different islands,
see Fig. 6. Hence, disregarding boundary conditions, we

lattice, the Hamiltonian Hy simplifies to

Hy = — Z Ji(icncrz) — Z hrci1ci1c52c1,2,  (36)
l r

where lq,1s,13,14 are shown in Fig. 1. This generalizes
the Hamiltonian considered in Ref. [20] only in that inho-
mogeneous couplings are allowed. The dual spin (finite-
size) system is (’PO € lo)l, l0)2l073l0)4)

Z hyof o7, 07,07, — Z Jiof (37)

r#7) l

see that the Zs QIG theory admits rather different but
equivalent fermionizations. As expected, the bonds in
Hess satisfy intensive relations identical to those already
discussed for Hy and Hqig.

FIG. 6. Jordan-Wigner fermionization of the Z, Ising gauge
theory realizes a theory of Majorana fermions Hrss, with two-
body interactions between Majoranas (shown as trapezoids)
on three different islands. Notice that, unlike the intra-island
two-body interactions of Hm, two neighboring two-body in-
teractions Hrss share a Majorana operator.

Thus far, we focused on periodic boundary conditions.
We now remark on other boundary conditions. When
antiperiodic boundary conditions are imposed in a net-
work with an an outer perimeter that includes twice an
odd number of links, the right-hand side of Eq. (31) is
replaced by —1. The union of both cases (periodic and
antiperiodic) for a system having a twice odd perimeter
spans all possible values of the product [, 737«- Thus, for
these systems in the case of periodic boundary conditions,
the spectrum of the Majorana system can be mapped to
the union of levels found for the QIG systems for both



periodic or antiperiodic boundary conditions. In terms
of the corresponding partition functions, we have that

ZM, periodic = ZQIG, periodic + ZQIG, antiperiodic- (39)

B. Duality to annealed transverse-field Ising
models

We next derive, in a similar spirit, a duality between
the general architecture Majorana system Hy and an-
nealed transverse-field Ising models. The number of an-
nealed disorder variables in these systems (along with the
number of sites N,.) determines the size of the Hilbert
space on which the Ising models are defined. With an
eye towards things to come, we note (as we will re-iterate
later on) that the duality that we will derive in this Sec-
tion will furnish an example in which the Hilbert space
dimensions of two dual systems need not be identical to
one another. Generally, dualities are unitary transforma-
tions between two theories up to trivial gauge redundan-
cies that do not preserve the Hilbert space dimension.?!
That is, dualities are isometries.

To define the annealed transverse field Ising systems,
we place an S = 1/2 spin on each site r, 0¥, 0¥, 0z, of
the network associated to Hy, and a classical annealed
disorder variable 7; = +1 on each link I. Then we can
introduce the set of Hermitian spin bonds

oy, moioZ, r.r' el (40)
If we specialize to periodic boundary conditions, these
bonds satisfy a set of intensive relations identical to the
ones discussed in the two previous Sections, together with
one new relation absent before and listed last below:

1. for any 7 and [

(07)? =1 = (mojo})?, (41)

2. forr, v’ €l
{o7.mogor} =0= {07, mozo}, (42)
3. forrel;, i=1,2,--,qp,

r#r; el (43)

{or, mioror} =0,
4. for any elementary loop P in the network,

[[noior) =1 m. (44)

lepP lep

The constraint of Eq. (44) holds true for any closed loop.
For this reason, and others related to TQO, it is impor-
tant to clarify the meaning of elementary loop.

Loops in the network that share some links can be
joined along those links to obtain another loop or sum of
disjoint loops. This means that the set of all loops has a

10

minimal set of generators from which we can obtain any
loop or systems of loops by the joining operation just
described. We call the loops in an arbitrary but fixed
minimal generating set elementary loops. In this way, we
obtain a minimal description of the constraints embod-
ied in Eq. (44). It is not obvious a priori whether one
should classify these constraints (that is, relations) as in-
tensive or extensive. This depends on the topology of the
system. If the system is simply connected, every loop is
contractible to some trivial minimal (that is, of minimal
length) loop, and hence we can choose minimal loops as
elementary loops. These loops afford an intensive char-
acterization of the constraints embodied in Eq. (44). If
on the other hand the system is not simply connected,
as for periodic boundary conditions, the generating set
of elementary loops will include non-contractible loops,
and the length of some of these non-contractible loops
may scale with the size of the system. Consider, for ex-
ample, the spin bonds of Eq. (40) on a planar network
on the torus and on a punctured infinite plane. Both
networks fail to be simply connected, but only the torus
forces some of the constraint of Eq. (44) to be extensive,
because its two non-contractible loops must scale with
the size of the system.

For periodic boundary conditions, there is one exten-
sive relation satisfied by the bonds of Eq. (40),

[T(mozoz) =nt, (45)
l

with

n=[Im n=+1, (46)
l

that may or may not be independent of the relations of
Eq. (44), depending on the details of the network. In
the following, we will treat it as an independent relation,
since it does not affect our results if it turns out to be
dependent.
It follows that the mapping of bond algebras

icllclg — mdf.oi/, 'Pr — Ui, (47)
preserves every local anticommutation relation. Hence
the Hamiltonian theory

Ha{m} ==Y Jimoioi) = heof,  (48)
l T

obtained from applying this mapping to Hy will be
shown to be dual to Hy (see Fig. 7). The Hilbert space
on which the theory of Eq. (48) is defined is of size
dim Ha = 2V N0 where N, is the number of supercon-
ducting grains and NV, the total number of n; fields.
The proposed duality raises an immediate question:
What are the features of Hy that determine or at least
constrain the classical fields ;7 As we will see, the an-
swer lies in the local and gauge-like symmetries that Hy
possesses and Hp lacks. To understand this better, we



FIG. 7. Duality to an annealed transverse-field Ising model,
in the particular D = 2 case. Spins S = 1/2 are located at
the vertices r of the square lattice and classical Zo fields
at the links ! (indicated by a dash).

need to study the effect this mapping has on relations
beyond local anticommutation. Let us consider first its
effect on the extensive relation of Eq. (19). We have that

Q= HP,HHU = Qs, (49)

aH (icnaz) — aH (moioi) = anl. (50)

As for periodic boundary conditions the left-hand sides of
Egs. (49) and (50) represent the same operator, but the
right-hand sides are different operators, the mapping as
it stands does not preserve the relation of Eq. (19). We
know of a solution to this shortcoming from the previous
Section. If we modify one and only one bond placed on
some fixed but arbitrary link Iy to read

N, 0,.0.,Qs, (51)
then

« H(icu C2) —
l

o®(pm,os,05.)Qs [[ moior) =Qs,  (52)
141,

as required by Eq. (19).

The presence of the modified bond at Iy introduces a
new feature into the discussion leading to Eq. (44). Now
we have that, for any elementary loop P,

]]-Hlepnla if logpa
[[moios) = (53)

lep anQs[Lepm if lo € P.

If we consider the role of the elementary loops P in the
Majorana system Hy, and consider the mapping of Eq.
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(40), we see that the local symmetries (see Section IV)

Gp = [[lience) (54)

leP

of Hy are mapped to one of the two possibilities listed in
Eq. (53), showing that as it stands, the mapping of Eq.
(40) is still not an isomorphism of bond algebras. The
problem is that a large number of distinct symmetries are
being mapped either to a trivial symmetry (a multiple of
the identity operator), or a multiple of the global Zs
symmetry Qg of the annealed Ising model. We can fix
this problem by decomposing the Hamiltonians Hy and
Hp into their symmetry sectors, where the obstruction
to the duality mapping disappears. Thus we are able to
establish emergent dualities,>*3! that is, dualities that
emerge between sectors of the two theories.

The sector decomposition is simple for Hpj, that has
only one symmetry QQg, with eigenvalues qg = 1. Then
we can decompose the Hilbert space Ha| as

Hu= P Hos, (55)

qgs==%1
so that if Ay is the orthogonal projector onto 4, , then
Qshgs = £y (56)

For Hy, since its symmetries form a commuting set,
one can simultaneously diagonalize them and break the
Hilbert space Hy into sectors labelled by the symmetries’
simultaneous eigenvalues, ¢ = +1 for the global symme-
try and I'p = +£1 for the loop symmetries:

P Moy (57)

a,{T'pr}

The Hamiltonian Hy is block-diagonal relative to this
decomposition, and, if A, ¢r,) is the orthogonal projector
onto the subspace H, (r,}, we have that

QA (rpy = a0 (rp) (58)
GphAgrpy = TPAgrpys (59)

for any elementary loop P.
The problem now is to decide which choice of sectors
will make the projected Hamiltonians HmAg 1,1 and

HpiA gy dual to each other. From Egs. (49), and (53),
we obtain the relations

q=gs, (60)

H[ep m, if lO g P7
Tp = (61)
angs [Tiepm if lo€ P,

which allow us to connect the two theories
UsHuA g (0 Ul = Ha{m}Ags, (62)

where the unitary transformation Ugq implements an
emergent duality that holds only on the indicated sectors
of the two theories.



The dual spin representation of Hy projected onto the
gauge-invariant sector ¢ = 1,{'p = 1} is given by the
inhomogeneous Ising model (17, = 1 on every link)

HA|{1}:—ZJ10':,Z,O'5/ —Zhy-of, (63)
l r

and is known as a gauge-reducing duality.®' For the spe-
cial case of the square lattice and homogeneous couplings,
one would expect that this sector contains the ground
state of Hy. This latter result was derived, using meth-
ods very different to ours, in Ref. [20].

C. Physical Consequences

We have by now seen, on general networks in an arbi-
trary number of dimensions, that ordinary QIG theories
(and their generalizations) and annealed transverse-field
Ising models arise from the very same Majorana system
when it is dualized in different ways. Therefore, by tran-
sitivity,

dual
Hqic € Hpy. (64)

This correspondence leads to several consequences. In its
simplest incarnation, that for D = 2 Majorana networks,
this duality connects, via an imaginary-time transfer
matrix (or 7-continuum limit) approach,34? disordered
D = 3 classical Ising models to D = 3 classical Ising
gauge theories. In its truly most elementary rendition
among these planar networks, that of the square lattice,
the duality of Eq. (64) implies that the effect of the bi-
modal annealed disordering fields 7, = £1 is immaterial
in determining the universality class of the system. This
is so as the standard random transverse-field Ising model
on the square lattice

HRTFIM = — ZJlO'iO'f,/ — Zhﬂ)’f (65)
l r

(i.e., Eq. (48) in the absence of annealed bimodal dis-
order) similarly maps, via a transfer matrix approach,
onto a corresponding classical Ising model on a cubic lat-
tice. The uniform transverse-field Ising model (that with
uniform J; and h,) maps onto the uniform D = 3 Ising
model. Thus, in this latter case, the extremely disor-
dered system with annealed random exchange constants
exhibits the standard D = 3 Ising type behavior of uni-
form systems.

By the dualities of Sections VA and VB, general
multi-particle, or multi-spin, spatio-temporal correlation
functions in different systems can be related to one an-
other. In particular, by Eq. (28) relating the Majorana
system with the QIG theory, the two correlators

(T P-®)ena) @) = ([ Pr(t)oi () (66)
1 7,0

are equal. Thus, if certain correlators (e.g., standard
static two-point correlation functions, autocorrelation
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functions, or four-point correlators such as those preva-
lent in the study of glassy systems)*? appear in the spin
systems, then dual correlators appear in the interacting
Majorana system with identical behavior. An exact du-
ality preserves the equations of motion, and so the dy-
namics of dual operators are the same.?! Similarly, by the
duality of Eq. (35), the phase diagrams describing the
Majorana networks are identical to those of QIG systems.
In instances in which the QIG theories have been investi-
gated, the phase boundaries in the Majorana system may
thus be mapped out without further ado.

Lattice gauge theories with homogeneous cou-
plings, i.e., uniform lattices, have been investigated
extensively.*14* As we alluded to above, it is well ap-
preciated that the QIG theory on a square lattice can
be related, via a Feynman mapping, to an Ising gauge
theory on the cubic lattice with the classical action

S|G = —KZ,PP' (67)

The latter has a transition®® at K = K, = 0.761423, a
value dual** to the critical coupling (or inverse critical
temperature when the exchange constant is set to unity)
of the D = 3 classical Ising model with nearest neighbor
coupling, K, = 0.2216595. Similar transitions between
a confined (small K) to a deconfined (large K) phases
appear in general uniform coupling lattice gauge theories
with other geometries. Phase transitions mark singulari-
ties of the free energy, that are always identical in any two
dual models.?! In our case of interest here, by the corre-
spondence of Eq. (35), identical transition points must
thus appear in the dual Majorana theories. In particular,
the transition points in the Majorana system are imme-
diately determined by their dual spin counterpart. More
precisely, the Majorana uniform network depicted in Fig.
1 displays a quantum critical point of the D = 3 Ising uni-
versality class at (J/h), = —2K./Intanh K, = 0.29112.

In theories with sufficient disorder (e.g., quenched ex-
change couplings, fields, or spatially varying coordina-
tion number), rich behavior such as that exemplified by
spin glass transitions or Griffiths singularities® may ap-
pear. According to Eq. (35), in architectures with non-
equidistant superconducting grains of random sizes, the
effective couplings {J;} and {h,} are not uniform and
may lead to spin glass, Griffiths, or other behavior when-
ever the corresponding dual gauge theory exhibits these
as well. We note that the random transverse field Ising
model of Eq. (65) is well known to exhibit a (quantum)
spin glass behavior.#™#® If and when it occurs, glassy (or
spin-glass) dynamics in the annealed or gauge spin sys-
tems will, by our mapping, imply corresponding glassy
(or spin-glass) dynamics in the Majorana system as well
as interacting electronic systems (leading to electron glass
behavior). The disordered quantum Ising model was em-
ployed in the study of the insulator to superconducting
phase transition in granular superconductors.*® Numer-
ous electronic systems are indeed non-uniform®® and/or
disordered.®?



VI. SPIN DUALS TO SQUARE LATTICE
MAJORANA SYSTEMS

Thus far, we provided a systematic analysis of symme-
tries and dualities for Majorana systems supported on
networks in any number of spatial dimensions. It is in-
structive to consider particularly simple architectures as
these highlight salient features and, on their own merit,
provide new connections among well studied theories. In
what follows, we will focus on the square lattice super-
conducting grain array of Fig. 1, and some honeycomb
and checkerboard lattice spin dual models.

A. The XXZ Honeycomb Compass Model

The Majorana system Hy of Eq. (5) in a square lat-
tice is dual to a very interesting spin Hamiltonian on the
honeycomb lattice, see Fig. 8. The dual spin model may
be viewed as an intermediate between the classical Ising
model on the honeycomb lattice (involving products of a
single spin component (0%) between nearest neighbors)
and Kitaev’s honeycomb model,'® for which the bonds
along the three different directions in the lattice are re-
spectively pairwise products of the three different spin
components. This particular spin Hamiltonian, which
we dub XXZ honeycomb compass model, is described by

Hxxzn = — Z Juoyor e — Z hr 0707, ¢, (68)

non-vertical links vertical links

where each S = 1/2 is located on the vertices r of a
honeycomb lattice, and oy* are the corresponding Pauli
matrices. The qualifier “non-vertical links” alludes to
the two diagonally oriented directions of the honeycomb
lattice while “vertical links” are, as their name suggests,
the links parallel to the vertical direction in Fig. 8. The
unit vector é; points along the diagonal link I and may be
oriented along any of the two diagonal directions. The
XXZ honeycomb compass model exhibits local symme-
tries associated with every lattice site r,

G =olor .. (69)
Similarly, the XXZ system exhibits d = 1 symmetries of
the form

Q0% =] oz (70)

rel

associated with every non-vertical contour ¢ (i.e., that
composed of the diagonal non-vertical links) that circum-
scribes one of the toric cycles.

We provide, in the left-hand panel of Fig. 8, a sim-
ple schematic of the topology of the honeycomb lattice -
that of a “brick-wall lattice”.2?52 The brick-wall lattice
also captures the connections in the honeycomb lattice.
It is formed by the union of the highlighted vertical (red)
and horizontal (green) links in the left-hand side Fig. 8.
The brick-wall lattice can be obtained by “squashing”
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FIG. 8  The brick-wall planar orbital compass model®!
(shown on the left) can be seen as a simpler relative of the
XXZ honeycomb compass model, by placing it on a honey-

comb lattice as shown on the right.

the honeycomb lattice to flatten its diagonal links while
leaving its topology unchanged in the process. In the
brick-wall lattice, é; simply becomes a unit vector along
the horizontal direction. As can be seen by examining
either of the panels of Fig. 8, the centers of the vertical
links of the honeycomb (or brick-wall) lattice form, up to
innocuous dilation factors, a square lattice. As is further
evident on inspecting Fig. 8, between any pair of centers
of neighboring vertical (red) links, there lies a center of
a non-diagonal (green) link. This topological connection
underlies the duality between the Majorana model on
the square lattice and the XXZ honeycomb compass spin
model. We explicitly classify the bonds in the Hamilto-
nian of Eq. (68) related to the two types of geometric
objects:

1. Bonds of type (i) are associated with the products
{0507, ., } on diagonal links of the lattice. They
each anticommute with two

2. Bonds of type (i), affiliated with products
{0707 s } on the vertical links. Each one of these
bonds anticommute with four bonds of type (i).

We merely note that replacing the bonds of the Ma-
jorana model on a square lattice, as they appear in the
bond algebraic relations (1-3) of Section V, by the ones
above leads to three equivalent relations that completely
specify the bond algebra of the system of Eq. (68). As we
have earlier seen also the QIG theory of Eq. (27) and the
annealed transverse-field Ising model of Eq. (48) have
bonds that share the same three basic bond algebraic
relations. Thus we conclude that the XXZ honeycomb
compass model is exactly dual to the QIG theory of Eq.
(27) on the square lattice. In its uniform rendition (with
all couplings J; and fields h, being spatially uniform)
the XXZ honeycomb compass system lies in the 3D Ising
undversality class. Similarly, many other properties of the
XXZ honeycomb compass model can be inferred from the
heavily investigated QIG theory.

The duality between the XXZ honeycomb compass
model and its Majorana system equal on the square lat-
tice affords an example of a duality in which the Hilbert



space size is preserved as we now elaborate. The XXZ
theory of Eq. (68) is defined on a Hilbert space of
size dim Hxxzn = 2™ where Ny, is the number of sites
on the honeycomb lattice while that of the Majorana
model of Eq. (5) was on a Hilbert space of dimension
dim Hm = 4V, Now, for a given number N, of vertical
links on the honeycomb lattice, we have the same number
of bonds of type (i) and (i) as we had in the Majorana
system while having Ny = 2N,. lattice sites.

B. Checkerboard model of (p + ip) superconducting
grains

In Ref. [53], Xu and Moore, motivated by an earlier
work of Moore and Lee,® proposed the following spin
Hamiltonian

Hywm = — Y (KMo + J5"007) (71)

’f‘

to describe the time-reversal symmetry breaking charac-
teristics in a matrix of unconventional p-wave granular
superconductors on a square lattice. In writing Eq. (71),
we employ a shorthand

zZ — z __Z z ¥4
Uo, = Or0rte;OrterterIrten: (72)

to denote the square lattice plaquette product, where ey
and ey denote unit vectors along the principal lattice di-
rections. For the benefit of the astute reader, we remark
that this O notation for the product should not be con-
fused with our general notation for the elementary pla-
quette loops P that we use throughout this work. It is
important to emphasize that the spins ¢# in Egs. (71),
(72) are situated at the vertices r of the square lattice
(not on the links (or link centers) as in gauge theories).
The eigenvalues o = +1 describe whether the supercon-
ducting grain located at the vertex of the square lattice
r has a (p+ ip) or a (p — ip) order parameter.

We show next that a D = 2 checkerboard rendition of
the XM model which we denote by CXM (see Fig. 9) is
dual to the Majorana system on the square lattice (which
is, as we showed, dual to the XXZ honeycomb compass
model and all of the other models that we discussed ear-
lier in this work). This system is defined by the following
Hamiltonian

Hexm = —Zhraff - Z
r

x1+xzo—0dd

JAMOoz. (73)

In this system, the plaquette operators OoZ (with r =
x1e1 + xaez) appear in every other plaquette (hence
the name “checkerboard”). These plaquettes are present
only if x1 4+ z2 is an odd integer as emphasized in Eq.
(73). The model has the following local symmetries

Gp =[] oz, (74)

recP
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FIG. 9. The checkerboard Xu-Moore (CXM) model of Eq.
(73). The symmetry plaquettes P constitute half of all the
plaquettes of the lattice, while the interaction plaquettes o7
represent the other half.

where P are those plaquettes appearing whenever x1 + 22
is an even integer.

The proof of our assertion above concerning the
duality of this system to the Majorana system of Eq. (5)
when implemented on the square lattice is straightfor-
ward and will mirror, once again, all of our earlier steps.
We may view the Hamiltonian of Eq. (73) as comprised
of two basic types of bonds:

1. Bonds of type (i) are on-site operators {0y} asso-
ciated with local transverse fields.

2. Bonds of type (i) are the plaquette product op-
erators {{JoZ} of Eq. (72), for plaquettes whose
bottom left-hand corner r is an “odd” site.

The basic network structure underlying these bonds is
simple and, apart from an interchange of names, identi-
cal to that of the Majorana system on the square lattice
of Fig. 1 as well as that of the XXZ honeycomb com-
pass model of Fig. 8. To see this, we note that in the
checkerboard of Fig. 9, the four-fold coordinated inter-
action plaquettes generate, on their own, a square lattice
grid. Between any two neighboring interaction plaque-
ttes on this square lattice array, there is a lattice site
r (see Fig. 10). As in our earlier proof of the duality,
we simply remark that replacing the bonds of the Ma-
jorana model on a square lattice, as they appear in the
bond algebraic relations (1-3) of Section V, by the ones
above leads to three equivalent relations that completely
specify the bond algebra of the CXM system. The Ma-
jorana and CXM models are thus dual to one another
(Hm  Hexwv) when their couplings are related via the



correspondence

Jp & hM
By < JEM. (75)

Thus, the CXM model joins the fellowship of all other
dual theories (with the same network connectivity) that
we discussed in this work (i.e., the Majorana, QIG, and
annealed transverse field Ising models on the square lat-
tice as well as the XXZ compass model on the honeycomb
(or equivalent brick-wall) lattice).

FIG. 10. The D = 2 checkerboard Xu-Moore (CXM) model
is dual to the Majorana system in a square lattice as shown
on the left. On the right, we rotate and redefine the lattice in
a manner which highlights its connection to the QIG theory
of Eq. (27).

On the right-hand half of Fig. 10, we pictorially illus-
trate the connection between the CXM model and the
QIG theory. The individual sites of the checkerboard lat-
tice of Fig. 9 (the sites at which the local transverse fields
are present) map onto links of the gauge theory (Section
V' A). Similarly, the interaction plaquettes of the CXM
model map into plaquettes of the QIG theory. Note, on
the right, that as is geometrically well appreciated, the
four center-points of the individual links on the square
(gauge theory) lattice can either circumscribe interac-
tion plaquettes of the gauge theory or may correspond
to four links that share a common endpoint that do form
a “star” configuration.?! In particular, by its duality to
the QIG theory, the CXM rigorously lies in the 3D Ising
universality class when the couplings JéM and hXM are
spatially uniform. For a given equal number of bonds
in both the Majorana system and the CXM theory, it is
readily seen that the Hilbert space dimensions of both
theories are the same, dim Hy = dim Hexu-

VII. QUANTUM SIMULATIONS WITH
MAJORANA NETWORKS

The Dirac, fermionic, annihilation and creation oper-
ators, {d,} and {d].} respectively, can be expressed as a
linear combination of two Majorana fermion operators.
For example, if we are interested in two-flavor Dirac op-
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erators a possible realization is (see Fig. 1)

1 . 1 .
dpp = E(Clll +icy,2), dIT = E(Chl —ic,2),

1 . 1 .
dpy = ﬁ(clzl +icr,2), di-i = ﬁ(clzl - 7’6142)7 (76)

where r € 11,15,13,14.

A system of interacting Dirac fermions (e.g., electrons)
on a general graph can be mapped onto that of twice the
number of Majorana fermions on the same graph, and
each Dirac fermion is to be replaced by two Majorana
fermions following the substitution of Eq. (76). Thus,
any granular system of the form of Eq. (5) in which each
grain r has ¢, = 2z, neighbors, can be mapped onto a
Dirac fermionic system on the same graph in which on
each grain there are z, Dirac fermions. There are many
possible ways to pair up the Majorana fermions in the
system of Eq. (5) to yield a corresponding system of
Dirac fermions. Equation (76) represents just one possi-
bility. Another possible way to generate (spinless) Dirac
fermions is

1 1
dy = —(cin +1c¢ ,dT:—c —1C12). 77
1 \/5( 11 12), d \/5( 1 12). (77)

All of the spin duals that we derived for Majorana
fermion systems hold, mutatis mutandis, for these sys-
tems of Dirac fermions on arbitrary graphs. In this sense,
our dualities afford an alternative, flexible approach to
fermionization that does not rely on the Jordan-Wigner
transformation.? Most importantly, one can use these
mappings to simulate models of strongly interacting
Dirac fermions, such as Hubbard-like models, on the
experimentally realized Majorana networks. In other
words, one can engineer quantum simulators out of these
Josephson junction arrays.

As a concrete example, we consider the square-lattice
array of Fig. 1 and transform, on this lattice, the Majo-
rana system of Eq. (5) into a two-flavor Hubbard model
with compass-type pairing and hopping. Based on our
analysis thus far we will illustrate that this variant of the
2D Hubbard model is exactly dual to the 2D QIG theory
and thus lies in the 3D Ising universality class. Consider
the mapping of Eq. (76). With ny., = d._dy, (0 =1,1),
a Hubbard type term with on-site repulsion U, becomes

Ur(ney = 1)(npy — 1) = Up(Pr — 1), (78)

akin to the second term of Eq. (5) with A, <+ U, (up to
an irrelevant constant). In what follows we assume that
the network array of Fig. 1 has unit lattice constant.

The Majorana bilinear that couples, for instance, the
bottom most corner of the grain that is directly above
r (i.e., site 7 + e2) to the top-most site of grain r (with
thus a link I that is vertical) becomes

, Ji
—iJiC1y1C1,0 = é(dh e )(dl o, — drtest)- (T9)

Similarly, for horizontal links I, the bilinear in the first
term of Eq. (5) realizes pairing hopping terms involving



only the 1 flavor of the fermions. Thus, the Hamilto-
nian of Eq. (5) becomes a Hubbard type Hamiltonian
with bilinear terms containing hopping and pairing terms
between electrons of the up or down flavor for links I
that are vertical or horizontal, respectively. Such a de-
pendence of the interactions between the internal spin
flavor on the relative orientation of the two interacting
electrons in real-space bears a resemblance to “compass
type” systems.?® Putting all our results together, the
Dirac fermion Hamiltonian on the square lattice with pair
terms of the form of Eq. (79) augmented by the on-site
Hubbard type interaction term of Eq. (78) is dual to all of
the other models that we considered thus far in this work.
In particular, as such this interacting Dirac fermion (or
electronic) system is not of the canonical non-interacting
Fermi liquid form. Rather, this system lies in the 3D
Ising universality class.

The standard Hubbard model with SU(2) spin sym-
metry, which up to chemical potential terms is given by
(a=1,2)

Huup = —t Y (df.ydpse o +h.c.)

r,o,0

+U Y (ngr = 1)y — 1), (80)

can be written as a sum of terms of the form of Eq. (78)
augmenting many Majorana Fermi bilinear coupling sites
on nearest neighbor grains (i.e., 7 and r + e,). As we
illustrate in Fig. 11, we label the four Majorana modes on
each grain r as {c,q}2_;. In terms of these, the Hubbard
Hamiltonian becomes

Hyyp =—1 § i(cracr+eaa+2 + Cr+eaacra+2)

r,a,a=1,2

+UY (P —1). (81)

Thus, the Hubbard Hamiltonian may be simulated via
Majorana wires with multiple Josephson junctions.

Appendix C describes the possible simulation of the
transverse-field Ising chain via Majorana networks.

VIII. CONCLUSIONS

We conclude with a brief synopsis of our findings. This
work focused on the interacting Majorana systems of
Eq. (5) on general lattices and networks. Aside from
fundamental questions in particle physics and viable re-
alizations as emergent excitations in condensed matter
physics, as we have further discussed in this paper, Ma-
jorana systems may hold promise for simulations and
quantum information. By employing the standard rep-
resentation of Dirac fermions as a linear combination of
Majorana fermions, our new results similarly hold for a
general class of interacting Dirac fermion systems on gen-
eral graphs. Towards this end, we heavily invoked two
principal tools:
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FIG. 11. A labeling of the Majorana wire endpoints on the
square lattice which we use here to explicitly represent the
standard electronic Hubbard model in terms of Majorana op-
erators. This is a different labeling than the one in Fig. 1.

e The use of d-dimensional gauge-like symmetries
that mandate dimensional reduction and TQO via
correlation function bounds.?63%37 These symme-
tries lead to bounds on the autocorrelation times.?

e The bond-algebraic theory of dualities?® 32 as it, in
particular, pertains to very general dualities and
fermionization3”3! to obtain multiple exact spin
duals to these systems, in arbitrary dimensions and
boundary conditions, and for finite or infinite sys-
tems.

Using these approaches, we arrived at general dimen-
sional fermionization and demonstrated, for the first
time, that

e The Majorana systems of Eq. (5), standard QIG
theories (Eq. (27)), and transverse-field Ising mod-
els with annealed bimodal disorder (Eq. (48)) are
all dual to one another on general lattices and net-
works. The duality afforded an interesting connec-
tion between heavily disordered annealed Ising sys-
tems and uniform Ising theories. The spin duals
further enable us to suggest and predict various
transitions as well as spin-glass type behavior in
general interacting Majorana fermion (and Dirac
fermion) systems. The representation of Dirac
fermions via Majorana fermions enlarges the scope
of our results. In particular, as Eq. (78) makes ev-
ident, the standard on-site Hubbard term in elec-
tronic systems is exactly of the same form as that



of the intra-grain coupling in the interacting Ma-
jorana systems that we investigated. We similarly
represented the bilinear in the Majorana model of
Eq. (5) as a Dirac fermion form (Eq. (79)). Fol-
lowing our dualities, on the square lattice, the in-
teracting Dirac fermion (or electronic) Hamiltonian
formed by the sum of all terms of the form of Eqs.
(78, 79) is dual to the QIG theory and thus lies
in the 3D Ising universality class, notably different
from standard non-interacting Fermi liquids; this
non-trivial electronic system features Hubbard on-
site repulsion augmented by “compass” type hop-
ping and pairing terms. We further showed how
to quantum-simulate bona fide Hubbard type elec-
tronic Hamiltonians via Majorana wire networks.

e Several new systems were further introduced and
investigated via the use of bond algebras:
(1) the “XXZ honeycomb compass” model of Eq.
(68) (a model intermediate between the classical
Ising model on the honeycomb lattice and Kitaev’s
honeycomb model and,
(2) a checkerboard version of the Xu-Moore model
for superconducting (p + ip) arrays (Eq. (73)).
By the use of dualities, we illustrated that both of
these systems lie in the 3D Ising universality class.

As evident in our work, the “computations” necessary
to attain these new results were, to say the least, very
simple by comparison to other approaches to duality (and
specifically those relating to attempts to arrive at a use-
ful high dimensional fermionization) that generally re-
quire far more involved calculations. In the appendices
we discuss other connections between Majorana and spin
systems including Majorana simulators.
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Appendix A: Dualities in finite systems with open
boundary conditions

We have, so far, studied exact dualities for the Majo-
rana system with the Hamiltonian Hy of Eq. (5) when
subject to periodic boundary conditions. We focused on
periodic boundary conditions these are pertinent to the
theoretical study of TQO. In this appendix, we will con-
sider ezact dualities in the presence of open boundary
conditions. In doing so, we will further study finite, even
quite small, square lattices. It is useful to provide a pre-
cise description of these finite dual spin systems as there
is a definite possibility that this Majorana architecture
may become realizable in the next few years. These dual-
ities also allow us to illustrate the flexibility of the bond
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FIG. 12. The spin dual of two superconducting islands. Each
island maps to a plaquette interaction of the QIG theory, but
such a mapping would not be compatible with matching di-
mensions of Hilbert spaces. Hence one of the lower plaquette
is chopped to include only one spin.

algebraic approach to dualities in handling a variety of
boundary conditions ezactly. As in the rest of this pa-
per, the dualities we obtain are exact unitary equiva-
lences. Thus, these dualities may be tested numerically
by checking if the energy spectra of the two dual systems
are indeed identical.

As illustrated in Section V A, the effective Hamiltonian
Hy on the square lattice and in the bulk is dual to the Zs
lattice gauge theory. In this appendix, our task is to find
the boundary terms that make the duality exact in the
presence of open boundary conditions. Here we only con-
sider dualities that preserve the dimension of the Hilbert
space of the two theories. We thus follow two guiding
principles: 1) in the bulk, the dual spin theory remains
the Zs lattice gauge theory, and 2) on the boundary, we
introduce terms that preserve both the bond algebra and
the dimension of the Hilbert space. Let us start with
the simplest interacting case, that of two islands (grains)
linked by one Josephson coupling, see Fig. 12. In this
case, the Hamiltonian of Eq. (5) reads

HM = —h016203C4 — hIC5CGC768 — JiC3C5. (Al)
This Hamiltonian acts on a Hilbert space of dimension
dim Hy = 28/2 = 2. Thus, the dual theory must contain
four spins and some recognizable gauge interactions. The
result is
Hqic = —hoj — Wojoioio] — Jof. (A2)
where the single spin of in the Hamiltonian stands for
an incomplete plaquette. One can check that the bond
algebra is preserved and the two spectra are identical.
The next interesting case contains four superconduct-
ing islands, see Fig. 13. In this case, dim Hy = 2'0/2 =
28, and so the dual spin Hamiltonian, described diagram-
matically in Fig. 13 contains eight spins, two complete
and two incomplete gauge plaquettes. The situation be-
comes more regular if we further increase the number
of islands. For nine islands (dim Hy = 236/2 = 218), the
Majorana system maps to eighteen spins, three complete,
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FIG. 13. The spin dual for a configuration of four islands.
The incomplete plaquettes represent two-spin interactions in
the Hamiltonian.

Vnyv
<>><<x>x<>
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FIG. 14. The spin dual for nine islands. Incomplete plaque-
ttes represent three-spin interactions in the spin Hamiltonian,
the product of the three spins o closer to an incomplete green
diamond.

and six incomplete plaquettes on the first and last row of
the spin model. One can generalize this picture to L? is-
lands. Then the dual Zs QIG theory will be represented
by a scaled version of the right panel of Fig. 14, with
2L? spins, and 2L incomplete plaquettes (the product of
only three spins ¢*). The latter incomplete plaquettes
are equal split between the top and bottom rows, i.e., L
incomplete plaquettes are placed on the top row and L
are situated on the bottom row.

Notice that there is no natural guiding principle to find
the dual theory by a Jordan- Wigner mapping. The bond-
algebraic method is the natural approach and can be tested
numerically on finite lattices.

Appendix B: Fermionization of S = 1/2 spin models
in arbitrary dimensions

Although not pertinent to our direct models of study
(those of Eq. (5) and their exact duals), we briefly re-
view and discuss, for the sake of completeness and general
perspective, dualities of related quantum spin S = 1/2
systems. General bilinear spin Hamiltonians can be ex-
pressed as a quartic form in Majorana fermion opera-
tors. The general nature of this mapping is well known
and has been applied to other spin systems with several
twists. Simply put, we can write each spin operator as
a quadratic form in Majorana fermions. In the case of
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general two-component spin systems that we discuss now,
the relevant Pauli algebra is given by the following on-site
(r) constraints

(07)? = (07)? =1, {07,075} =0, (B1)
and trivial off-site (r # r’) relations,
(02, 0%] = 0. (B2)

A dual Majorana form may be easily derived as follows.
We consider a dual Majorana system in which at each
lattice site r, there is a grain with three relevant Majo-
rana modes. We label the three relevant Majorana modes
(out of any larger number of modes on each grain) by
{¢r.a}2_1. As can be readily seen by invoking Eq. (4), a
representation that trivially preserves the algebraic rela-
tions of Egs. (B1, B2) is given by

(B3)

x . z .
Oy <7 1Cp1Cp2, O <7 1Cp1Cp3.

Equation (B3) is a variant of a well known mapping appli-
cable to three component spins (as well as, trivially, spins
with any smaller number of components).'?:56 Equation
(B3) may also be viewed as a two-component version of
the mapping employed by Kitaev.'® The Hilbert space
spanned by an S = 1/2 spin system on a lattice/network
having N sites is dim Hepin = 2N By contrast, the
Hilbert space of a general Majorana system with {m,}
Majorana modes (m, > 3) at sites {r} is given by
dimHy = 22-™+/2. Thus, in this duality the Hilbert
space is not preserved: each individual energy level of
the spin system becomes 232+ "r/2)=N fold degenerate.
Similarly, one-component systems (e.g., those involving
only {o¥}) can be mapped onto a granular system with
two Majorana modes per site. If there are two Majorana
modes at each site r then such a mapping will preserve
the Hilbert space size.

For completeness, we now turn to specific spin systems
related to those that we discussed in the main part of our
article. In Section VI B, we illustrated that the Majorana
system of Eq. (5) (and all of its duals that we earlier dis-
cussed in the text) can be mapped onto the Xu-Moore
model®® on the checkerboard lattice. Following our gen-
eral discussion above, it is straightforward to provide a
Majorana dual to the Xu-Moore model on the square lat-
tice, Eq. (71). On the square lattice, the orbital compass
model (OCM) and the Xu-Moore model of Eq. (71) are
dual to one another.??:3157 We will assume the square
lattice to define the xz plane. The anisotropic square
lattice OCM®>®7 is given by the Hamiltonian

Hocm = — Y (Jow0i0s o + Jew 020l e,). (BA)

r

In Eq. (B4), we generalized the usual compass model
Hamiltonian by allowing the couplings {J, .} to vary lo-
cally with the location of the horizontal and vertical links
of the square lattice (given by (7, r + e12) respectively).
By plugging Eq. (B3) into Eq. (B4), we can rewrite this
(as well as other general two-component spin bilinears)
as a quartic form in the Majorana fermions.
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FIG. 15. The transverse-field Ising model can be simulated
by an architecture of nanowires with one wire per supercon-
ducting island.

Appendix C: Quantum simulation of the
transverse-field Ising chain

It may generally be feasible to use our formalism to
simulate quantum spin models in terms of Majorana
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networks. Consider, for example, the simulation of a
transverse-field Ising chain

N—1 N
H =- Z Jiojoi 1 — Zhiaf. (C1)
i=1 i=1
with N spins and open boundary conditions. In this

case, it may be possible to use linear arrays with one
nanowire per island to simulate this model and study, for
instance, the dynamics of its quantum phase transition.
The Hamiltonian H; maps to the Majorana network

N-1 N
Hy = —1 E JicioCig11 — 1 E hiCi1¢i 2, (C2)
im1 i=1

after the following duality mapping
(C3)

zZ Z - X N
070741 — 1C2Ci+1,1 , O; — 1C;1C;,2,

see Fig. 15.
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be placed in any way on a surface of the bulk supercon-

ducting grain. For instance, in the square and triangular

lattices, the regular arrangement of nanowires shown in

Figs. 1, and 3 is only one among many others.
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facts about Majorana fermions. Let us label the Majorana
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operators simply as ¢;,i =1,--- , N. Then,
{ci,c;y =26i5, c =ci (C4)
In general,
(c1---en)® = (~1)NN D2 (C5)

so that the eigenvalues of ¢; - - - ¢y are +1 or +4, depending
on N. If N is even, up to equivalence, there is only one
irreducible representation (irrep) for these relations. It acts
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on a Hilbert space of dimension dim Hm(N even) = 2/V/2,
and can be described in terms of Pauli matrices as

O';:L‘(O',L-Z,I'-'O'f), izly"':%y
Ci_{UfN(Ule o), i=1+% . N (C6)
If N is odd,

[c1--en, ] =0. (c7)

So in view of Eq. (C5), the irreps of Eq. (C4) are charac-
terized by an extra constraint,

c1---ey =al, (irrep for N odd) (C8)

with @ = £1, £i depending on N and the particular irrep.

An explicit irrep is afforded by
C; =

(C9)
o7 (07 - 07),
AP )

z z .
o7 0N_1, 1 =

2

Its dimension is dim Hum(N odd) = 2N —1/2,
A definite order is to be assigned on each grain. As will
become evident, an odd permutation of the ordering of the
Majorana operators in the product of Eq. (6), which leads
by virtue of the Majorana algebra to a sign change, will
not change the bond algebra (to be defined later) and thus
none of our dualities.
C. D. Batista and Z. Nussinov, Phys. Rev. B 72, 045137
(2005).
In these and other general systems, not all d = 1 gauge-like
symmetries are independent. If the Majorana system has
a trivial homology (such as that of an infinite plane or a
sphere), no d = 1 gauge-like symmetries appear: all sym-
metries involving O(L") sites can be expressed in terms of
a product of the local symmetries and thus are not fun-
damental. By contrast, for a D = 2 dimensional system
placed on a torus there are two closed toric cycles ¢ inde-
pendent of the local symmetries. This explains the findings
of Ref. [20] that the Majorana theory has TQO. Some man-
ifestations of this phenomenon were noticed in numerical
simulations of compact QED®®, though not recognized as
a signal of the presence or absence of TQO. In numerous
theories with plaquette and /or link interactions, the Euler-
Lhuillier formula

V-E+F=21-g)

2

(C11)
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relating the genus number g of the manifold on which the
system is embedded to the number of local faces (F'), edges
(E), and vertices (V') affords us with a knowledge of the
number of independent (d = 1) symmetry operators (loops
around independent cycles) that the system may have that
cannot be written in terms of local operators. This and
related aspects have been discussed elsewhere®?.
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