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We show how coherent, spatially resolved spectroscopy can disentangle complex hybrid wave
functions into wave functions of the individual emitters. This way, detailed information on the
coupling of the individual emitters, not available in far-field spectroscopy, can be revealed. Here we
propose a quantum state tomography protocol that relies on the ability to selectively excite each
emitter individually by spatially localized pulses. Simulations of coupled semiconductor GaAs/InAs
quantum dots using light fields available in current nanoplasmonics show, that undesired resonances
can be removed from measured spectra. The method can be applied on a broad range of coupled
emitters to study the internal coupling, including pigments in photosynthesis and artificial light
harvesting.

PACS numbers: 82.53.Mj,78.47.jh,78.67.Hc



2

I. INTRODUCTION

The formation of collective optical resonances from Coulomb-coupled optical emitters is a very general phenomenon,
including examples from chromophores in biological light harvesting complexes1–4, semiconductor quantum dots5,6,
metal nanoparticles and composite systems, such as plasmon lasers7.

For all these structures, dipole-dipole coupling occurs on a nanometer scale and the states of the individual emitters
hybridize to form new collective, so called excitonic states, delocalized over the whole structure. Far field excitation,
governed by the wavelength resolution limit λ/2, can only probe delocalized exciton states of a nanostructure. Related
far-field experiments such as absorption, pump probe and four wave mixing are unable to disentangle the individual
contributions of the coupled emitters from the collective optical response, because the exciting fields are spatially
constant on the scale of the entire structure and cannot discriminate different emitters. In contrast, spatially local
spectroscopy such as near field spectroscopy can, in principle, address the individual emitters.

In this paper, we propose a new class of measurements that combine coherent nonlinear spectroscopy with near
field optics to reconstruct the contributions of single emitters to the delocalized wave function in a spatially extended
nanostructure. As an example, we demonstrate, how a coherent double-quantum-coherence optical technique8 may be
combined with spatially localized fields to reconstruct the exciton wave functions of three dipole coupled self-organized
GaAs/InAs quantum dots. This constitutes a particular quantum state tomography. The presented procedure is
independent of the technique for localizing the fields at individual emitters. Several localization methods are known
and are already applied to a broad range of nanoemitting structures, e.g. using (metalized) near field fiber tips5,9,10,
metal tips11,12, nano antennas13–17 and metal structures combined with pulse shaped fields18,19.

Quantum state tomography is a development aimed at the direct reconstruction of wave functions or more generally
the density matrix, first proposed by Fano20. The importance of quantum state tomography results from the fact, that
the reconstruction and knowledge of the wave function opens the possibility to calculate new observables not related
to optics at all. Examples include magnetic moments and transport properties. So far, wave functions are seldom
directly accessible by experiments21. Recent advances include imaging of single orbitals using soft-x-ray pulses22,23

and the reconstruction of states24,25. Applications so far range from Spin 1/2 particles26, photon states using the
Wigner function27,28, vibrational states29 to Josephson junctions30. In contrast to earlier approaches, the quantum
state tomography developed in this paper combines optical fields, highly localized in time and space with coherent
2D spectroscopy, using a sequence of light pulses with controlled envelopes and phases8,31,32.

II. EXCITONS IN COUPLED NANOSTRUCTURES

As a typical example for coupled nanostructures with delocalized wave functions, we study three coupled self-
organized semiconductor quantum dots6,33,34, cp. Fig. 1a). The quantum dot distance is assumed to be sufficiently
large to have no electronic wave function overlap between the quantum dots. In this case we study interdot coupling
in the form of dipole-dipole (or Förster) coupling known from selforganized GaAs/InAs quantum dots: Parameters
like dot size, dot distances, coupling constants, and energy shifts are well known from theory35 and experiment36.
Each quantum dot is represented as a two level system. This is a valid assumption for quantum dots provided (i)
quantum dots have no spin-orbit splitting and a big enough biexcitonic shift, (ii) are negatively charged or (iii) have
spin-orbit coupling bigger than the inter quantum dot couplings37,38. For selforganized quantum dots with sizes of
20nm and interdot distances around 40nm, the dipole coupling is about several µeV with a Lorentzian zero phonon
line (ZPL) width of γ = 1µeV at low temperatures (e.g. T = 4K)38,39. We neglected the influence of the phonon
side bands, since their amplitude in the spectra is one to two orders smaller than the amplitude of the zero phonon
line resonance at low temperatures38,39.

Three coupled quantum dots exhibit joint states: a ground state g, three single-exciton states e1, e2 and e3 and
three two-exciton states f1, f2 and f3, cf. Fig. 1b). The system has one triexciton state, but these states are of
no relevance in a third order optical experiment, considered here. The ground state of the uncoupled quantum dots
is not changed by the induced dipole-dipole coupling. The delocalized single-exciton states |e〉 resulting from the
dipole-dipole interaction are composed of local, uncoupled quantum dot states |i〉 (quantum dot i in excited state):
|e〉 = ∑

i c
e
i |i〉. |e〉 is an energy eigenstate of the coupled quantum dot system, cei the expansion coefficients. Similarly,

two-exciton states |f〉 are composed of states with two local excitations at quantum dot i and j: |f〉 =
∑

i<j c
f
ij |ij〉.

In general, excited states of N coupled two level system emitters form a ground state g, N delocalized single-exciton
states e and N(N − 1)/2 delocalized two exciton states f . For our three dot case, we choose couplings between two
quantum dots slightly stronger than to the third quantum dot (parameters given in Table I). Here, H0 includes
along the diagonal the transition frequency local emitters modified by single and two exciton shifts, respectively. The
offdiagonal elements describe interactions describing excitation transfer caused by e.g. dipole-dipole interactions.
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a) b)

FIG. 1. a) Three dipole-dipole coupled self-organized InAs quantum dots, b) Exciton level scheme of the three coupled quantum
dots.

First, to characterize the system within far field spectroscopy, we calculate the linear absorption spectrum:

α(ω) ∝
∑

e

|µeg |2
(ω − ωeg)2 + γ2

. (1)

Here, µeg is the dipole moment for ground state to single-exciton transition, ωeg is the transition frequency and γ the
dephasing constant.
The absorption spectrum of the coupled quantum dot structure is plotted in Fig. 2(solid). The single-exciton states

e1, e2, e3 overlap spectrally such that only e1 and e2 are well resolved, e3 contributes only with a spectral shoulder.
Comparing coupled and uncoupled(dashed) spectra, one recognizes, that the oscillator strength is originally evenly
distributed but strongly modified, since the dipole-dipole coupling forms excitons delocalized over the entire structure.

III. INGREDIENTS FOR RECONSTRUCTING DELOCALIZED STATES

Our main goal is to gain information on the built up of the delocalized wavefunctions of the excitonic states, i.e. on
the expansion coefficients cei , for a given single-exciton state |e〉. For this purpose, we use coherent, spatially local
spectroscopy, composed of three ingredients:
(i) local nanoscale excitation provided by metallic nanoantennas and refined pulse shaping techniques19,40 to optically
address individual quantum dots, (Section IIIA)
(ii) phase cycling of the optical response41–43, to disentangle the total nonlinear response into desired quantum paths,
(Section III B)
(iii) a postprocessing procedure to calculate the coefficients cei (Section IV).
In general, (ii) and (iii) can be applied to any quantum system representable by spatial separated coupled emitters,

if any localization technique (i) is available.

A. Localized excitation

A main ingredient of our scheme is the local excitation of individual quantum dots. In our specific example, we
achieve local excitation of the individual quantum dots by a plasmonic antenna structure of triangular symmetry on a
subwavelength scale, cp. Fig. 3a). These metal structures can be realized by e-beam lithography. Solving Maxwell’s

a)

〈i|H0|j〉 1 2 3

1 2.0 1.0 0.2

2 1.0 0.2 0.1

3 0.2 0.1 −2.5

b)

〈ij|H0|kl〉 1, 2 1, 3 2, 3

1, 2 〈1|H0|1〉 + 〈2|H0|2〉+ Vt1 〈3|H0|2〉 〈3|H0|1〉

1, 3 〈2|H0|3〉 〈1|H0|1〉 + 〈3|H0|3〉 + Vt2 〈2|H0|1〉

2, 3 〈1|H0|3〉 〈1|H0|2〉 〈1|H0|1〉+ 〈3|H0|3〉 + Vt3

TABLE I. Hamiltonoperator in matrix form. a) The single exciton block and b) the two exciton states block. All values are
given in µeV . The diagonal elements of the matrices are given as detuning to a mean gap frequency, a) ωgap for the single
excitons, b) 2ωgap for the two excitons, with ωgap = 1.053eV and the two exciton shifts Vt1 = 0.1µeV , Vt2 = −2.5µeV and
Vt3 = −1.5µeV .
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FIG. 2. Absorption spectrum coupled (solid) and uncoupled (dashed) quantum dots. The detection frequency ω is given as
detuning relative to frequency ωgap = 1.053eV (transition frequency of uncoupled quantum dot 3).

equations for this geometry shows that plasmonic effects and an optimization procedure of the applied pulses allows
to selectively excite single quantum dots44,45:
For optimizing the pulse envelope of a single pulse E(t, r) towards a field localization at only one quantum dot, we

use time-harmonic solutions Eν(ω, r), represented by incident plane waves of polarization directions p, s and incoming
direction (indexed as ν)45:

E(t, r) =
1√
2π

∫ ∞

−∞

dω
∑

ν

gν(ω)Eν(ω, r)e
−ıωt. (2)

Pulse shaping is introduced by the weighting function:

gν(ω) =
∑

n

fν(ϑn)
An√
2π

e−(ηn−ω)2σn
2/2+ıωτn+ıβn , (3)

which represents a composition of Gaussian pulses with amplitudes A, center times τ , frequencies η, widths σ, phases
β, and polarization angle ϑ for each pulse n projected to polarization direction ν (fp = cos, f s = sin). gν(ω) has to
be determined by optimization. To increase the number of optimization parameters, we combine the three incoming
pulses from three directions, using 120◦ symmetry of the sample. For this paper, details of the optimization procedure
are of no relevance but can be found in Ref. 40 and 44. Later on, the absolutes value of E(t) in the quantum dots
centers is the input for the calculation of the localized spectra.
In Fig. 3b), the spatial field distribution for the optimized total field around the quantum dot transition frequency

is shown. It can be recognized, that a chosen, single quantum dot is excited stronger than the other quantum dots.
We observe field enhancements between different quantum dot sites of a factor of eight or larger. Note, that the
optimized fields in frequency domain show that polarization and propagation phase effects cause localization and not
a frequency based selection of different quantum dots.
Note, that the presented localization scheme using excitation pads is just an example. For application of the

protocol to other systems5,9–19, other spatial localization schemes might be used.

B. Phase cycling detection of coherent signals

As explained in Sec. III A, a sequence of three spatially optimized pulse envelopes Ei with phases ϕi and laser
frequency ωl is used

8,46:

E(r, t) = E1(r, t− t3 − t2 − t1)e
ıωl(t−t3−t2−t1)+ıϕ1

+E2(r, t− t3 − t2)e
ıωl(t−t3−t2)+ıϕ2

+E3(r, t− t3)e
ıωl(t−t3)+ıϕ3 + c.c.. (4)

Here the envelopes Ei(r, t) are determined by the optimization procedure for localized pulses. The detected signal
(selected quantum pathways of the full dipole density) is measured with heterodyne detection via phase cycling41–43,47

by repeating the experiment several times for different phases ϕ1, ϕ2 and ϕ3, cf. Fig. 4a).
In general the polarisation, created by three pulses applied to the quantum dots, is described by many quantum

pathways in Liouville space8. In the following way, we can extract a subset of the Liouville pathways by extracting a
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a) b)

FIG. 3. a) Schematic geometry: Three selforganized GaAs/InAs quantum dots (diameter 20nm, inter dot distances 40nm) and
three 12 nm thick silver layer structures, arranged with 120◦ rotational symmetry on a semi infinite GaAs-layer. b) Optimized
localized electric field |E| at the maximum peak for a single pulse composed from shaped pulses from three different directions.
Note: the white color is 5 arbitary units or higher. The magnitude (extracted at X) of the optimized electric field |E(r, ωgap)|
for ωgap at dots 2 and 3 is 12% or 7.5% compared to dot 1. The field intensity is scalable while third order perturbation
theory is valid for the double quantum coherence spectrum.
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FIG. 4. a) Pulse sequence for the double quantum coherence experiment. b) The two density matrix pathways Si and Sii (
Eq. 20). See text for more details.

certain phase combination of ϕ1, ϕ2 and ϕ3: The detected dipole density for different phases can be written as41:

P (t, ϕ1, ϕ2, ϕ3) = P(t, ϕ1, ϕ2, ϕ3) + c.c.,

P(t, ϕ1, ϕ2, ϕ3) =
∑

lmn

c123,lmnPlmn(t), (5)

with c123,lmn = eı(lϕ1+mϕ2+nϕ3), l+m+ n = 1 and |l|+ |m|+ |n| = 1 or 3 for resonant excitation and Plmn(t) being
the part of the detected polarisation with phase dependence lϕ1 +mϕ2 + nϕ3. c123,lmn can be viewed as a matrix
with first index (ϕ1, ϕ2, ϕ3) and second index (l,m, n). Carring out the experiment for sufficient phase combinations
ϕ1, ϕ2, ϕ3, so that the matrix c123,lmn is invertable, we can extract the signal with a specific phase combination
ϕ4 = lϕ1 + mϕ2 + nϕ3 (selecting particular pathways) using: Plmn(t) =

∑

1,2,3 c
−1

123,lmnP(t, ϕ1, ϕ2, ϕ3). Details
of this phase cycling procedure can be found in Ref. 41. Typical examples for such signals are the photon-echo
ϕ4 = −ϕ1 + ϕ2 + ϕ3, anti-photon-echo ϕ4 = ϕ1 − ϕ2 + ϕ3 (cf. Ref. 8).

C. Double quantum coherence signal

We focus on the double quantum coherence signal, a third order signal with the contributing phase combinations
ϕ4 = ϕ1 + ϕ2 − ϕ3

8,46. In the case of a system, where the ground state, single exciton and two exciton states form
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FIG. 5. DQS for t3 = 200ps a) absolute value b) imaginary part, Ω1 (Ω2) given as detuning around the single (double)
gap frequency ωgap. c) Imaginary part of localized double quantum coherence spectrum, where the first pulse is localized at
quantum dot 1, 2 and 3 as indicated d) Filtered standard double quantum coherence spectrum (e2 removed).

three bands (cf. Fig. 1 b)), only the two Liouville pathways depicted in Fig. 4b), will contribute to the signal with
ϕ4 = ϕ1 + ϕ2 − ϕ3

8,46.
In the case of the three band model (Fig. 1b)) only two Liouville pathways can contribute. The part of the

polarization attributed to ϕ4, i.e. P
(3)
1,1−1(t) which depends on the delay times can be written using a reponse function8:

P
(3)
1,1−1(t) =

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(3)
1,1−1(t, t− τ3, t− τ3 − τ2, t− τ3 − τ2 − τ1). (6)

Note, that we include the optical fields into the definition of the response which is rather uncommon, but for the use

of localized fields this notation will simplify the discussion. The response function R
(3)
1,1−1 can be divided into the

contributions of two Liouville pathways, extracted from the full response function8:

R(3)(t, t̃3, t̃2, t̃1) =
( ı

h̄

)3

tr(µG(t− t̃3)Hel−L,−(t̃3)G(t̃3 − t̃2)

Hel−L,−(t̃2)G(t̃2 − t̃1)Hel−L,−(t̃1)ρ0). (7)

Here, the electron electric field interaction Liouvillian Hel−L,−(t)ρ = [Hel−L(t), ρ], the Green function G(t) with
G(t)ρ(t) = θ(t)exp(− ı

h̄H0t)ρ(t)exp(
ı
h̄H0t) and the dipole operator µ =

∑

i µgi|g〉〈i|l + h.a.. For our excitonic three
band system, for the far field excitation we insert the light matter Hamiltonian in local basis:

Hel−L =
∑

i

µgi ·E(t)|g〉〈i|+
∑

ij

µgi ·E(t)|j〉〈ij|+H.a.. (8)

The Hamilton operator can also be reformulated in the delocalized basis:

Hel−L =
∑

e

µge ·E(t)|g〉〈e|+
∑

ef

µef · E(t)|e〉〈f |+H.a., (9)

with the delocalized exciton dipole matrix elements µge =
∑

i c
e
iµgi and µef =

∑

i<j c
e
i
∗µgic

f
ij . We insert Eq. (9) into

Eq. (7) and collect for R
(3)
1,1−1 only the terms proportional to exp[ı(−ϕ3 + ϕ2 + ϕ1)] and end up with the response

from two contributing Liouville pathways (Fig. 4b)) assuming no temporal pulse overlap8:

R
(3)
1,1−1(t, t̃3, t̃2, t̃1) = R

(3)
i (t, t̃3, t̃2, t̃1) +R

(3)
ii (t, t̃3, t̃2, t̃1) (10)

R
(3)
i (t, t̃3, t̃2, t̃1) = −

( ı

h̄

)3

eıωl(t̃1+t̃2−t̃3−t1−2t2−t3)
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∑

ee′f

µe′fµge′ · E3∗(t̃3 − t3)µfe ·E2(t̃2 − t3 − t2)µeg · E1(t̃1 − t3 − t2 − t1)

e−ıξfe′ (t−t̃3)−ıξfg(t̃3−t̃2)−ıξeg(t̃2−t̃1) (11)

R
(3)
ii (t, t̃3, t̃2, t̃1) =

( ı

h̄

)3

eıωl(t̃1+t̃2−t̃3−t1−2t2−t3)

∑

ee′f

µge′µe′f · E3∗(t̃3 − t3)µfe ·E2(t̃2 − t3 − t2)µeg · E1(t̃1 − t3 − t2 − t1)

e−ıξe′g(t−t̃3)−ıξfg(t̃3−t̃2)−ıξeg(t̃2−t̃1) (12)

Here, ξnm = ωnm − ıγnm, with ωnm = ωn − ωm including the exciton frequencies ωn and the dephasing/relaxation
rate γnm for a Lorentzian dephasing model.

In both pathways (i,ii), we have a coherence between the single exciton and ground state in between the first and
second pulse and a two exciton to ground state coherence in between the second and third pulse. After the third
pulse the system is either in a single exciton to two-exciton coherence (pathway (i)) or ground state to single-exciton
coherence (pathway (ii)). We consider for further analysis the heterodyne detected signal, where the emitted signal

P
(3)
1,1,−1(t) is mixed with the field of a local oscillator E4:

S
(3)
kIII

(t1, t2, t2) =

∫ ∞

−∞

dtP
(3)
1,1−1(t)E

4∗(t)eıωlt (13)

S
(3)
kIII

(t1, t2, t2) is a complex quantity. A measurement obtains the real part of S
(3)
kIII

(t1, t2, t2)
8. However the use

of a local oscillator in heterodyne detection allows -by twisting its phase - to detect also the imaginary part of the
signal2,8,31,48–50 (phase cycled detection of fluorescence in fourth order32 can give similar information as heterodyne
detected signals in third order), this works both for the signal in temporal and Fourier domain. It is therefore a
prefered method to extract also the phase information of the coefficients cei , most other methods will only allow to
extract the absolute value.

In order to separate the different coherences of the signal by their energies, the signal is Fourier transformed over the
delay times8:

S
(3)
kIII

(Ω1,Ω2, t3) =

∫ ∞

0

dt1

∫ ∞

0

dt2e
ıΩ1t1+ıΩ2t2S

(3)
kIII

(t1, t2, t3). (14)

For the analysis, the double quantum coherence signal S
(3)
kIII

is plotted as a function of the frequencies Ω1, Ω2, cp.

Fig. 4a):

S
(3)
kIII

(Ω1,Ω2, t3) = S
(3)
i (Ω1,Ω2, t3) + S

(3)
ii (Ω1,Ω2, t3) (15)

S
(3)
i (Ω1,Ω2, t3)

=
1

h̄3

∑

ee′f

µe′f ·E4∗(ωfe′)µge′ ·E3∗(ωe′g)

µ∗
ef ·E2(ωfe)µ

∗
ge ·E1(ωeg)

exp(−ıξfe′t3)

(Ω2 − ξfg)(Ω1 − ξeg)
(16)

S
(3)
ii (Ω1,Ω2, t3)

= − 1

h̄3

∑

ee′f

µge′ · E4∗(ωe′g)µe′f · E3∗(ωfe′)

µ∗
ef · E2(ωfe)µ

∗
ge · E1(ωeg)

exp(−ıξe′gt3)

(Ω2 − ξfg)(Ω1 − ξeg)
. (17)

It exhibits resonances for the ground state-single-exciton transitions ωeg along the Ω1 axis and the ground state-
two-exciton transition ωfg

8,46 along the Ω2 axis. Due to the use of the local oscillator, the imaginary and real part of

S
(3)
kIII

(Ω1,Ω2, t3) can be obtained from experimental data8.
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D. Localized double quantum coherence signal

For localized spectroscopy described here, the double quantum coherence signal S
(3)
kIII

8,46 is modified by localizing

the first pulse at a specific quantum dot i, cf. Fig. 3b).
For a localized excitation the Hamiltonian Eq. (8) must be modified:

Hel−L =
∑

i

µgi ·E(ri, t)|g〉〈i|+
∑

ij

µgi ·E(ri, t)|j〉l〈ij|l +H.a. (18)

and yields

Hel−L =
∑

ie

ceiµgi ·E(ri, t)|g〉〈e|+
∑

i<jef

cei
∗µgic

f
ij ·E(ri, t)|e〉〈f |+H.a. (19)

for the delocalized states. We see that no delocalized dipole moments are formed, since the effective response depends
on the spatial distribution of the electric field.
Using far field excitation for pulses E2, E3, the local oscillator E4 for heterodyne detection and a localized excitation

for the first pulse E1 at dot i (E1 → E1
i ), the double quantum coherence signal S

(3)
kIII

(i,Ω1,Ω2, t3) = S
(3)
i (i,Ω1,Ω2, t3)+

S
(3)
ii (i,Ω1,Ω2, t3) now dependents on the chosen quantum dot i and reads:

S
(3)
kIII

(i,Ω1,Ω2, t3) = S
(3)
i (i,Ω1,Ω2, t3) + S

(3)
ii (i,Ω1,Ω2, t3) (20)

S
(3)
i (i,Ω1,Ω2, t3)

=
1

h̄3

∑

ee′fj

µe′f ·E4∗(ωfe′)µge′ ·E3∗(ωe′g)

µ∗
ef ·E2(ωfe)c

e∗
j µ∗

gj · E1
i (rj , ωeg)

exp(−ıξfe′t3)

(Ω2 − ξfg)(Ω1 − ξeg)
, (21)

S
(3)
ii (i,Ω1,Ω2, t3)

= − 1

h̄3

∑

ee′fj

µge′ · E4∗(ωe′g)µe′f · E3∗(ωfe′)

µ∗
ef ·E2(ωfe)c

e∗
j µ∗

gj · E1
i (rj , ωeg)

exp(−ıξe′gt3)

(Ω2 − ξfg)(Ω1 − ξeg)
. (22)

µeg/µfe are single-exciton/two-exciton to ground state/single-exciton dipoles in the delocalized basis and µgi is the
dipole moment for the ground state to excited state transition of quantum dot i. E1

i (rj , ωeg) is the first pulse,
predominantly exciting quantum dot i, only weakly exciting the other quantum dots with i 6= j. We assume ideal
localization by taking E1

i (rj , ωeg) ≈ δijE
1
i (ri, ωeg).

E. Discussion of the double quantum coherence signal

Fig. 5 shows the far-field double quantum coherence signal (E1
i (rj , ω) ≈ E1(ω), cf. Sec. III C) absolute Fig. 4a)

and imaginary value b): The frequency of the single exciton to ground state coherence can be seen on the Ω1 axis
and of the two exciton to ground state coherence on the Ω2 axis. Clearly, for the far field excitation in Fig 5a) and
b) we see resonances connecting to coherence of several states e and f . If we select a frequency Ω1 = ωeig, we see
along the Ω2 axis, which specific two exciton states are connected via dipole moments to the single exciton state ei
and vice versa. A comparison of the dipole moments connected to two different peaks works only roughly, since two
Liouville paths interfere and the degree of destructive interference is different for every peak.
A dominant peak (A) in the absolut value spectrum (Fig. 5a)) is connected to e2 and f2, a second strong peak is

connected to e2 and f1 and some further peaks with smaller oscillator strength can be seen at a lower single-exciton
energy (e3 and f2,e1 and f1). e1 and e2 are well resolved, e3 shows up as a spectral shoulder. This shows that the
system has three single-exciton and three two-exciton states.
Fig. 5c) shows the signal with the first pulse localized at either quantum dot 1, 2 or 3. The localization of the

first pulse gives information about the single exciton states contributing to the ground state-single exciton transition
occuring during the first pulse. Localization at quantum dot 1 shows that all resonances connected to the delocalized
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exciton state e1 disappear. Overall, this shows, that quantum dot 1 only contributes strongly to the formation of
single exciton state e2 and e3, but not to the build up of e1. Similar information is obtained for excitation of quantum
dots 2 and 3 (see other Figs. 5c)). E.g. the exciton state e2 is formed by quantum dot 1 and 2. Another interesting
feature is the peak connecting e3 and f1. This peak is only visible at the localized spectrum at QD 2 and QD 3 and
not in the far field spectrum. This is caused by the fact, that e3 is an antisymmetric delocalized state between QD
2 and 3, seen by the opposite sign of the peak in the QD 2 and QD 3 spectrum. For far-field excitation, these two
antiparallel dipole interfere destructively, so that the resonance is not observed.
We next use the localized double quantum coherence to extract the wavefunction coefficients cei and therefore all

quantum dot interactions.

IV. EXTRACTING THE SINGLE EXCITON WAVEFUNCTION

All ingredients are now available to extract the single exciton wavefunction. We start from the localized signal in
Eq. (20-22) and see that the sum over e and j prevents us to extract a particular coefficient cei . Assuming ideal
localization of the first pulse at a particular quantum dot i (E1

i (rj , ωeg) ≈ δijE
1
i (ri, ωeg)) removes the sum over j

in Eq. (20-22). Of course, any deviation from ideal localization will result in an error in the measurement of the
coefficients (see below).
For removing the sum over e and selecting a particular single exciton state e, we choose the frequencies Ω1 = Ωe

1

and Ω2 = Ωe
2 in a way, that only a specific peak caused by single-exciton to ground state ωeg and two-exciton to

ground state coherences ωfg connected to e contributes, as suggested by the denominators in Eq. (20-22). Again,
if peaks for different single exciton states overlap, errors are introduced to the reconstruction. (However two dimen-
sional spectroscopy has less spectral overlap than one dimensional spectroscopy, since the peaks are separated by an
additional degree of freedom: the additional frequency axis.) This yields:

S
(3)
kIII

(i,Ωe
1,Ω

e
2, t3) = S

(3)
i (i,Ωe

1,Ω
e
2, t3) + S

(3)
ii (i,Ωe

1,Ω
e
2, t3) (23)

S
(3)
i (i,Ωe

1,Ω
e
2, t3)

≈ 1

h̄3

∑

e′f

µe′f · E4∗(ωfe′)µge′ ·E3∗(ωe′g)

µ∗
ef ·E2(ωfe)c

e∗
i µ∗

gi ·E1
i (ri, ωeg)

exp(−ıξfe′t3)

(Ω2 − ξfg)(Ω1 − ξeg)
(24)

S
(3)
ii (i,Ω1,Ω2, t3)

≈ − 1

h̄3

∑

e′f

µge′ · E4∗(ωe′g)µe′f · E3∗(ωfe′)

µ∗
ef · E2(ωfe)c

e∗
i µ∗

gi · E1
i (ri, ωeg)

exp(−ıξe′gt3)

(Ω2 − ξfg)(Ω1 − ξeg)
. (25)

We see, that here the double quantum coherence signal is proportional to ce∗i µ∗
gi · E1

i (ri, ωeg),i.e. to the strength ce∗i
the i-th quantum dot contributes to the delocalized wave function. This fact is used to develop a scheme to extract
the coefficients cei from measured data:

As input information the dipole moment µgi of the individual uncoupled quantum dots are required, the dipole
moments can be measured or calculated.
As measurement, carry out the localized double quantum coherence signal S

(3)
kIII

(i,Ω1,Ω2, t3), for a localization on
all quantum dots i. If the field strength and polarisation direction is different for localization at different quantum
dots, we need to obtain the electric field along the local dipole µ∗

gi ·E1
i (ri, ωeg).

Now, we select the excitonic state e ≡ eα, whose coefficients ceαi should be extracted. We determine the the frequencies
Ω1 ≈ ωeαg, Ω2 ≈ ωfβg showing a strong correlation to eα using the double quantum coherence signal without spatial
localization.
Now in the postprocessing of the data, we use that ceα∗

i ∝ S
(3)
kIII

/(µ∗
gi ·E1

i (ri, ωeg)) at the positions Ω1 ≈ ωeαg, Ω2 ≈
ωfβg (Eq. (23-25)). ceα∗

i can now be determined up to an proportionality factor A: ceα∗
i A = S

(3)
kIII

/(µ∗
gi ·E1

i (ri, ωeg))

for every quantum dot i, using the same frequencies Ω1, Ω2. Since the wavefunction is normalized, |A|2 =
∑

i |Aceα∗
i |2

holds. We thus get A up to a global phase and set A = |A|. We obtain ce∗i = S
(3)
kIII

(i,Ω1,Ω2, t3)/(µ
∗
gi ·E1

i (ri, ωeg))A).
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This gives the delocalized wavefunction |eα〉 =
∑

i c
eα
i |i〉.

Note, that these steps constitutes a quantum state tomography. The local basis is uniquely determined up to an
arbitrary phase for every quantum dot: the expansion coefficient cei depend on that choice.

FIG. 6. Original and reconstructed coefficients of single-exciton wave function e2: Phase in multiples of 2π. Error of absolute
values determined by localization.

To demonstrate the success of the tomography, we compare in Fig. 6 the elements of the reconstructed wavefunction
for the strongest contribution, i.e. state e2 (marked with A in Fig. 5a)), to the original wave function resulting from
the input parameters in the Hamiltonian. The agreement for both the amplitude and the relative phase is quite good.
The difference results from a non-perfect localization E1

i (rj , ωeg) 6= δijE
1
i (ri, ωeg) resulting from realistic Maxwell

simulation from section III A. This error is marked by the error bars in Fig. 6. It is caused by a weak excitation
of quantum dots, which a ideally localized pulse should not excite. Such a non ideal excitation leads to a cross talk
between the coefficients. The error bars are estimated to be smaller than: ∆ce

i
=

∑

j 6=i |Ei(rj)|/|Ei(ri)|.
Note, that in general, the procedure works also for other methods than heterodyne detection in far field, including

a localized detection of polarisation or fluorescence, as long as the detection is the same for a localization of the first
pulse at different quantum dots. The only limitation is, that the phase of the coefficients can only be detected with
methods, that can measure complex signals. For other types of detection like homodyne detection, we can also extract
the absolute value of the coefficients, but not their phase.

V. FILTERING COHERENT SPECTRA

As additional useful application, we show that strong, undesired resonances can be selectively suppressed from
coherent spectra. This can be advantageous while investigating weak resonances, that are masked by other strong
resonances: Often, it is not clear, whether weak resonances constitute a vibrational side peak connected to a domi-
nanting strong excitonic peak or a different, much weaker excitonic resonance. This can also be solved by selectively
removing excitonic resonances from measured spectra, applying a filter algorithm.
As input information for the filter algorithm, we have to determine expansion coefficients ceαi for the specific state
eα for all quantum dots i, whose contributions we want to filter out. Additionally, we need all dipole moments µgi of
the individual nanostructure and also the electric field along the local dipole µ∗

gi ·E1
i (ri, ωeg).

As measurement we record a localized version of the spectrum to be filtered. The localized pulse should excite a
ground state to single exciton transition for all quantum dot positions. For the double quantum coherence, this will
be the signal SkIII

(i,Ω1,Ω2, t3) for every quantum dot i.
For postprocessing we discuss the expression

SkIII ,w/oeα(Ω1,Ω2, t3)

= SkIII
(Ω1,Ω2, t3)−

∑

i

ceαi
∗
µ∗
ig ·E1(ωeg)feα(Ω1,Ω2, t3)

=
∑

e′ 6=eα,i

ce
′

i

∗
µ∗
ig ·E1

i (ωeg)fe′ (Ω1,Ω2, t3) (26)

feα(Ω1,Ω2, t3) =
∑

i

ceαi SkIII
(i,Ω1,Ω2, t3)/(µ

∗
ig · E1

i (ri, ωeg)) (27)

which gives a spectrum, where all contribution of eα during the first pulse are filtered out.51

The single-exciton peak e2 (α = 2) dominating the spectrum in Fig. 5 a) is filtered out in Fig. 5d). This
spectrum reveals now information about states initially covered by the dominant contribution of e2. The procedure
can be applied iteratively, using the filtered spectra for obtaining the other excitonic states. This can enhance the
reconstruction of the exciton states.
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The filtering method can also be applied to other spectroscopic signals as long as a phase sensible detection is
used and a localized signal, whose contributions are proportional to the single exciton expansion coefficients, can be
measured.

VI. CONCLUSION AND OUTLOOK

The presented quantum state tomography for the extraction of the delocalized single exciton wave function coeffi-
cients, can also be applied to other impulsive two dimensional spectra. The single-exciton to two-exciton transition in
double quantum coherence using the localization of the second pulse also also can be used to extract the two exciton
coefficients. However since this problem is more complex, it will be subject to future work.
In conclusion, our simulations demonstrate a quantum state tomography that can be used to reconstruct individual

wave functions of coupled emitters acting only collectively in the far field. In addition, localized excitations are useful
to remove unwanted strong resonances to uncover weak or hidden excitonic resonances. All of these features are not
accessible in standard far field spectroscopy. Similar configurations can be alternatively achieved by applying four
pulses and using phase cycling to detect a desired component43 e.g. with phase ϕ = ϕ1 +ϕ2 −ϕ3 − ϕ4. We therefore
believe that the proposed quantum state tomography opens a new path for the detection of many body interactions
on the nanoscale. The proposed protocol is more general as presented here, since fluorescence can also be used rather
than heterodyne detection of optical fields43.
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Multipling the equation with cei and summing over i yields a scalar product and we get fe′ defined using the localized spectra
(Eq. (27)).
The far field double quantum coherence spectrum can also be calculated using fe′ :
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It is expressed using summands for every contributing single exciton e′, the summand of the exciton to be filtered can be
substracted. This is possible, since every summand can be calculated using fe′ , which can be calculated from the experimental
data of the localized spectrum, if the expansion coefficients of the single exciton wavefunction of e′ are known.


