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We investigate the intrinsic spin relaxation of conduction electrons in germanium due to electron-
phonon scattering. We derive intravalley and intervalley spin-flip matrix elements for a general spin
orientation and quantify the resulting anisotropy in spin relaxation. The form of the intravalley spin-
flip matrix element is derived from the eigenstates of a compact spin-dependent k·p Hamiltonian
in the vicinity of the L point (where thermal electrons are populated in Ge). Spin lifetimes from
analytical integrations of the intravalley and intervalley matrix elements show excellent agreement
with independent results from elaborate numerical methods.
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I. INTRODUCTION

Group IV semiconductors are natural material choices
for quantum and classical spintronic devices.1–4 Hyper-
fine interactions are suppressed due to the natural abun-
dance of zero-spin nuclear isotopes. As a result, localized
electrons have exceedingly long coherence times at low
temperatures.5–7 As for conduction electrons, space in-
version symmetry precludes their spin relaxation by the
Dyakonov-Perel mechanism.8 The intrinsic spin lifetime
is therefore relatively long, reaching ∼10 ns at room-
temperature in non-degenerate n-type silicon .9–13 Com-
bined with the fact that silicon is the material of choice
in the semiconductor industry, there is a wide interest in
related spin injection experiments.14–18

The motivation for studying spin injection in Ge is
similar to Si due to their shared properties and the com-
patibility with Si-based CMOS technology. Electrical
spin injection and extraction in Ge have been recently
investigated in lateral spin-transport devices with vari-
ous doping profiles using nonlocal19 and local20–26 Hanle
measurements, as well as in heterostructure and nanos-
tructure devices.27,28 Similar to direct band-gap semicon-
ductors, optical orientation is an additional viable tool
to investigate spin properties of electrons and holes in
Ge.29–35 Unlike silicon, optical orientation in Ge is effi-
cient because of the energy proximity between the direct
and indirect gaps. Spin-polarized electrons are first pho-
toexcited to the Γ valley and then they relax via ultrafast
spin conserving scattering to the conduction band edges
in one of the four L valleys (located ∼140 meV below the
zone center Γ-valley).35

Theoretical efforts in the early days36,37 were moti-
vated by low-temperature electron spin resonance ex-
periments that studied the g factor and spin-lattice re-
laxation of localized electrons in donor states.38–40 On
the other hand, little attention was paid to conduc-
tion electrons whose spin relaxation is mediated by the
Elliott-Yafet mechanism.41,42 By analyzing the space in-
version and time reversal symmetries of the L point,
Yafet deduced a T 7/2 temperature dependence of the
spin relaxation rate due to intravalley electron scattering

with acoustic phonons.42 Kalashnikov extended Yafet’s
theory to various statistical distributions and scatter-
ing mechanisms.43 Chazalviel investigated spin flips due
to electron-impurity scattering using effective spin-orbit
coupling parameters that resemble the treatment in III-V
semiconductors.44 Most recently, Tang et al. have used
a tight-binding model to calculate the intrinsic spin re-
laxation of conduction electrons in Ge as a function of
the energy split between the lowermost conduction val-
ley and the other three valleys.12 Such an energy split can
be controlled by tuning the amplitude of a [111] uniaxial
compressive strain.
In this paper, we present a theory of spin-flip processes

due to electron-phonon scattering in Ge. Two distinctive
contributions are present in this work. First, we find
the spin orientation dependence of spin-flip matrix ele-
ments. This dependence leads to anisotropy in spin relax-
ation and it is instrumental in analyzing measurements
where the orientation of injected spins is set by the shape
and magnetocrystalline anisotropy of ferromagnetic con-
tacts or by the propagation and helicity of a circularly-
polarized light beam. An interesting result of the analysis
is that most of the intrinsic spin relaxation of conduction
electrons in Ge can be explained by coupling of the lowest
conduction band to the upper conduction bands (rather
than to the upper valence bands which is the typical case
in most semiconductors). The second contribution of this
work is the derivation of a spin-dependent k·p Hamil-
tonian in the vicinity of the L point (conduction band
edge). This compact Hamiltonian model exquisitely cap-
tures the signature of spin-orbit interaction on electronic
states and it can be extended to study confined Ge struc-
tures using an expanded basis of envelope functions.45

This paper is organized as follows. Section II pro-
vides a theoretical framework for the electron-phonon
interaction. Section III provides a quantitative discus-
sion of intervalley spin flips due to scattering with zone-
edge phonons. Using group theory, we derive the spin-
flip matrix elements and find the resulting spin lifetime.
Section IV deals with intravalley spin-flip processes and
with the effects of spin-orbit coupling on low-energy con-
duction electrons. Using the method of invariants,46–49

we derive a spin-dependent k·p Hamiltonian around the
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L point. Eigenvectors of this Hamiltonian are then used
to study intravalley spin flips due to scattering with long-
wavelength acoustic phonons. Section V is a summary of
findings and Appendices A-D contain technical details
for interested readers.

II. ELECTRON-PHONON INTERACTION

This section provides a theoretical framework for spin
relaxation due to interaction of electrons with the lattice
ions. It lays the foundation for the derived results in the
following sections. We first express the electron-phonon
scattering using the harmonic approximation,50,51 and
then write the resulting expression for the intrinsic spin
relaxation rate. This section is concluded with the depen-
dence of electronic states on spin orientation in crystals
with a space inversion center.
Consider an electron in a crystal with its quan-

tum numbers k1 and s1 representing, respectively, the
wavevector and spin state (⇑ or ⇓}). The band-index
quantum number is omitted and unless otherwise noted
we refer to states in the lowest conduction band. Fol-
lowing a scattering of this electron with a phonon, the
transition amplitude into state {k2 , s2} is given by,13

〈k2, s2;nν,q ± 1|Hν
ep(q)|k1, s1;nν,q〉 = (1)

−
√

~2

2̺Ων,qV

√

nν,q +
1

2
± 1

2
×Mν(k1, s1;k2, s2) .

nν,q is the phonon occupation (Bose-Einstein distribu-
tion at thermal equilibrium) where ν is the phonon mode
or symmetry (to become clear later) and q = k2 − k1 is
the phonon wavevector. Phonon emission and absorption
are described by the plus and minus signs, respectively.
Other parameters are the phonon energy (Ων,q), crystal
mass density (̺) and volume (V ). Finally, the matrix
element reads

Mν(k1, s1;k2, s2) =
∑

j,α

ξα,ν(q)e
iqRjα

· 〈k2, s2|∇rVat(r−Rjα)|k1, s1〉 , (2)

where j sums over the N primitive cells of the crystal and
α sums over atoms in a primitive cell. An atom position is
then denoted by Rjα, its mode-dependent displacement
vector by ξα,ν , and its potential including the spin-orbit
coupling by

Vat(r)=Vat(r)I +
~

4m2
0c

2
[∇Vat(r)×p] · σ . (3)

Spin-conserving scattering [s1 = s2 in Eq. (2)] dom-
inates the momentum relaxation where both spins are
either up or down. Due to the small relativistic effect
from spin-orbit coupling, spin-flip scattering (s1 = −s2)
is typically much weaker and leads to a relatively slow

spin relaxation rate,13

1

τs,ν
=

2π~

̺Nc

∫

d3k1
∂f(Ek1)

∂Ek1

∫

d3k2

(2π)3

∣

∣Mν(k1, s;k2,−s)
∣

∣

2

Ων(q)
∑

±
(nν,q + 1

2 ± 1
2 )δ(Ek2 − Ek1 ± Ων,q) , (4)

where f(Ek) is the statistical energy distribution of elec-
tronic states and Nc =

∫

d3k∂f/∂Ek is an effective
density of states constant. The weighted integration
over ∂f/∂E is exact at the limit of infinitesimal spin-
dependent chemical potential splitting. It is valid for
Fermi-Dirac statistics when the difference of chemical po-
tentials between spin-up and spin-down populations is
smaller than kBT .
Evidently, the determination ofMν(k1, s;k2,−s) is the

centerpiece in the theory of spin relaxation. For con-
duction electron transitions following a scattering by a
phonon, the initial and final states (|k1, s1〉 and |k2, s2〉)
are located in conduction band valleys which are small
pockets around some high symmetry points of the Bril-
louin zone. In intravalley and intervalley scattering, the
initial and final states are located, respectively, in the
same valley or in different valleys. The initial and final
states can be expanded as linear combinations of eigen-
states at their corresponding valley centers,

|k, s〉 =
∑

j

[aj(k)|K0, j, ↑〉+ bj(k)|K0, j, ↓〉] eik
′·r, (5)

where K0 is the valley center point, k′ = k − K0,
and j sums over spin-independent energy bands. The
coefficients, aj(k) and bj(k), are determined from the
k · p perturbation and also from the spin-orbit cou-
pling perturbation term λso∇V (r)× (p+ ~k′) ·σ where
V (r) =

∑

j,α Vat(r − Rjα) is the crystal potential and

λso = ~/4m2
0c

2. Mixed by spin-orbit interaction, the
spin-up and spin-down states (s = {⇑,⇓}) are not the
pure basis-states of the spin subspace (↑, ↓).
In order to calculate the value of Mν(k1, s;k2,−s),

we first decompose it into parts that belong to the irre-
ducible representations (IRs) of the group at the wavevec-
torK0, or at wavevector connecting two valley centers for
the case of intervalley scattering.52 This decomposition
of the matrix element involves parts that come from k ·p
and spin-orbit coupling terms in the expansion of the ini-
tial and final states, as well as from ∇rVat(r − Rjα) in
the electron-phonon interaction. Of course, we can only
determine by this procedure whether a particular integral
is zero and what is the relation between two integrals if
there is any. Nonetheless, this procedure allows us to
recast the matrix element into a series of q-power terms,

Mν(k1, s;k2,−s)=D(0),ν+qiD
(1),ν
i +qiqjD

(2),ν
ij +... , (6)

where q = (k2 − K0,2) − (k1 − K0,1) and summations

over subscripts is implied. The D(n),ν quantities, often
called deformation potentials or scattering constants, are
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independent real constants resulting from the aforemen-
tioned selection rules (integral expressions of interactions
between basis states). Values of these quantities are de-
termined from explicit knowledge of the scattering poten-
tial and electronic states, and therefore numerical calcu-
lations or experimental input is needed.
The great advantage of the group theory approach is

that it allows us to find a compact expression for the
measurable spin relaxation rate. By substituting Eq. (6)
into Eq. (4), one can readily identify the temperature de-
pendence from the leading power of q (and from phonon
population and dispersion). This procedure also allows
one to identify the scattering angle dependence from the
tensorial forms of D(n),ν . Furthermore, group theory can
tell whether intravalley and/or intervalley are important
in spin relaxation of a multivalley conduction band. It
will be shown that intravalley spin flips in Ge are very
weak where D(0) and D(1) in Eq. (6) vanish due to time
reversal and space inversion symmetries. Furthermore,

it will be shown that the leading term (D
(2)
ij ) is a small

quantity due to the position of the valley center in the
edge of the Brillouin zone (leading to a linear dependence

of D
(2)
ij on the average between k1−K0,1 and k2−K0,2).

Intervalley scattering, on the other hand, will be shown
far more dominant in setting the intrinsic spin relaxation
rate where in this case D(0) does not vanish.
Finally, to account for possible anisotropy in spin re-

laxation, the analysis of both intravalley and intervalley
spin flips should explicitly consider the dependence on
spin orientation. In the case of centrosymmetric crystals
(e.g., diamond structure of Ge), each band at wavevector
k is spin degenerate and we can define its states with
respect to the spin orientation of the electron (ŝ),42

〈k,⇑ |σ · ŝ|k,⇑〉 ≡ −〈k,⇓ |σ · ŝ|k,⇓〉 ≥ 0 ,

〈k,⇑ |σ · ŝ|k,⇓〉 ≡ 0 , (7)

where σ is a vector of Pauli matrices. Below, we will
find the explicit dependence of spin-flip matrix elements
on the direction of ŝ.

III. INTERVALLEY SPIN RELAXATION

Using group theory, we show in this section that in-
tervalley spin-flip scattering in Ge is expressed in terms
of two scattering constants. These constants are nonva-
nishing spin-flip matrix elements for electron scattering
between different energy-minima points (valley centers):
Dν,s = Mν(K0,1, s;K0,2,−s) where Dν,s bares the same
meaning as the zeroth-order term in Eq. (6). In this case,
we let ν denote allowed phonon symmetries which, as ex-
plained later, include two types in bulk Ge. For scatter-
ing slightly away from the valleys centers, one can still as-
sume Mν(k1, s;k2,−s) ≃ Mν(K0,1, s;K0,2,−s) since in
Ge and other multivalley semiconductors |K0,1−K0,2| ≫
|k1 −K0,1|, |k2 −K0,2|. The spin-lifetime calculation is
then substantially simplified since there is no need to

FIG. 1: (a) The four conduction-band valleys of Ge. Centers
of their ellipsoidal energy surfaces are located at the zone-edge
L points (energy minima). The vertical q001 arrow represents
one of six equivalent intervalley transitions between valley
centers. (b) Phonon dispersion along the Γ−∆−X symmetry
axis [dash lines in (a)] and symmetry notations of zone-edge
X phonon modes. Electrons are transferred between different
valleys [e.g., the q001 arrow in (a)] by emission or absorption
of phonons near the X point.

rigorously calculateMν(k1, s;k2,−s) for each possible in-
tervalley transition between states near the center points.
Most importantly, since intervalley scattering is symme-
try allowed in the lowest order (i.e., nonzero between dif-
ferent L points), group theory alone is sufficient to find
the exact form of the spin-flip matrix elements together

with their dependence on spin orientation.
Figure 1(a) shows a scheme of the four conduction-

band valleys in Ge where the vertical arrow marked by
q001 represents one possible intervalley scattering be-
tween different valleys. Thermal electrons in unstrained
bulk Ge are located in these four valleys whose centers are
the L points in the edge of the Brillouin zone. The crystal
momentum difference between valley centers can be me-
diated by X point phonons. For example, the L111 and
L111 centers [k = π/a(1, 1,±1)] are connected by X001

[q001 = 2π/a(0, 0, 1)]. Figure 1(b) shows the symmetry
notations of these zone edge phonons along with their
dispersion along the Γ−∆−X symmetry axis. These re-
sults are calculated from an adiabatic bond-charge model
of bulk Ge.53 The zone-edge phonons belong to three 2D
irreducible representations: X3 (TA, 10 meV), X1 (LA &
LO, 29 meV) and X4 (TO, 33 meV),54 with their modes
and energies written in parentheses.
Group theory is used to derive selection rules for in-

tervalley scattering. These selection rules are derived
from common symmetry operations of the little groups
at two valley centers K0,1, −K0,2 and their difference
K0,1 −K0,2. Technical details of applying this approach
in Ge are given in Appendix A and here we summarize
the main findings. Excluding the spin degree of free-
dom, the selection rule for transition between valleys
that we denote by L and Lt, reads L1 ⊗ L1t = X1 ⊕ZZX3

where L1 is the irreducible representation (IR) of electron
states in the minima of the conduction band. Interval-
ley scattering with phonons of X3 symmetry is forbidden
by time-reversal symmetry and not by the space-group
symmetry.55,56 This rule means that a single constant,
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TABLE I: |MXi(kL, s;kLt,−s)|2/2D2
Xi

for intervalley spin-
flip transitions of all the six valley-to-valley configurations.

L ↔ Lt X1 X4

L111 ↔ L111 1 + cos2 θ + sin2 θ sin 2φ 1 − cos2 θ

L111 ↔ L111 1 + sin2 θ sin2 φ + sin 2θ cosφ 1 − sin2 θ sin2 φ

L111 ↔ L111 1 + sin2 θ cos2 φ + sin 2θ sinφ 1 − sin2 θ cos2 φ

L111 ↔ L111 1 + sin2 θ sin2 φ− sin 2θ cosφ 1 − sin2 θ sin2 φ

L111 ↔ L111 1 + cos2 θ − sin2 θ sin 2φ 1 − cos2 θ

L111 ↔ L111 1 + sin2 θ cos2 φ− sin 2θ sinφ 1 − sin2 θ cos2 φ

Dν=X1,m, is needed to describe spin-independent inter-
valley scattering (momentum relaxation). Including the
spin degree of freedom, it is convenient to use double
group theory where L1 is replaced by L6 and the new
selection rule reads12

L6 ⊗ L6t = 2X1 ⊕X4 ⊕ZZX3. (8)

This rule means that three independent scattering pa-
rameters are needed to fully describe spin-conserving and
spin-flip intervalley scattering (two are related to the X1

symmetry and one to X4). This selection rule does not
provide information on the spin orientation dependence
which is most important in analyzing experiments. To
overcome this shortcoming, we can work with IR matri-
ces rather than their traces.13 Technical details are given
in Appendix A and here we provide the final result. The
spin orientation, ŝ, is described by a polar angle (θ) from
the +z crystallographic axis and an azimuthal angle (φ)
in the xy plane measured from the +x direction. For
a spin-flip transition between L111 and L111 points (via
a zone-edge phonon with wavevector q001), the square
amplitude of the matrix element reads

∣

∣Mν(kL111 , s;kL111
,−s)

∣

∣

2
(9)

=

{

2D2
X1,s

(1 + cos2 θ + sin 2φ sin2 θ) if ν = X1

2D2
X4,s

sin2 θ if ν = X4
.

Both phonon symmetries share a prefactor of 2 due to
the two-fold degeneracy in the X point of a diamond
crystal structure. For the remaining five transitions be-
tween other combinations of L points, Eq. (9) varies ac-
cording to a straightforward coordinate transformation.
These results are summarized in Table I [also see dis-
cussion of Eq. (A24) in Appendix A]. As seen by the
right column of the table, spin flips due to scattering with
X4 phonons vanish if the spin is oriented parallel to the
phonon wavevector [z-axis for the case of q001 in Eq. (9);
i.e., θ = 0]. If the spin orientation and phonon wavevec-
tor are perpendicular, the X4 spin flips are described by

a single independent nonvanishing matrix-element con-
stant, Dν=X4,s. For the X1 phonons, one of the two
independent nonvanishing matrix elements in Eq. (8)
is attributed to spin-flip scattering (Dν=X1,s) and the
other to spin-conserving scattering (Dν=X1,m). Values
of these scattering constants can be extracted from ex-
periments or from rigorous numerical calculations as dis-
cussed in Appendix B where we find DX1,s = 35meV/Å

and DX4,s = 46meV/Å. As will be shown, these com-
parable constants set the spin relaxation rate. It is un-
derstood that the much larger spin-conserving scattering
constant, Dν=X1,m, is irrelevant to the analysis of spin
relaxation (independent of the spin-orbit coupling).
Having the spin-flip matrix elements in Table I, we

calculate the intervalley spin relaxation rate [Eq. (4)] for
a Boltzmann distribution of electrons,

1

τs,inter
=

4

3

(

2md

π

)
3
2 ∑

i=1,4

Ai(θ, φ)D
2
Xi,s

~2̺
√
Ωi

ϑ(yi)

exp(yi)−1
. (10)

̺ = 5.323 g/cm3 is the crystal density and md = 0.22m0

is the effective electron mass in bulk Ge.57 ϑ(yi=Ωi/kBT )
=
√
yiexp(yi/2)K−1(yi/2) is associated with the modified

Bessel function of the second kind. For both phonon en-
ergies (Ω1=29 meV and Ω4=33 meV), this term slightly
depends on temperature in the range between 10 K and
400 K such that 2 < ϑ(Ωi/kBT ) < 4. On the other
hand, most of the temperature dependence of the inter-
valley relaxation rate comes from the thermal population
of zone-edge phonons [exponent term in the denomina-
tor of Eq. (10)]. This population is strongly suppressed
at low temperatures. Finally, the scattering constants
DX1,s = 35meV/Å and DX4,s = 46meV/Å are respec-
tively weighted by A1(θ, φ) and A4(θ, φ) that include
the dependence on spin orientation (Table I). We dis-
cuss their explicit angular dependence for several general
cases.
no-strain or [100]-strain: The four L-valleys in the

lowest conduction band are degenerate and transitions
between all six pairs of valleys are equivalent. The
anisotropy in spin relaxation due to intervalley scat-
tering between two valleys is compensated by opposite
anisotropy of other pairs. The sum of expressions in each
of the two columns of Table I is independent of θ and φ,

A1 = 8 , A4 = 4 . (11)

As shown next, when the symmetry between different val-
leys is broken, the dependence of the intervalley matrix
elements on spin orientation lends itself to a measurable
anisotropy in the spin lifetime.
[111] strain: The case of uniaxial compressive strain

results in a single low-energy valley (along the strain axis)
and three higher energy valleys. At relatively large strain
levels (∼1%), the energy split is large enough to quench
the intervalley spin relaxation mechanism.12 This effect
amounts to assigning 1/τs,inter = 0. On the other hand,
in biaxial compressive strain configuration (or uniaxial
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FIG. 2: Calculated temperature dependence of the intrinsic
spin lifetime in unstrained Ge due to intervalley scattering
of electrons. The solid line follows Eq. (10) with A1=8 and
A4=4. At room temperature, the resulting spin lifetime is
∼ 1 ns. The markers are from rigorous numerical results (see
text). Black diamonds denote contributions from X3 phonons
and red pentagrams from all X point phonon symmetries.

tensile strain) three of the valleys shift down in energy
and one valley shifts up. Excluding transitions with the
L111 valley (considering the last three lines in Table I)
we get

A1=
16−4 sin2θ sin2φ−4 sin2θ(cosφ+sinφ)

3
, A4=

8

3
. (12)

This strain configuration restores the anisotropy in spin
relaxation due to electron scattering with X1 zone-edge
phonons. By changing the spin orientation from the
[111] strain axis to its perpendicular plane, τs,inter drops
by ∼50% [changing A1 from 8/3 to 20/3 in Eq. (10)] .
[110]-strain: This strain configuration is optimal for

detection of the anisotropy since intervalley transitions
are effective from a single pair of valleys. Consider, for
example, the case that L111 and L111 valleys shift suffi-
ciently down in their energy. Then, only the first term in
Table I represents the intervalley scattering and we get

A1 = 2(1 + cos2 θ + sin 2φ sin2 θ) , A4 = 2 sin2 θ . (13)

The anisotropy in spin relaxation is now caused by elec-
tron scattering with both types of zone-edge phonons.
By changing the spin orientation from the strain axis to
its perpendicular plane, τs,inter [Eq. (10)] is doubled.
Other than strain, it should also be possible to observe

the anisotropy by applying electric fields of few kV/cm
along the mentioned directions. Here, valley repopula-
tion will result in preferential scattering from hot-to-cold
valleys.58 Finally, by averaging over spin orientations
in Eqs. (12)-(13), the spin lifetime [Eq. (10)] with two
(three) low-energy valleys is about 3 (3/2) times longer
than that of the unstrained case. The reason is that elec-
trons can scatter to one (two) valleys rather than three.
The solid curve in Fig. 2 shows the temperature

dependence of the intervalley spin lifetime in un-
strained bulk Ge [Eq. (10) with A1=8 and A4=4].

We have also performed rigorous numerical integra-
tions of Eq. (4) in which Mν(k1, s;k2,−s) rather than
Mν(kL111 , s;kL111

,−s) is evaluated in the integration.
The calculation of the matrix element follows the analy-
sis in Appendix B. Whereas this numerical approach is
not transparent compared with the group theory analy-
sis, it takes into account higher-order corrections due to
the slight variation of the matrix element when departing
from the center of the valleys. Nonetheless, the complete
numerical results for scattering with all X point phonons
[red pentagram markers in Fig. 2] show that the zeroth-
order analytical calculation is an excellent approximation
[Eq. (10)]. The black diamond markers denote numeri-
cal results due to scattering with X3 phonons. Their
zeroth-order contribution vanishes by time reversal sym-
metry [Eq. (8)], while their first-order contribution is al-
lowed [D(1),ν=X3 is the lowest-order nonvanishing term
in Eq. (6)]. In spite of their vanishing contribution at
the lowest order, Fig. 2 shows that X3 phonons have
non-negligible contribution in low temperatures. This
property can be understood by the relatively large pop-
ulation of X3 phonons compared with that of X1 and
X4 phonons [nν,q in Eq. (4)]. At low temperatures, the
zone-edge phonon population reads exp(−Ωi/kBT ), and
therefore it is much larger in the case of X3 phonons
[Ω3 ∼10 meV and Ω1,4 ∼30 meV; See Fig. 1(b)].

IV. L POINT HAMILTONIAN AND

INTRAVALLEY SPIN RELAXATION

Intravalley spin-flip matrix elements in Ge are much
smaller than in the intervalley case. This weak effect
of intravalley processes stems from space inversion and
time reversal symmetries of the low-energy conduction
states in Ge.42 The intravalley process becomes impor-
tant, however, when quenching the intervalley process by
applying strain or strong electric fields such that the elec-
trons are located in a single conduction valley. Tang et al.
have shown that the spin lifetime is then increases from
1 ns to the range of 100 ns.12 In this work we quantify
the strong anisotropy of the intravalley spin relaxation
in Ge and show that when orienting the spin along the
[111] crystal axis the intravalley spin lifetime is further
suppressed and reaches the scale of 1 µs in room tem-
perature. In addition, we derive a spin-dependent k·p
Hamiltonian in the vicinity of the L point and correlate
its parameters with spin relaxation processes.
To gain better understanding of the intravalley spin

flips in Ge, we break this section into three parts where
each part relies on its former. First we discuss general
symmetry properties of conduction electrons in Ge with
an emphasis on the effect of spin-orbit coupling. In the
second part, we make use of these findings to derive a
compact Hamiltonian matrix using a relatively small set
of L-point basis functions. We keep technical aspects of
this derivation to Appendix C. Using the spin-dependent
eigenvectors of the derived Hamiltonian, we introduce
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FIG. 3: Calculated band structure of Ge along the Γ−Λ−L
symmetry axis following the results of an empirical pseudopo-
tential method.59 Appendix B includes technical numerical
details of this calculation. The conduction-band edge is in-
dicated by the irreducible representation L1 (L6) in single
(double) group notation.60,61

the concept of overlap integrals. This information com-
bined with deformation potential theory is then used in
the last part of this section to derive the intravalley spin-
flip matrix elements, the resulting spin lifetime, and the
dependence on spin orientation. Appendix D includes
technical information on the difference between intraval-
ley spin flips in Si and Ge.

A. Symmetry effects on electronic states in Ge

Figure 3 shows the energy band structure of unstrained
bulk Ge along the Γ − Λ − L symmetry axis. The con-
duction edge is indicated by L1 where thermal conduc-
tion electrons can reside in four equivalent conduction
valley minima [Fig. 1(a)]. Using the L point symmetry
notations in Fig. 3, we explain the symmetries of wave-
functions in the vicinity of this point.
Representations of conduction (valence) states in the

L point have even (odd) parity under space inversion op-
eration. In the notation of single group theory, there
are 6 irreducible representations (IR) of the L point
space group.60,61 The lowest conduction band is non-
degenerate and belongs to L1 (a one-dimensional IR).
Figure 3 shows that nearby bands are pairs of valence and
conduction bands. They are represented, respectively, by
the two-dimensional IRs L′

3 and L3. If the crystal poten-
tial is vanishingly small then the L point energies of these
five bands (L1, L3 and L′

3) are degenerate. However, the
crystal potential in Ge splits these bands into three sets
and the relatively large energy separation from L1 will
be shown to result in a very slow intravalley spin relax-
ation process. In comparison, the six conduction band
valleys in Si are located close (in energy and wavevector)
to the two-band degeneracy in the X point. This de-
generacy leads to a spin hot-spot along certain directions
in the square boundary faces of the Brillouin zone,9,10,13

and to a unique behavior of intravalley spin relaxation in
Si.13 This distinct difference between Si and Ge merits
independent treatments of the spin relaxation.

The wavefunctions of conduction electrons, |k,⇑ (⇓)〉,
include small contributions from states of remote bands.
In the k·p theory there are two first-order terms related
to signatures of the spin-orbit interaction,

HSO =
~

4m2
0c

2
∇V × p · σ̂, (14)

Hk
SO =

~
2

4m2
0c

2
∇V × k · σ̂, (15)

where throughout this section, the value of k is measured
form its nearby valley center (L point). Hk

SO transforms
as a polar vector (∇V ) and can couple between odd and
even states. In our case, the coupling is between states
of L1 and L′

3 symmetries that represent, respectively, the
lowest conduction band and upper valence bands. On the
other hand, HSO transforms as an axial vector (∇V ×
p) and can couple the even states of L1 and L3 (lowest
and upper conduction bands). The dimensionality of L′

3

or L3 (2D IRs) is such that each is coupled to L1 by
two components of a vector that lie perpendicular to the
valley axis [i.e., parallel to the hexagonal boundary faces
at the zone edge; see Fig. 1(a)].

B. L point Hamiltonian

In this part, we expand the wavefunctions of electrons
using the L point basis states. The expansion allows us
to identify important signatures of spin-orbit coupling
on the wavefunctions and then to correlate them with
spin relaxation processes. Near the valley center, the
wavefunction is approximated by

|k, s〉=
[

∑

γ=1,3,3′

Cγ(k,s)|Lγ〉
]

ei(kL+k)·r. (16)

Using the relation between spin-up and spin-down states
[Eq. (7)], and following the previous discussion on L1, L3

and L′
3 states, we write

Cγ(k,⇑)|Lγ〉 =
Nγ
∑

m=1

am,γ(k)|Lm
γ , ↑〉+ bm,γ(k)|Lm

γ , ↓〉,

Cγ(k,⇓)|Lγ〉 =
Nγ
∑

m=1

a∗m,γ(k)|Lm
γ , ↓〉 − b∗m,γ(k)|Lm

γ , ↑〉. (17)

Totally, we consider 10 spin-dependent basis states: two
from the non-degenerate lowest conduction band (N1=1),
and four from either the upper conduction or valence
bands (each being two-band degenerate in the absence
of spin-orbit coupling, N3=N3′=2). The coefficients are
eigenvectors of the 10×10 Hamiltonian matrix,





H33+Eg,u H†
13 H33′

H13 H11 H13′

H†
33′ H†

13′ H3′3′−Eg,v









C3

C1

C3
′



=E





C3

C1

C3
′



, (18)



7

where Hij is a matrix block denoting the spin and
wavevector dependent coupling between basis states with
Li and Lj symmetries. Eg,u and Eg,v denote, respec-
tively, the L point energy separations of the lowest con-
duction band from the upper conduction and upper va-
lence bands [see Fig. 3]. Below, we present the Hamilto-
nian matrix using the basis functions of the L111 point
[kL = π(1, 1, 1)/a]. Matrix forms in the 〈1̄11〉, 〈11̄1〉, and
〈111̄〉 valleys are derived by trivial coordinate transfor-
mation. In addition, to derive a compact matrix form we
use a rotated set of Cartesian coordinates,

ŵ =
x̂− ŷ√

2
, û =

x̂+ ŷ − 2ẑ√
6

, Λ̂ =
x̂+ ŷ + ẑ√

3
. (19)

û and ŵ lie parallel to the hexagonal boundary face
[Fig. 1(a)]. Λ̂ is along the valley axis connecting the Γ
and L111 points.
We construct the Hamiltonian matrix [Eq. (18)] using

the method of invariants.46–49 Application of this method
with relevance to the L point is given in Appendix C.
Here we summarize the findings. The lowest conduction
band is associated with the identity IR and contributes
a trivial 2×2 matrix form (L1 ⊗ L1 = L1),

H11 =
[

~
2(k2u + k2w)

2m∗
t

+
~
2k2Λ
2m∗

l

]

⊗ I2×2 . (20)

m∗
t and m∗

l are effective mass parameters representing
the effect of remote bands (outside the chosen basis
states). Matrix blocks of the upper valence bands or
upper conduction bands share a similar form (L3 ⊗L3 =
L′
3 ⊗ L′

3 = L1 + L2 + L3),

Hii=
[

~
2(k2u + k2w)

2m∗
t,i

+
~
2k2Λ

2m∗
l,i

]

⊗I4×4 +∆iρy⊗σΛ, (21)

where i = 3 or i = 3′. The mass parameters have similar
meaning as in H11. ∆i denotes the internal spin-orbit
coupling between the two Li basis functions.74 ρy = σy

originates from the two-band degeneracy in the absence
of spin-orbit coupling.
The off-diagonal matrix block H13′ denotes the cou-

pling between the lowest conduction band and upper va-
lence bands. Its form follows from L1 ⊗ L′

3 = L′
3,

H13′ = P
(

kw[0, 1]− ku[1, 0]
)

⊗ I2×2 (22)

+ iα
[

(k × σ)w ⊗ [0, 1]− (k× σ)u ⊗ [1, 0]
]

,

where [1, 0] and [0, 1] are ordinary 1× 2 matrices. Their
Kronecker products with 2× 2 matrices indicate that
H13′ is a 2×4 matrix. P and α are two independent ma-
trix element constants that originate from the k · p and
Hk

SO perturbation terms, respectively. The coupling ma-
trix of the lowest and upper conduction bands is wavevec-
tor independent and it follows from L1 ⊗ L3 = L3,

H13 = i∆L

(

σu ⊗ [1, 0] + σw ⊗ [0, 1]
)

, (23)

where ∆L denotes the direct spin-orbit coupling between
these bands. Finally, the 4×4 coupling matrix between
the upper valence and conduction bands follows from
L′
3 ⊗ L3 = L′

1 + L′
2 + L′

3,

H33′ = [P1(ikuρy − kwI2×2) + P2kΛρx]⊗ I2×2, (24)

where we have neglected the Hk
SO coupling between these

bands since it plays a negligible role in the spin relaxation
of conduction-valley electrons. Table V in Appendix C
lists the values of all parameters in Eqs. (20)-(24). This
Appendix also includes a discussion of the empirical pseu-
dopotential method used to derive these parameter val-
ues.
Given the relatively large L point energy gaps, the

energy dispersion of electrons in L-valleys is well ap-
proximated by eigenvalues of the reduced 2×2 matrix:

H11 +H13′H
†
13′/Eg,v −H13H

†
13/Eg,u,

Ec =
2∆2

L

Eg,u
+

~
2(k2u + k2w)

2mt
+

~
2k2Λ
2ml

. (25)

The constant energy shift is due to the direct spin-orbit
coupling with the upper conduction bands. The effective
mass parameters are

1

mt
=

1

m∗
t

+
2P 2 + 2α2

~2Eg,v
,

1

ml
=

1

m∗
l

+
4α2

~2Eg,v
.

About half of the anisotropy between the transverse and
longitudinal effective masses in Ge (mt ≈ 0.08m0 and
ml ≈ 1.6m0) is set by the spin independent coupling with
the upper valence bands (P = 9 eV · Å).57 The spin-orbit
coupling signatures on the energy dispersion are negligi-
ble and can be ignored (α=40 meV·Å and ∆L=27 meV).
On the other hand, the minute effect of spin-orbit cou-
pling on the eigenvectors of Eq. (18) sets the timescale
for spin relaxation. Choosing the spin quantization along
the valley axis, the spin-up eigenvector along this direc-
tion [ŝ= Λ̂ in Eq. (7)] reads

C1(k,⇑Λ)=
[

1, g(k)
]

+O(k2),

C3(k,⇑Λ)=
∆L

Eg,u

[

0, −1, 0, i
]

+O(k2) ,

C3
′ (k,⇑Λ)=

P

Eg,v

[

− ku − iγ3kw, f+(k),

kw − iγ3ku, f−(k)
]

+O(k3). (26)

The components of the spin-down eigenvector [Ci(k,⇓Λ)]
are readily obtained from space inversion and time rever-
sal relations [Eq. (17)]. The g(k) and f±(k) functions in
C1 and C3

′ read

g(k) =
P 2

E2
g,v

[

kuf+(k)− kwf−(k)
]

,

f±(k) = r± [γ1(kw − iku)± iγ2kΛ] , (27)
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where r+ =1 and r− =−i. The γj ≪ 1 parameters scale
with three of the spin-orbit coupling constants (α, ∆3′

and ∆L) whose values are given in Table V,

γ1 =
∆L

Eg,u

P1

P
≈ 0.006, (28a)

γ2 =
α

P
+

∆L

Eg,u

P2

P
≈ 0.005, (28b)

γ3 =
α

P
+

∆3′

Eg,v
≈ 0.05. (28c)

The internal spin-orbit coupling in the valence band
(∆3′) sets most of the value of γ3. Only when the spin is
oriented along the valley axis (ŝ= Λ̂), this parameter is
excluded from the opposite-spin components ofC3

′ (k,⇑s)
[i.e, from the f±(k) terms in Eq. (26)]. It will be shown
that this behavior has important consequences on the
anisotropy of intravalley spin relaxation.

Connection between the L point Hamiltonian parameters and

spin relaxation

To facilitate a connection between the Hamiltonian
eigenvectors and spin relaxation we make use of spin-
flip overlap integrals. We show that the direct spin-orbit
coupling between the conduction bands (∆L) plays a key
role in setting the intervalley spin relaxation rate (inde-
pendently treated in Sec. III). On the other hand, we
will see that intravalley spin-flip transitions are weaker.
To make these connection clear, we write the overlap in-
tegral

I(k, s ; k′,−s) =
∑

µ,γ

〈

Lµ,k
L′

∣

∣C†
µ(k

′,−s)Cγ(k, s)
∣

∣Lγ,kL

〉

, (29)

where k and k′ are measured from the nearby val-
ley center (kL and kL′). The bra and ket states of
this overlap integral include only the periodic Bloch
parts in Eq. (16). While the combined phase factor,
exp {i(kL − kL′ + k− k′) · r}, is excluded from the over-
lap integral, it will be taken into account in the phonon
phase when calculating the matrix elements. Using
Eq. (26), the overlap integrals of electrons in different
valleys read (kL 6= kL′)

I(k, s ; k′, s) = c1,s

I(k, s ; k′,−s) = c3,s
∆L

Eg,u
+O(k2) , (30)

where cj,s are constants of order unity that denote con-
tributions from the spin-orientation dependence (ŝ) and
from the overlap of conduction basis states in different
valleys: 〈L1,kL

|Lj,k
L′
〉. Eq. (30) implies that the ra-

tio between spin and momentum relaxation rates due
to intervalley scattering is about ∆2

L/E
2
g,u (indepen-

dent of the values of the wavevectors with respect to

the valley centers). For intravalley scattering (kL=kL′),
on the other hand, the basis functions are orthogonal:
〈Ln

µ,kL
|Lm

γ,kL
〉 = δµγδmn. As a result, the spin-flip over-

lap integral for electrons of the same valley reads

Ia(k,⇓Λ ; k′,⇑Λ) =
2P 2

E2
g,v

(

γ2q+KΛ + iγ1q−K−
)

, (31)

where q = k−k′, 2K = k+k′, and X± = Xw±iXu. The
terms have quadratic wavevector dependence and they
are proportional to the spin-orbit constants in Eq. (28).62

The overlap integral of other spin orientations (ŝ 6= Λ̂) will
be discussed below.

C. Intravelley spin relaxation

The power-law dependence of intravalley spin-flip ma-
trix elements can be identified by their transformation
properties under time reversal and space inversion op-
erations. Yafet showed that spin-flip matrix elements
due to scattering with long-wavelength acoustic phonons
have a cubic (quadratic) wavevector dependence in Ge
(Si).42 In Appendix D, these important findings are gen-
eralized and it is shown that in GeMλ(k, s ; k

′,−s) scales
with Kℓqmqn for scattering with acoustic phonon modes
(λ=LA or TA) and with Kℓqm for optical phonon modes
(λ=LO or TO). K and q are, respectively, the average
and difference of k and k′. For intravalley scattering in Si
the K dependence drops. We first explain this interesting
difference.
From inspection of the wavevector dependence of in-

travalley spin flips in Ge (Kℓqm for optical modes and
Kℓqmqn for acoustic modes), one sees that they are for-
bidden between opposite points with respect to the valley
center (K = 0). This restriction on spin-flip transitions
is a manifestation of time reversal symmetry. In sili-
con, K-dependent scattering belongs to the intervalley
g-process which involves transitions between two valleys
on opposite sides of the same crystal axis.10,13 Since in
Ge the valley center is at the zone edge (L point), this
type of scattering occurs within a single valley. Its de-
pendence on the wavevector components (Kqi) amounts
to the combined effects of intervalley g-process and in-
travalley scattering in Si (K and qi).
Beyond the power-law dependence, an analytical ap-

proach to derive accurate intravalley matrix elements
requires a combination of k · p, rigid-ion and group
theories.13 Because of the wavevector dependence of
these matrix elements, one cannot invoke group theory
alone to find their exact forms (as we did for zeroth-order
intervalley spin flips). We employ a simpler approach
than in Ref. [13] and describe the interaction with long-

wavelength acoustic phonons by H
TA/LA
intra = Ξq where Ξ

is an effective deformation potential constant.10,60 This
scalar form averages out the scattering angle dependence
of the second-rank deformation potential tensor.46 We do
not model the electron scattering with long-wavelength



9

optical phonons since it is a weak effect in nonpolar
semiconductors.60,63

We use selection rules of the L point space group to
construct the spin-flip matrix element from the overlap
integral. The transformation property of the deformation
potential tensor, L3

′ ⊗L3
′ = L1+L2+L3, implies that di-

rect coupling of conduction and valence states is excluded
because of their opposite parities (L1 ⊗ L3

′ = L3
′ ). This

tensor can, however, couple any of the basis states to
themselves (Li ⊗ Li). This behavior justifies the use of
the spin-flip overlap integral. The resulting intravalley
spin-flip matrix element in the L111 valley is approxi-
mated by

Mλ(k, s ; k
′,−s) ≈ ΞqIa(k, s ; k′,−s) , (32)

where λ denote any of the long-wavelength acoustic
modes (TA or LA). Following a straightforward proce-
dure we find

Ia(k, s ; k′,−s) = i sinϑAt +Al cos
2ϑ

2
+A∗

l sin
2ϑ

2
, (33)

where cosϑ = s · Λ̂ and

At =
i

2

(

Ia(k′,⇑Λ ; k,⇑Λ)− Ia(k′,⇓Λ ; k,⇓Λ)
)

=
2P 2

E2
g,v

γ3 (K× q)Λ ,

Al = e−iϕIa(k′,⇓Λ ; k,⇑Λ)

=
2P 2

E2
g,v

(

γ2q+KΛ + iγ1q−K−
)

e−iϕ. (34)

ϕ is the azimuthal angle of smeasured with respect to the
w-axis in the wu-plane. Most importantly, γ3 which in-
corporates the effect of the internal spin-orbit coupling in
the valence band [Eq. (28c)] does not affect the spin-flip
amplitude [Eq. (32)] when the spin orientation is along
the valley axis (ϑ = 0). This effect leads to a pronounced
anisotropy in the intravalley spin lifetime.
It is not surprising that the overlap integral approach

yields correct wavevector power-law dependence [substi-
tuting Eqs. (33)-(34) into Eq. (32)]. The space inver-
sion and time reversal symmetries are respected by the
Hamiltonian whose eigenvectors were used to calculate
the intravalley spin-flip overlap integral. These symme-
tries also lead to the so-called Elliott-Yafet cancelation of
all terms up to quadratic order in q.13,42 In fact, since the
Hamiltonian respects all other symmetries of the L point
space group, the intravalley matrix element shows other
selection rules.64 From Eq. (34) we see, for example, that
a spin-flip is forbidden when the electron is scattered
along the valley axis (i.e., qw=qu=0, qΛ 6=0). This con-
straint is understood by the symmetry of the vector-type
coupling with the valence states (L1⊗L3

′ = L3
′ ). As men-

tioned, this coupling involves the two transverse compo-
nents (ŵ and û) with respect to the valley axis (Λ̂).
We calculate the spin lifetime in the L111 valley due to

electron scattering with long-wavelength acoustic phonon

modes. This intravalley process dominates the intrin-
sic spin relaxation under conditions of [111] strain.12 For
sufficient uniaxial compressive strain along this direction
(∼ 1%), one of the valleys is significantly lowered in en-
ergy and the intervalley scattering is quenched. Then,
phonon-induced intravalley spin flips can dictate the spin
relaxation of conduction electrons if scattering from im-
purities is negligible (non-degenerate doping). To get
an analytical expression of the intravalley spin lifetime,
the phonon energy is approximated by ΩAC(q) = ~vACq
where vAC ≃ 3.5 · 105 cm/sec is the speed of acoustic
phonons in Ge. We also make use of the long-wavelength
limit and approximate the acoustic phonon population
by kBT/ΩAC(q) ≫ 1. Then by considering a Boltzman
distribution of electrons and substituting Eqs. (32)-(34)
into Eq. (4) one gets

1

τs,intra
=

γ2
3

τ0

(

kBT

U0

)
7
2
[

sin2 ϑ+ (1 + cos2 ϑ)β
]

, (35)

where U0 =25.85 meV is the room-temperature thermal
energy. β≈ 0.12 and τ0 ≈ 0.3 ns are expressed by

β =
2mlγ

2
2 + 3mtγ

2
1

5mtγ2
3

, (36)

1

τ0
=

1024

3

(

1− mt

m∗
t

)2
Ξ2

E2
g,v

(md

2π

)
3
2 U

7
2
0

~4̺v2
AC

. (37)

In accord with momentum scattering, we have used
a value of Ξ= 7.5 eV for the deformation potential
constant.60 The anisotropy in the intravalley spin relax-
ation is evident [square bracket term in Eq. (35)]. Our
analysis shows that the lifetime is the longest for spin ori-
entation along the valley (and strain) axis where ϑ=0.
It drops by nearly a factor of 5 when the spin is oriented
in the perpendicular plane (ϑ= π/2). At room temper-
ature, this change amounts to reducing the intravalley
spin lifetime from ∼700 ns to ∼150 ns. These extremely
long timescales are a consequence of the space inversion
symmetry and the position of the valley center in the
edge of the Brillouin zone.
The dash line in Fig. 4 shows the calculated tem-

perature dependence of the intrinsic spin lifetime due
to intravalley scattering with long-wavelength acoustic
phonons. The spin orientation is chosen along the z-
axis [assigning cos2 ϑ=1/3 in Eq. (35)], and is there-
fore equivalent in all four valleys. Figure 4 also shows
that in unstrained bulk Ge, the spin lifetime of conduc-
tion electrons due to intravalley scattering with acoustic
phonons is two orders of magnitude longer than the inter-
valley spin lifetime at room temperature. In addition, at
very low temperatures the intrinsic spin lifetime reaches
timescales of one second. Therefore, the phonon-induced
spin relaxation is likely to be readily masked at very low
temperatures by hyperfine interactions and Raman pro-
cesses that are caused by extrinsic effects (e.g., electron
localization on residual impurities).13 Finally, the square
markers in Fig. 4 show results of rigorous numerical cal-
culations following the procedure in Ref. [9]. Details of
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FIG. 4: Calculated temperature dependence of the intrinsic
spin lifetime in unstrained Ge due to electron-phonon interac-
tion. The dash line denotes the effect of intravalley scattering
with long-wavelength acoustic phonons [Eq. (35)] for spin ori-
entation along the z-axis. The solid line denotes the much
stronger effect of intervalley scattering in the unstrained case
(Fig. 2). The markers are from rigorous numerical results (see
Appendix B). To the best of our knowledge, the only avail-
able measured spin lifetime in non-degenerate bulk Ge above
liquid He temperatures was recently reported by Guite and
Venkataraman where it was found that τs = 4.6 ± 1 ns.32

This result is in excellent agreement with the calculated spin
lifetime which in this temperature range is attributed to inter-
valley scattering. The rarity of experimental results, however,
calls for additional measurements to fully test our theory.

this numerical technique are provided in Appendix B.
Evidently, the analytical approach of using overlap inte-
grals provides rather accurate results and yet it clearly
explains the underlying physics.

Before concluding this part, we compare three aspects
of the intravalley spin relaxation in Si and Ge. First, the
overlap integral approach is valid in Ge due to the rela-
tively large separation of the non-degenerate conduction
band from other valence and conduction bands. In Si,
on the other hand, the intravalley spin relaxation is af-
fected by the proximity of the conduction bands where
the off-diagonal terms of the deformation potential play a
key role.10,13 Second, along the ∆-symmetry axis which is
relevant in Si, the spin-orbit coupling does not lift the en-
ergy degeneracy between the upper pair of valence bands.
As a result, the intravalley spin relaxation is not affected
by the internal spin-orbit coupling in the valence band
and the anisotropy is weaker in Si reaching a factor of
two.13 Finally, the intrinsic spin relaxation rate of the
intravalley process exceeds that of the intervalley process
below 50 K in Si,65 and below 20 K in Ge. Reasons for
the difference are the larger energy of zone-edge phonons
in Si and the T 5/2 rather than T 7/2 temperature depen-
dence of its intravalley process.

V. SUMMARY

We have presented various origins that limit the in-
trinsic spin lifetime of conduction electrons in Ge. In
unstrained bulk Ge and at T> 20 K, the intrinsic spin
lifetime is limited by intervalley electron scattering with
zone-edge phonon modes of X1 and X4 symmetries
(reaching ∼1 ns at 300 K). This spin lifetime is governed
by the coupling with the upper conduction bands and
its temperature dependence is set by the thermal popu-
lation of the zone-edge phonons (with energies of about
30 meV). By analyzing time reversal and crystal symme-
tries in the multivalley conduction band, we have found
the spin orientation dependence of the dominant inter-
valley spin-flip processes. This dependence allowed us to
quantify the change in the intervalley spin lifetime when
varying the spin orientation under various stress config-
urations [Eqs. (10)-(13)].
We have derived a spin-dependent k·p Hamiltonian

model in the vicinity of the zone-edge L point [Eqs. (18)-
(24)]. This compact model provides a lucid picture of
the spin-orbit coupling effects in Ge. Similar to using the
Kane model in zinc-blend semiconductors,66 the compact
L point Hamiltonian has implications beyond derivation
of spin-flip matrix elements. For example, by employ-
ing a plane-wave expansion along confined directions in
nanostructures, this Hamiltonian model can be used to
study spin-dependent properties in Ge nanostructures.
Together with Si related theories,10,13 one can also inves-
tigate spin properties in SiGe alloys.
Using the eigenvectors of the Hamiltonian matrix, we

have derived forms of the spin-flip matrix elements due
to intravalley scattering with long-wavelength acoustic
phonons [Eqs. (32)-(34)]. The intrinsic spin relaxation
rate of the intravalley process is found two orders of mag-
nitude slower than that of the intervalley process. As
such, intravalley spin flips affect the overall spin relax-
ation only when quenching the intervalley spin relaxation
(e.g., by application of a uniaxial compressive stress along
the [111] crystallographic axis).12 Beyond the T 7/2 tem-
perature dependence of the intravalley spin relaxation,
we have also quantified its dependence on the spin ori-
entation [Eq. (35)]. The anisotropy of the intravalley
spin relaxation results in a remarkably long spin lifetime
(nearly 1 µs at room-temperature) when the spin is ori-
ented along the valley (and strain) axis. The relatively
large anisotropy of the intravalley spin relaxation was
explained by the coupling with the internal spin-orbit in-
teraction in the valence band.
We have elucidated the differences in the spin relax-

ation of bulk Si and Ge crystals. While both materials
have a diamond-crystal structure, in Ge the valley center
is located in the edge of the Brillouin zone (L point) and
the lowest conduction band is well separated from other
bands. These properties lead to a very long intravalley
spin lifetime in Ge with a cubic power-law dependence
of intravalley spin flips on wavevector components. This
cubic dependence is also expected to be larger than in



11

graphene where unlike Ge but similar to Si, the time-
reversal operation couples states in inequivalent valleys.
Therefore, in spite of being heavier than Si and carbon,
non-degenerate and strained bulk Ge is a very promising
material choice for implementing spintronic devices.67–70

This work is supported by AFOSR Contract No.
FA9550-09-1-0493 and by NSF Contract No. ECCS-
0824075.

Appendix A: Derivation of the selection rules for

intervalley spin-flip transition

We first focus on scattering between the L111 and L111

valley centers [kL = (1, 1, 1)/2 and kLt = (1, 1,−1)/2].
Generalization to other valley centers is made in the end
of this Appendix.
The selection rules connecting L and Lt points involve

common symmetry operations of the little groups at kL,
−kLt and qX = kLt − kL,

gc ∈ { (ǫ|0), (ǭ|0), (δ2xȳ|τ), (δ̄2xȳ |τ),
(i|τ), (̄i|τ), (ρxȳ|0), (ρ̄xȳ|0) }. (A1)

They also involve operations that switch between kL and
−kLt,

ge ∈ { (δ2z |0), (δ̄2z|0), (ρz|τ), (ρ̄z |τ),
(ρxy|0), (ρ̄xy|0)}, (δ2xy|τ), (δ̄2xy |τ) }. (A2)

The bar over operations denotes an additional 2π rota-
tion (in double group notation). Table II lists the char-
acters of the nontrivial operations. By considering these
operations and time reversal symmetry, the number of in-
dependent nonvanishing matrix elements for each of the
zone-edge phonon symmetries in diamond-crystal struc-
tures (X1, X3, X4) is given by

NXi
=

1

2h0

[

∑

gc

χ−kLt

L+
6t

(gc)χ
kL

L+
6

(gc)χ
qX

Xi
(gc)

−
∑

ge

χkL

L+
6

(g2e)χ
qX

Xi
(ge)

]

, (A3)

where h0 = 8 is the number of gc or ge operations and
χL+

6(t)
= χL1(t)

× χ1/2. The second sum in Eq. (A3) de-

notes the effect of time reversal symmetry and the minus
sign takes into account the parity from the spinor basis
and electron-phonon interaction (see, Ref. [46] for more
details). By straightforwardly plugging the characters of
Table II into Eq. (A3) one finds the general selection rule
of Eq. (8).
Our aim is to express matrix elements of intervalley

electron scattering with X point zone edge phonons,

MXi
(kL, s1;kLt, s2) ≡ 〈kLt, s2|HXi

|kL, s1〉 , (A4)

in terms of NXi
independent constants. This identifica-

tion is made by connecting different matrix elements via
appropriate symmetry operations.

TABLE II: Non-trivial relevant IR characters and matrices in
a intervalley scattering between kL and kLt valleys. For ID
IR L1(t) and 2D IR X3, only characters are used and shown.
I and σx used in 2D IR X1 and X4 are the 2× 2 identity ma-
trix and Pauli matrix. These matrices are based our choice
of basis states. The final results do not depend on this spe-
cific choice since the two phonon modes belonging to each IR
are degenerate. χ−kLt

Lt
= χkLt

Lt
. Also shown is the effect of

exchange operations on L star. Basis states in D1/2 is along
±z in spin space.

X1 X3 X4 L1 L1t D1/2

(δ2xȳ |τ ) σx −I I 1 -1 e- 3πi
4

(

0 i
1 0

)

(i|τ ) σx 0 σx 1 -1

(

1 0
0 1

)

(ρxȳ|0) I 0 σx 1 1 e- 3πi
4

(

0 i
1 0

)

(δ2z|0) I -2 -I kL↔-kLt

(

−i 0
0 i

)

(ρz|τ ) σx 0 -σx kL↔-kLt

(

−i 0
0 i

)

(ρxy|0) I 0 -σx kL↔-kLt e- 3πi
4

(

0 1
i 0

)

(δ2xy |τ ) σx -2 I kL↔-kLt e- 3πi
4

(

0 1
i 0

)

First, by time reversal and space inversion symmetries
of diamond-crystal structures we can write

〈kLt,⇑ |HXi
|kL,⇑〉 = 〈kLt,⇓ |HXi

|kL,⇓〉∗, (A5)

〈kLt,⇓ |HXi
|kL,⇑〉 = −〈kLt,⇑ |HXi

|kL,⇓〉∗. (A6)

These identities hold for all phonons and possible spin
orientations. The minus sign in Eq. (A6) roots from the

Pauli matrix σy in the time reversal operator T̂ = K̂σy,

where K̂ is the complex conjugate operator.
We first study the case s‖z, where s is the spin ori-

entation. For X1, the (ρxȳ|0) operation equates spin-
conserving transition to itself (seen from the IR matrices
of X1 and DL+

6(t)
= DL1(t)

×D1/2 in Table II),

〈kLt,⇑ |H
X

a(b)
1

|kL,⇑〉
(ρxȳ|0)
= 〈kLt,⇓ |H

X
a(b)
1

|kL,⇓〉,(A7)

where two X1 basis states are denoted as Xa
1 and Xb

1 .
This choice is arbitrary and will not affect the final re-
sults due to the 2-fold degeneracy of the phonon modes.
Eqs. (A5) and (A7) require the matrix elements of each of
the X1 phonon branches to be a real number. From Ta-
ble II, one can also find (i|τ) relates the matrix elements
of the two degenerate modes by a minus sign,

〈kLt,⇑ |H
X

a(b)
1

|kL,⇑〉
(i|τ)
= −〈kLt,⇑ |H

X
b(a)
1

|kL,⇑〉.(A8)
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With this additional information, a real number DX1,m

could be assigned such that

〈kLt,⇑|HXa
1
|kL,⇑〉=−〈kLt,⇑|HXb

1
|kL,⇑〉=DX1,m,(A9)

Other operations do not give further information on these
matrix elements.
With the same operations, the result for spin-flip tran-

sition is

〈kLt,⇓|HX
a(b)
1

|kL,⇑〉
(ρxȳ|0)
= −i〈kLt,⇑|HX

a(b)
1

|kL,⇓〉,(A10)

〈kLt,⇓|HX
a(b)
1

|kL,⇑〉
(i|τ)
= −〈kLt,⇓|HX

a(b)
1

|kL,⇑〉. (A11)

Together with Eq. (A6), we can assign a real number
DX1,s such that

〈kLt,⇓ |HXa
1
|kL,⇑〉 = −〈kLt,⇓ |HXb

1
|kL,⇑〉

= (1 + i)DX1,s. (A12)

Next we analyze matrix elements due to X4 modes,
where there is only one independent scattering constant.
From Table II, the operations (δ2xȳ|τ) and (i|τ) give re-
lations for spin-conserving transitions

〈kLt,⇑|HX
a(b)
4

|kL,⇑〉
(δ2xȳ |τ)

= −〈kLt,⇓|HX
a(b)
4

|kL,⇓〉,(A13)

〈kLt,⇑|HX
a(b)
4

|kL,⇑〉
(i|τ)
= −〈kLt,⇑|HX

b(a)
4

|kL,⇑〉. (A14)

Together with Eq. (A5), a real number DX4,s could be
assigned

〈kLt,⇑|HXa
4
|kL,⇑〉=−〈kLt,⇑|HXb

4
|kL,⇑〉= iDX4,s.(A15)

For spin-flip transitions, the exchange operation (δ2z|0)
together with the general time reversal operation connect
the matrix elements to their negatives,

〈kLt,⇓ |H
X

a(b)
4

|kL,⇑〉
(δ2z |0)
= (A16)

〈-kL,⇓ |H
X

a(b)
4

|-kLt,⇑〉 TR
= −〈kLt,⇓ |H

X
a(b)
4

|kL,⇑〉,

where the time reversal operation sends electron states to
their Kramers conjugate, and keeps the electron-phonon
interaction. Thus spin-flip matrix elements duo to X4

phonon modes vanish.
Therefore, with spin direction along z, the scattering

matrices from kL to kLt for relevant phonon modes are

HXa
1
=−HXb

1
=





DX1,m (−1 + i)DX1,s

(1 + i)DX1,s DX1,m



, (A17)

HXa
4
=−HXb

4
=





iDX4,s 0

0 −iDX4,s



 , (A18)

where Eqs. (A5) and (A6) are used to get two other el-
ements in each matrix. Eqs. (A17) and (A18) indicate

that in this specific case, X1 is allowed for both spin-
conserving and spin-flip transitions, while X4 is only al-
lowed for spin-conserving transition.
Next we extend the analysis to arbitrary spin orien-

tation, which leads to the anisotropy of spin relaxation
processes and enables a direct comparison to a wide range
of spin injection experiments. The spin orientation (s) is
defined in terms of polar (θ) and azimuthal angles (φ)
with respect to the +z and +x directions. The new spin
states relate to the original ones by an ‘active’ rotation
matrix in spin sub-space,

exp

(

iσ ·ω̂ θ

2

)

=







cos
θ

2
− sin

θ

2
e−iφ

sin
θ

2
eiφ cos

θ

2






, (A19)

where ω̂ = ŝ × ẑ/|ŝ × ẑ| is the unit vector along the
rotation axis. The new spin states follow

|kL,⇑〉 = cos
θ

2
|kL,⇑z〉+ sin

θ

2
eiφ|kL,⇓z〉, (A20)

|kL,⇓〉 = − sin
θ

2
e−iφ|kL,⇑z〉+ cos

θ

2
|kL,⇓z〉, (A21)

while the new scattering matrices from kL to kLt are
readily obtained by applying the rotation operator of
Eq. (A19) on the matrices Eqs. (A17) and (A18). The
new spin-flip matrix elements are

〈kLt,⇓|HXa
1
|kL,⇑〉 = −〈kLt,⇓|HXb

1
|kL,⇑〉 (A22)

=

[

(1 + i) cos2
θ

2
+ (1− i) sin2

θ

2
e2iφ

]

DX1,s,

〈kLt,⇓|HXa
4
|kL,⇑〉 = −〈kLt,⇓|HXb

4
|kL,⇑〉 (A23)

= i sin θeiφDX4,s.

Summing the square amplitudes of the two branches
leads to Eq. (9) in the paper. Table III lists the rela-
tive magnitudes of the squared spin-flip matrix elements
for s along several inequivalent high-symmetry directions
of the crystal.
The matrix elements are determined by the rele-

vant directions of the spin orientation and the valley-
to-valley configurations. For configurations other than
L111 ↔ L111, the matrix elements could be obtained
from Eq. (9) by coordinate transformations. If we rewrite
Eq. (9) in the form of the projections of s on x, y, z axes
as

∑

i=1,2

|〈kLt,⇓|HXi
j
|kL,⇑〉|2 (A24)

=

{

2D2
X1,s

(1 + ẑ2 + 2x̂ŷ), if j = 1,
2D2

X4,s
(1 − ẑ2), if j = 4,

then in other valley-to-valley configurations, for example,
L111 ↔ L111, the matrix elements are just interchange
{x̂, ŷ, ẑ} of Eq. (A24) into {x̂,−ẑ, ŷ}. Results of all pos-
sible configurations are listed in Table I of the paper.
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TABLE III: |MXi(kL, s;kLt,−s)|2/2D2
Xi

for intervalley spin flips between L111 and L111̄ valleys. For each of the non-vanishing
modes, Xi, the relative amplitude is provided for spin orientation (s) along any of the inequivalent high-symmetry crystal
directions. Results between other valleys can all be obtained by trivial rotation transformation.

s [0 0 1] [1 0 0] [1 1 0] [1 1̄ 0] [1 0 1] [1 1 1] [1 1̄ 1]

X1 4 2 4 0 3 4 4/3

X4 0 2 2 2 1 4/3 4/3

Appendix B: Calculating values of matrix elements

and of intervalley spin-flip scattering constants

We present the procedure to numerically calculate the
values of spin-flip matrix elements [Mν(k1,⇑;k2,⇓)] and
of the intervalley spin-flip scattering [DX1,s and DX4,s

in Eq. (9)]. These results are then used to calculate the
spin lifetime using a numerical technique that is briefly
discussed in the end of this Appendix. The bra and ket

states in matrix elements are taken from the results of
a local empirical pseudopotential method (EPM) where
spin-dependent states have the form,59

|k,⇑, ℓ〉 = exp(ik · r)
Ng
∑

gj

Cgj
(k,⇑, ℓ) exp(igj · r),

|k,⇓, ℓ〉 = exp(ik · r)
Ng
∑

gj

Cgj
(k,⇓, ℓ) exp(igj · r) .(B1)

The three quantum numbers of a state are the wavevector
(k), band number (ℓ) and spin state (⇑ or ⇓). gj runs
over Ng reciprocal lattice vectors for each of the two spin
species,

Cgj
(k,⇑, ℓ) = agj

(k, ℓ)|↑〉+ bgj
(k, ℓ)|↓〉

Cgj
(k,⇓, ℓ) = a∗gj

(k, ℓ)|↓〉 − b∗gj
(k, ℓ)|↑〉. (B2)

To find the agj
(k, ℓ) & bgj

(k, ℓ) coefficients and to facil-
itate the calculation of matrix elements we define a bare
potential and spin-orbit coupling functions,

V+(k) = [Vk cos (k · τ )] I (B3)

Vso(k1,k2) = −iµ0A(k1,k2) cos(∆k·τ ) {k3 · σ} . (B4)

±τ = ±(a, a, a)/8 denotes positions of the two atoms in
the unit cell where a is the lattice constant and the origin
is the midpoint between the two atoms. The wavevector
parameters are ∆k = k1 − k2 and k3 = k1 × k2. Vk is
the form factor relating to the Fourier transform of the
local atomic pseudopotential. A(k1,k2) and µ0 denote
spin-orbit coupling parameters which are set by the po-
tential close to the atom cores. These three variables are
discussed in a greater detail below.
To account for scattering between arbitrary states, one

needs to obtain the continuous curve of the form factor
(Vk). We have employed a piecewise Hermite cubic inter-
polation from empirical values of the form factor at the

first few reciprocal lattice vectors and from its wavevector
derivative at these points,

V0=−0.558, V√3 =−0.288, V√8 =0.029, V√11 =0.052,

V ′
0 =0, V ′√

3
=0.386, V ′√

8
=0.221, V ′√

11
=−0.066.

where k is in units of 2π/a and Vk in Ry. We also assume
that Vk>3.8 = 0 in agreement with its negligible values in
this wavevector range. All these values were chosen af-
ter careful calibration in which not only the band struc-
ture of Ge is recovered but also its deformation potential
quantities (shifts of energy bands and changes of energy
gaps with respect to stress). Given that a lattice vibra-
tion is essentially a dynamic stress, these quantities are
imperative for scattering problems.
For the spin-orbit coupling parameters [Eq. (B4)], we

have followed the analysis of section F in Ref. [59].
A(K1,K2) is calculated from atomic radial functions us-

ing Herman-Skillman tables,71 while µ0 = 11.3 meV·Å2

is the only free parameter whose value is chosen to fit
experimentally known parameters such as the split-off
energy. An approximate but more compact approach to
treat the atomic spin-orbit coupling follows Eq. (8) of
Ref. [72] whose parameters for Ge are µ=12.25 meV and

ζ =10 Å
−1

.
Using Eqs. (B3)-(B4), the wavefunction coefficients in

Eq. (B2) are eigenvectors of a 2Ng×2Ng Hamiltonian
matrix constructed from the following 2×2 blocks,59

Hg1,g2(k) =

[

~
2|g1 + k|2
2m∗ δg1,g2

]

I + V+(∆g)

+Vso(K1,K2). (B5)

∆g = g1 − g2 and K1(2) = g1(2) + k. In order to fit the
band structure, we have used a plane-wave basis with
Ng=235 reciprocal lattice vectors for each spin species
and used m∗=1.235m0 in the kinetic term of Eq. (B5).
The resulting energy band-structure is shown in Fig. 3.
Following Eq. (2) of the main text, the spin-flip matrix

element reads

Mν(k1,⇑;k2,⇓) =
∑

j,α

ξα,ν(q)e
iqRjα

· 〈k2,⇓ |∇rVat(r−Rjα)|k1,⇑〉 , (B6)

where the band index is omitted from the bra and ket

states knowing that the scattering is between states of the
lowest conduction band. The atom displacement vector
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[ξα,ν(q)] is calculated from a standard adiabatic bond-
charge model in Ge, where we use without changing the
force constants from Refs. [53,73] except that we set the
convergence parameter to P = 0.25 to achieve fast Ewald
transformation. The number of reciprocal lattice vectors
used is 59 and of real lattice vectors is 55.
The electron-phonon interaction matrix element in

Eq. (B6) is easy to write down in terms of plane-wave
basis states. Substituting Eqs. (B1)-(B4) into Eq. (B6)
and changing the integration coordinates, r → r +Rjα,
we get that

Mν(k1,⇑;k2,⇓) =
∑

g1,g2

∆K ·
∑

α

ξα,ν(q) ×

C†
g2
(k2,⇓) [V+(|∆K|) + Vso(K1,K2)] Cg1(k1,⇑), (B7)

where K1(2) = g1(2) + k1(2), ∆K = K2 − K1, and
q = k2 − k1 is a result of the crystal translation sym-
metry. It is critical to use identical parameters in the
electron-phonon interaction [Eq. (B7)] and in the Hamil-
tonian [Eq. (B5)]. This natural choice ensures the so
called Elliott-Yafet cancelation,42 in which intravalley
spin-flip matrix elements in Ge vanish at the 0th, 1st,
and 2nd powers of the wavevector components (see dis-
cussion in appendix D). Using Eq. (B7), the bare poten-
tial part, V+, corresponds to Elliott processes in which
spin flips are governed by coupling of opposite spin com-
ponents in the state coefficients. The spin-orbit coupling
part, Vso, corresponds to Yafet process in which spin flips
are governed by σx and σy components of the spin-orbit
coupling.
The intervalley spin-flip scattering constants, DX1,s

and DX4,s, are calculated from Eq. (B7) by consider-
ing the ν = X1 and ν = X4 phonon symmetries with
L point states: k1 = kL, k2 = kLt and q = kLt − kL.
Using these phonon symmetries and wavevectors we get
that DX1,s = 35meV/Å and DX4,s = 46meV/Å. When
performing rigorous numerical integration of the spin life-
time [Eq. (4) of the main text], we have used a grid
spacing of 0.005× 2π/a in k space while using Eq. (B7)
to calculate the spin-flip matrix elements for all possible
k1 and k2 combinations up to state energies ∼200 meV
above the conduction edge. These numerical results are
shown by the marker symbols in Figs. 2 and 4.

Appendix C: Derivation of the spin-dependent

L-point Hamiltonian and calculation of its

parameters

We use the method of invariants to derive the Hamilto-
nian. The general procedure is: 1. Figuring out the two
IRs of the coupling matrix; 2. Decomposing the direct
product of these two IRs into a sum of IR(s); 3. Accord-
ing to this decomposition, associating invariant compo-
nents and matrices to construct the Hamiltonian. These
invariant components and matrices are obtained by ap-
plying the symmetry operators on the components of the

perturbation and the chosen basis states, respectively.
Associating the invariants to IRs is then carried by exam-
ining the resulting transformation. Table IV lists these
invariant components and matrices of the L111 point.
From this table, the constructions of Hij in Eqs. (20)-
(24) are straightforward.

TABLE IV: Relevant invariant components and matrices
of the L111-point. The {Λ,w,u} are valley coordinates
[Eq. (refeq:cart)].

IRs Invariant components (111) Invariant matrices

L1 k2, − 1
2
(k2

w + k2
u) + k2

Λ 1, I

L2 σΛ ρy

L3 {σw, σu} {[0, 1], [1, 0]}, {ρx, ρz}

L′

3 {−kw, ku}, {(k× σ)w, (k× σ)u} {[0, 1], [1, 0]}

Table V lists all of the calculated parameter constants
that appear in the L point Hamiltonian where some
values are also known empirically.57,74 The energy-gaps
(Eg,u and Eg,v), spin-orbit induced splitting (∆3 and
∆3′), and masses are readily extracted from the spin-
dependent band structure whose calculation details were
discussed in Appendix B (the resulting energy bands
are shown in Fig. 3). Interband parameters were cal-
culated using a different technique which involves spin-
independent states of different bands in the L point,

|kL, ℓ〉 = exp(ikL · r)
Ng
∑

gj

cgj
(k, ℓ) exp(igj · r), (C1)

where cgj
(k, ℓ) are elements of the eigenvectors of the

spin-independent EPM Hamiltonian. Then, the evalu-
ation of momentum matrix elements (P , P1 and P2 in
Table V) follows directly from

P =
~
2

m0

∑

g

gc∗g(kL, ℓi)cg(kL, ℓj) .

When calculating P , ℓi is the lowest conduction band, ℓj
is one of the doubly degenerate upper valence bands, and
the non-vanishing components of g are {gw, gu} (w and
u are the transverse components lying perpendicular to
the valley axis connecting the Γ and L points). When
calculating P1 and P2, ℓi and ℓj are from the upper con-
duction and valence bands. P1 is evaluated with gw and
gu while P2 with gΛ (longitudinal component; along the
valley axis).
The interband spin-orbit coupling parameters (∆L and

α) follow from the interaction of L states via λ[∇V ×
(p + ~k)] where λ = ~/(4m2

0c
2). These constants are

evaluated from
∑

g1,g2

[

c∗g2
(kL, ℓi)Fsocg1(kL, ℓj)

]

. (C2)
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In calculating ∆L, the spin-orbit coupling vector reads

Fso = −i
[

µ0A(K1,K2) cos(∆g·τ )
]

K1 ×K2. (C3)

where Ki = gi+kL, ∆g = g1−g2, and other parameter
are the same as in Eq. (B4). In addition, the involved
bands [ℓi and ℓj in Eq. (C2)] are the lowest and upper
conduction bands. In calculating α, the involved bands
are from the lowest conduction band and upper valence
bands while the spin-orbit coupling vector reads

Fso = −i
µ0

k

[

A(K′
1,K

′
2) cos(∆g·τ )K′

1 ×K′
2

−A(K1,K2) cos(∆g·τ )K1 ×K2

]

, (C4)

where K′
i = gi + kL + k and k is measured from the

L point along transverse axes (k = kŵ or k = kû).

TABLE V: Parameters of the L point Hamiltonian [Eqs. (20)-
(24)] for bulk germanium. m0 denotes the free electron mass.
See text for calculation details.

Eg,u 2.2 eV P 9 eV·Å m∗

t 0.17m0

Eg,v 3.3 eV P1 7 eV·Å m∗

l 1.60m0

∆L 0.027 eV P2 1.8 eV·Å m∗

t,3 1.2m0

∆3 0.022 eV α 0.04 eV·Å m∗

l,3 1.7m0

∆3′ 0.1 eV m∗

t,3′ -0.16m0

m∗

l,3′ 1.9m0

Appendix D: Wavevector Order Analysis of

Intravalley Spin-Flip Transitions

The theory for intravalley spin flips in Ge and Si share
similar features. In Ref. [13], we have analyzed the case
of Si. Here we summarize the important findings and
discuss the difference for the case of Ge. By invoking
space inversion and time reversal symmetries the leading
order terms of intravalley scattering between |k1 = K+
q/2, ⇑〉 and |k2 = K− q/2, ⇓〉 are found to be

q⊗2

8

〈

K,⇓
∣

∣

∣(L†)⊗2A+,λ
q +A+,λ

q L
⊗2 − 2L†A+,λ

q L

∣

∣

∣K,⇑
〉

+
q

2
·
〈

K,⇓
∣

∣

∣
L

†A−,λ
q +A−,λ

q L

∣

∣

∣
K ⇑

〉

, (D1)

where lower order terms (in q) vanish due to the cel-
ebrated Elliott-Yafet cancelation.13,42 We explain the
symbol notations of these matrix elements. q⊗2·L⊗2 de-
notes the scalar product of two second-rank tensors (each
formed by a dyadic product of the vector with itself). L
is the derivative in k-space with its components defined
by

Li|k, s〉 ≡ lim
δk→0

|k+ δki, s〉 − |k, s〉
δki

. (D2)

In connection with the L point Hamiltonian, L operates
on the eigenvectors [Cγ(k, s)] and the envelope phase of

the wavefunction [exp (ik · r)]. The electron-phonon in-
teraction in Eq. (D1) is given by

A±,λ
q = ξ±,λ

q ·∇V± , (D3)

where the + and − signs denote, respectively, the in-
phase and out-of-phase motion of atoms in the unit-cell.
For scattering with long-wavelength acoustic phonon
modes (λ is TA or LA), the out-of-phase polarization vec-
tor (ξ−,λ

q ) is linear in q while the in-phase vector (ξ+,λ
q )

has a zeroth-order dependence (e.g., qi/q terms). It is the
opposite case for scattering with long-wavelength optical
phonon modes (λ is TO or LO). These wavevector depen-
dencies are taken into account in finding the power-law
order of the intravalley spin-flip matrix element. Denot-
ing the atoms positions in the unit cell by τA and τB with
respect to the cell’s origin, the potential in Eq. (D3) reads

V±(r)=Vat(r − τA)± Vat(r− τB), (D4)

where the spin-orbit interaction is included in the atomic
potential [Eq. (3)].
In the next step of the analysis, we expand the states

around the valley center. The bra and ket states in
Eq. (D1) are taken at the average of k1 = K+ q/2 and
k2 = K − q/2. We expand this averaged state around
the valley center position (K0),

|K, s〉 = |K0, s〉+K ·L|K0, s〉+O(K2) , (D5)

where K is measured with respect to K0. Substitut-
ing this expansion in Eq. (D1), one can identify which
terms vanish. This identification is carried straightfor-
wardly using the transformation properties of L, ∇V±
and |K0, s〉 under space inversion and time reversal sym-
metries.
The difference between the analysis of Si and Ge stems

from the position of the valley center. The valley cen-
ter in Ge is at the zone-edge L point, and in Si it is
inside the Brillouin zone (0.15 × 2π/a away from the
X point along the ∆-axis). Since K0 and −K0 are the
same point in Ge, space inversion operation keeps |K0, s〉
invariant in Ge but not in Si. Together with the transfor-
mations of L, ∇V±, and |K0, s〉 one can readily identify
the dominant contributions to intravalley spin-flip ma-
trix elements. Scattering with long-wavelength acoustic
phonons is led by qℓqm products in Si and by Kℓqmqn
products in Ge. For scattering with long-wavelength op-
tical phonons, the leading terms in Si are linear in q,
and in Ge they include Kℓqm products. Finding the ex-
act products, their coefficients and deformation potential
constants requires a combination of k·p, rigid-ion and
group theories.13
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