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We study all of the leading-order contributions to spin relaxation of conduction electrons in silicon
due to the electron-phonon interaction. Using group theory, k ·p perturbation method and rigid-ion
model, we derive an extensive set of matrix element expressions for all of the important spin-flip
transitions in the multi-valley conduction band. The scattering angle has an explicit dependence on
the electron wavevectors, phonon polarization, valley position and spin orientation of the electron.
Comparison of the derived analytical expressions with results of empirical pseudopotential and
adiabatic band charge models shows excellent agreement.

I. INTRODUCTION

Silicon is an ideal material choice for semiconductor
spin-based devices.1–3 It has a relatively weak spin-orbit
coupling which leads to a negligible probability of flipping
the electron’s spin during a scattering event. Further-
more, the Dyakonov-Perel spin relaxation mechanism is
absent in bulk silicon due to its inversion symmetry (i.e.,
no intrinsic magnetic field around which the electron spin
precesses).4 Finally, the zero nuclear spin of its naturally
abundant isotope suppresses spin relaxation by hyperfine
interactions.5–7 These characteristics have motivated a
wide interest in silicon spintronics.8–16

In cases where spin dephasing by precession is weak,
the spin relaxation rate is set by spin-flip scattering.
For conduction electrons in crystals, this scattering
is described by a matrix element of the form 〈k2,⇓s

|Hsf |k1,⇑s〉 where the states are identified with wavevec-
tor k due to the translational symmetry. For a given spin-
flip mechanism (Hsf), this matrix element depends on the
initial and final state wavevectors k1 and k2, as well as
on the spin orientation s. In silicon, conduction electrons
reside in six valleys near the edges of the Brillouin zone as
shown in Fig. 1(a). The valley centers are positioned on
the ∆-axis connecting the Γ and X points. In multivalley
semiconductors, the electron remains in the same valley
after an intravalley scattering and it switches valleys af-
ter an intervalley scattering. Figure 1(a) shows examples
of intervalley scattering in Si, where g and f processes
refer to electron scattering between opposite valleys and
between valleys that reside on perpendicular crystal axes,
respectively. When dealing with spin-flip scattering, the
spin orientation (s) further breaks the scattering sym-
metry. The resulting anisotropy in spin relaxation de-
pends on the projections of s on crystallographic axes
[Fig. 1(b)].

Spin-flip mechanisms can be classified into Yafet and
Elliott processes. The former involves spin-dependent
interaction whereas the states are viewed as pure spin
states.17 Examples of spin-dependent interactions include
the spin-orbit coupling of the host crystal via electron-
phonon interaction (Hsf ∼ δR · ∇Vso), spin-orbit cou-
pling of defects via electron-impurity scattering (Hsf ∼
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FIG. 1. (Color online) (a) Valley positions and high symmetry
points in the Brillouin zone. Valley centers are about 0.15 ×
2π/a from the X points where a is the lattice constant. Also
marked are representative intervalley transitions by g and f
processes. (b) The spin orientation (s) with respect to the
crystallographic axes.

∇Vimp×p ·σ), and electron-nuclear hyperfine interaction
(Hsf ∼ λS · I). The Elliott processes are governed by
spin mixing in the electron states due to the crystal spin-
orbit coupling, whereas the interaction is spin indepen-
dent (e.g., δR ·∇V ).18 In this paper the focus is on spin
relaxation due to the electron-phonon interaction where
the interplay between Elliott and Yafet processes plays a
key role in setting the intrinsic spin lifetime. In Sec. II we
provide a general overview of the spin relaxation mech-
anisms in n-type silicon and we show that the electron-
phonon interaction dominates the spin relaxation of con-
duction electrons over a wide range of temperature and
doping conditions.

The spin relaxation due to electron-phonon interac-
tion in silicon was studied using different theoretical
approaches. The seminal works of Overhauser, Elliott
and Yafet enabled an approximate quantitative connec-
tion between the spin and momentum relaxation times
via the shift of the g-factor.17–19 Yafet also derived a
general form of the intravalley scattering by acoustic
phonon modes.17 Intervalley scattering was included in
three recent works.20–22 Numerical analysis of the mea-
sured spin relaxation times above 50 K in intrinsic silicon
was carried out by Cheng, Wu and Fabian.21 The anal-
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ysis included calculation of electron energies and states
using an empirical pseudopotential model (EPM),23 of
phonon dispersion and polarization vectors using an adi-
abatic bond charge model (ABCM),24 and of a rigid-
ion model approximation to describe the electron-phonon
interaction.25 An analytical approach was then devel-
oped by Li and Dery using a compact spin-dependent
k ·p Hamiltonian model around the zone edge X point.20

This model was then used to derive the dominant spin-
flip matrix elements where the spin-orbit coupling signa-
ture appeared only in the expansion of electronic states.
The electron-phonon interaction, on the other hand, was
mimicked by a phenomenological connection with defor-
mation potential and scattering parameters. In another
recent theory, Tang, Collins and Flatté have used a tight-
binding model to calculate the spin relaxation in strained
silicon and germanium.22

In this paper we present a comprehensive theory of
phonon-induced spin-flip mechanisms of conduction elec-
trons in bulk silicon. Matrix elements are derived us-
ing two different approaches based on whether they are
wavevector dependent or not. Table I presents the power-
law dependence for spin-flip and spin-conserving matrix
elements as well as the theoretical approaches to de-
rive their forms. When transitions between valley-center
states do not vanish [i.e., M(k0, s ; k

′
0,±s) 6= 0, k0, k

′
0 at

respective valley centers], group theory can be used alone
to derive explicit forms of their matrix elements includ-
ing the spin orientation dependence. As shown in the
right column of the table, spin-conserving scattering is
wavevector independent other than with long-wavelength
acoustic phonons. On the other hand, spin-flip scattering
is wavevector independent only for the f -process whereas
other processes have higher power-law dependence than
in spin-conserving scattering. As a result, the f -process
is dominant in spin relaxation whereas its weight is com-
parable to other processes in momentum relaxation. In
the next three paragraphs we discuss key aspects of the
present work including explanation of the approach to
derive wavevector-dependent matrix elements.

For every type of electron-phonon scattering, we ex-
press the leading-order spin-flip matrix elements as func-
tions of the electron wavevector (k), phonon polariza-
tion (ξ), valley position of the electron and its spin ori-
entation (s). For the important f -process we derive a
complete set of selection rules by rendering double group
representation matrices in conjunction with time reversal
symmetry. This approach is more informative than the
common practice of using the character table since it dis-
tinguishes between momentum and spin scattering pro-
cesses, it unambiguously identifies parameters for both
processes, and it is generalized for any spin orientation.
The latter is important in analyzing experimental mea-
surements where the orientation of injected spins is dic-
tated by the shape and magnetocrystalline anisotropy of
ferromagnetic contacts or by the propagation and helicity
of a circularly-polarized light beam.

In the analysis of intravalley and g-process spin flips

TABLE I. Power-law dependence of leading order matrix ele-
ments for all types of electron-phonon scattering. k1,2 are the
initial and final electron wavevectors. q and K denote their
difference and average, respectively. Intravalley scattering is
divided to interaction with long-wavelength optical (OP) and
acoustic (AC) phonons. Also mentioned are theoretical ap-
proaches to derive explicit forms of the matrix elements (be-
yond the power-law dependence). See text for further details.

M(k1, s ; k2,−s) M(k1, s ; k2, s)

f -process k-independent,
double group.

k-independent,
single group.

g-process linear-in-K,
‘k·p’+single group.

k-independent,
single group.

intravalley AC: quadratic-in-q,
OP: linear-in-q,
‘k·p’+single group.

AC: linear-in-q,
OP: k-independent,
‘k·p’+single group.

we employ a different approach. Derivation of selection
rules in these cases cannot be carried out solely by group
theory because the spin-flip matrix elements are wavevec-
tor dependent. Instead, we utilize a combined approach
that involves spin-dependent k · p, rigid-ion and group
theories. Ad hoc selection rules are derived for electron-
phonon interaction between basis functions that appear
in the k·p expansion of states around the valley center.
The selection rules are derived from single group theory
whenever multiple bands have to be included in the k ·p
expansion. Double group bares no advantage in this case.
This theoretical procedure allows us to include the crys-
tal symmetry not only in the electronic states but also in
the electron-phonon interactions. One outcome is that
new scattering-angle symmetries are revealed. We derive
appealing matrix element forms by employing an elas-
tic continuum approximation for diamond crystal struc-
tures. A second outcome is that the out-of-phase motion
of atoms in the primitive cell is quantified and shown to
play a role in all types of intravalley spin-flip processes
including scattering with acoustic phonons.
In this paper we thoroughly study the proximity effect

between the lowest pair of conduction bands in silicon.
In his seminal work, Yafet showed that the intravalley
spin-flip matrix element due to scattering with acous-
tic phonon modes is proportional to the general form
C∆soq

2/E2
g where C is a deformation potential constant,

Eg is the energy gap from bands where the spin-orbit cou-
pling is considered (upper valence bands), and ∆so is the
strength of the coupling.17 The quadratic dependence on
the phonon wavevector (q2) is a consequence of time re-
versal and space inversion symmetries. This quadratic
dependence allowed Yafet to predict the T−5/2 temper-
ature dependence of the spin lifetime due to intravalley
electron scattering with acoustic phonon modes. Yafet’s
general matrix element, however, misses two important
features. First, the scalar form of this matrix element
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does not provide details of the dominant phonon modes
and cannot capture the dependence on directions of q

and s. Second, the interband deformation potential be-
tween the lowest pair of conduction bands plays a crucial
role in intravalley spin relaxation of silicon. As a result,
∆so/E

2
g should be replaced by ∆so/(Eg∆C) where ∆C

denotes the band gap between the two conduction bands
at the valley center.20 This interband coupling is a unique
feature of the conduction band in silicon. It results from
the proximity of the valley center to the two-band de-
generacy at the X point. This coupling also explains the
discrepancy between theoretical predictions of the spin
lifetimes in strained silicon.15,22 This discrepancy can be
resolved by inclusion of d-orbitals in the tight-binding
model to correctly capture the electronic behavior near
the X point.26

Paper organization and outline of central results

This paper is organized as follows. Section II surveys
various spin relaxation processes in n-type silicon. Sec-
tion III provides a theoretical framework for the electron-
phonon interaction. The dominant f -process is studied
in Sec. IV. Using four scattering constants, Eq. (17)
lists explicit forms of the f -process matrix elements as
a function of the phonon symmetry and of the spin ori-
entation. In section V we present detailed derivations
and extensive results of intravalley and g-process spin
flips. This section begins with an introduction of the
special features and tabulation of representative results
(Table V). Selection rules and Hamiltonian forms are
introduced in section VA, as well as accurate state vec-
tors up to quadratic-in-k terms. Sections VB-VD in-
clude derivations of the core spin-flip matrix element ex-
pressions with spin orientation dependence [Eqs. (57)-
(59) with their deformation potential constants defined
in Eqs. (46), (48) and (55)]. Some insights about the
relation between analytical derivation and EPM are dis-
cussed in Sec.VI. Spin lifetimes from integrating analyt-
ical matrix elements [Eqs. (61)-(63)] as well as different
levels of numerical calculations are presented and com-
pared in Section VII. Section VIII includes a summary of
results and an outlook on future work. Appendices A-F
include technical details from different derivation phases.

II. SPIN RELAXATION PROCESSES

Spin lifetime of electrons in n-type bulk silicon varies
by more than 12 orders of magnitude with changing tem-
perature and doping conditions.27–48 We summarize the
important mechanisms using the map in Fig. 2.
In the low-temperature and non-degenerate regime (re-

gion 1), electrons freeze on isolated donor sites. The
ground states is split into 6 states (without spin) due to
valley-orbit coupling.49 For typical shallow donors such
as phosphorus the singlet (nondegenerate) state is lo-
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FIG. 2. (Color online) Diagram of dominant spin relaxation
mechanisms in n-type silicon as a function of temperature and
donor concentration. It is applicable at or near equilibrium
conditions. In region 1 electrons are localized on isolated im-
purity sites. In regions 4(3) they populate the conduction
(impurity) band. Region 2 is a precursor of the impurity
band (donor clusters). Region 5 includes more than a sin-
gle phase. Transitions between regions are generally gradual
and colors as well as dashed border lines are added for ease
of illustration. The findings in this paper are relevant for
non-degenerate conditions (<1017 cm−3) in region 4.

cated ∼45 meV below the conduction band edge, while
the doublet (two-fold degenerate) and triplet (three-fold
degenerate) states are only slightly split and located
∼35 meV below the conduction band edge. The ex-
tremely long spin lifetime of localized electrons in region 1
is governed by electron-phonon Raman processes and by
hyperfine interactions with the non-zero nuclear spin of
the impurity or Si29 isotopes.33,50–53 As an example, we
mention the Orbach process which was shown by Castner
to dominate between 5 K and 20 K.53 Spin flips at the
low-energy singlet state are caused by phonon-induced
virtual transitions to intermediate triplet states at which
the spin-orbit coupling admixes spin-up and spin-down
components. This process requires an initial absorption
of a ∼10 meV phonon to mediate a singlet-to-triplet tran-
sition followed by phonon emission to transfer the elec-
tron back to the singlet state but with opposite spin.

The spin relaxation in region 3 of Fig. 2 is due to the
formation of an impurity band. At these low temper-
atures and intermediate donor concentrations, the im-
purity band is populated and separated from the nearly
empty conduction band. Compared with region 1, the
spin relaxation is enhanced by orders of magnitude due
to the overlap of wave functions in different impurity
centers.30 On the insulator side (region 2), the spin re-
laxation is governed by exchange interactions between
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localized electrons and by rich hyperfine configurations
of donor clusters.29,35,54 In barely metallic samples (re-
gion 3) the spin admixture is increased by broadening of
the triplet and singlet bands.47,55 Spin relaxation is then
governed by exchange and motional narrowing when elec-
trons travel across the (random) potential.39,43–47,55

Spin relaxation in region 4 of Fig. 2 is of conduc-
tion electrons. Transition into region 4 is made either
by increasing the temperature (electrons are thermally
excited to the conduction band), or when the impurity
band is merged into the conduction band (heavily de-
generate doping). Region 4 is pertinent to spintronic
devices in which electrons are swept away from the mag-
netic junction.48,56–64 Then, the relaxation is governed by
impurity scattering (degenerate doping) or by electron-
phonon interactions (non-degenerate doping). In lateral
spintronic devices, on the other hand, electrons are kept
at the vicinity of the contact,65–72 and the transport is af-
fected by the geometry and properties of the contact.73–80

Spin lifetimes that exceed the 1 ns scale were recently re-
ported in lateral devices that incorporate a highly degen-
erate n-type silicon channel.81–86 These reports suggest
that impurity scattering in the bulk silicon channel plays
an important role in heavily degenerate lateral devices
that rely on spin accumulation.

Electron-phonon interaction plays a key role in the
non-degenerate doping regime of region 4. In nearly in-
trinsic conditions, it dominates the spin relaxation al-
ready above ∼30 K,48 while at ∼1017 cm−3 it dominates
above∼100 K. The increase in temperature is brought by
the extended range at which freeze-out conditions persist,
by exchange between free and localized electrons, and
by scattering from ionized impurities.38 For transport at
large applied electrical fields (where Fig. 2 is no longer
valid), the electron-phonon scattering dominates the spin
relaxation of conduction electrons at all lattice tempera-
tures since the effective temperature of drifting electrons
is significantly higher than the lattice temperature.87,88

Electron-impurity scattering dominates the spin relax-
ation of conduction electrons in highly degenerate dop-
ing concentrations (top part of region 4). An impor-
tant aspect is that at intermediate and degenerate con-
centrations the impurity type influences the spin life-
time (irrespective of the temperature).42,43,55 The origi-
nal Elliott-Yafet theory, on the other hand, suggests that
the spin-orbit coupling of the host crystal (rather than
of the impurity) determines the spin relaxation of con-
duction electrons.17,18 Finally, in region 5 several pro-
cesses coexist and provide measurable spin relaxation.
At donor concentrations of 1015 - 1017 cm−3, Lépine
showed that the spin relaxation is governed by exchange
between free and localized electrons, by the larger spin-
orbit coupling of triplet states, and by the modulation of
the hyperfine field (when electrons make thermal transi-
tions between localized states).38 At lower donor concen-
trations, the role of electron-phonon scattering increases
since the relative fraction of electrons in the conduction
band increases.38,89

III. ELECTRON-PHONON INTERACTION

Within the harmonic approximation framework
the electron-phonon interaction is generally described
by,90,91

Hep=
∑

j,α

δRjα ·∇RjαVat(r−Rjα) , (1)

where j sums over N primitive cells and α = {A,B}
labels the two atoms of a primitive cell with the origin
chosen at their mid-point position, τ = τA = −τB =
−(a/8)(1, 1, 1). An atom position is then denoted by
Rjα = Rj + τα, and its potential by

Vat(r) = Vat(r)I +
~

4m2
0c

2
[∇Vat(r)×p] · σ . (2)

I is the 2×2 identity matrix and σ is the vector of Pauli
matrices. The first (second) term is the bare potential
(spin-orbit coupling), and it corresponds to the Elliott
(Yafet) part of Hep. The atom vibration in Eq. (1) is
expressed as

δRjα =
∑

q

√

2~/[ρω(q)Na3][aqξα(q)e
iqRjα + h.c.] ,(3)

where ρ is the material density and ω(q) is phonon fre-
quency. aq is the annihilation operator, ξ is the nor-
malized phonon polarization vector,92 and ‘h.c.’ stands
for Hermitian conjugate. The square-root prefactor is
written in accordance with

∑

α |ξα|2 = 2 (the number
of atoms in the primitive cell). Using crystal momen-
tum conservation together with identities of phonon cre-
ation, 〈n2|a†|n1〉 =

√
n1 + 1δn2,n1+1, and annihilation,

〈n2|a|n1〉 =
√
n1δn2,n1−1, we write the transition ampli-

tude of an electron from wavevector k1 to k2 by,

〈k2,±s;n(q)± 1|Hep|k1, s;n(q)〉 = (4)

−
√

2~

ρω(q)Na3

√

n(q) +
1

2
± 1

2
× 〈k2,±s|Hep|k1, s〉 ,

where

Hep =
∑

j,α

ξα(q)e
iqRjα ·∇rVat(r−Rjα), (5)

q = k2 − k1, n(q) is phonon occupation (Bose-Einstein
distribution at thermal equilibrium), and {s,−s} ≡ {⇑s

,⇓s} denote the spin-up and spin-down states. Due to
time reversal and space inversion symmetries each band
at wavevector k is spin degenerate and we can define its
states with respect to the spin orientation s, such that

〈k, µ,⇑s |σ · ŝ|k, µ,⇑s〉 ≡ −〈k, µ,⇓s |σ · ŝ|k, µ,⇓s〉 ≥ 0 ,

〈k, µ,⇑s |σ · ŝ|k, µ,⇓s〉 ≡ 0 , (6)

where µ is the band index. Mixed by spin-orbit interac-
tion, the defined spin-up and spin-down states (⇑,⇓) are
not pure spin states (↑, ↓).
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TABLE II. In-phase and out-of-phase phonon polarization
vectors in the long-wavelength limit (q ≪ 2π/a). We have
used the elastic continuum approximation for diamond crys-
tal structures. λ = {TA1,TA2,LA} and Γxyz ≈ a/16. Two
TA or TO polarizations can be linearly combined into any
other orthonormal ones. See text for further explanation.

Phonon mode Polarization expression

ξ+
TA1

, ξ−
TO1

(q) (qy,−qx, 0)/
√

q2x + q2y

ξ+
TA2

, ξ−
TO2

(q) (qxqz, qyqz,−q2x − q2y)/(
√

q2x + q2y |q|)

ξ+
LA, ξ

−
LO(q) q/|q|

ξ−λ,l(q) iq · τξ+λ,l(q) + iΓxyz[qmξ+λ,n(q) + qnξ
+
λ,m(q)]

Based on the symmetry of electron and phonon states
we will derive selection rules for M(k1, s;k2,±s) =
〈k2,±s|Hep|k1, s〉. It is often convenient to work with
interaction that has a fixed parity under space inversion
operation of the crystal. We convert Eq. (1) into in-phase
and out-of-phase parts,

Hep = −
∑

j,±
δR±

j ·∇rV±(r−Rj),

δR±
j = 1

2 (δRjA ± δRjB) ,

V±(r) = Vat(r− τA)± Vat(r− τB). (7)

The (anti)symmetrized cell potential V+(−) is associ-
ated with the in(out-of)-phase motion. Using the crys-
tal translational symmetry,93

∑

j e
iqRj∇V±(r−Rj) cou-

pled between states at k1 and k2 is further reduced to
N∇V±(r)δq+k1−k2,g, g being a reciprocal lattice vector.
With Eq. (5), the matrix element becomes

M(k1, s;k2,±s) = 〈k2,±s|Hep|k1, s〉
= N

∑

±
ξ±(q) · 〈k2,±s|∇rV±(r)|k1, s〉 , (8)

where in-phase and out-of-phase polarization vectors

ξ±(q) = [ξA(q)e
iqτA ± ξB(q)e

iqτB ]/2 , (9)

satisfy |ξ+|2 + |ξ−|2 = 1. In what follows we abbreviate
the notation and absorb the scaling factor into the matrix
element definition (i.e., N〈...〉 → 〈...〉).
In the analysis of intravalley scattering, explicit forms

of polarization vectors are utilized. To gain further in-
sight of their symmetries we invoke the elastic continuum
approximation for diamond crystal structures (incorpo-
rating internal displacement).94–96 Table II lists forms of
ξ±λ (q) in the long-wavelength limit where λ is the phonon
mode. The in-phase polarization vectors of acoustic
modes (first three rows) are of the order of unity while
their out-of-phase vectors (fourth row) are of the order
of qa/2π ≪ 1. They flip roles for optical modes (i.e.
order of unity for out-of-phase and the order of qa/2π

for in-phase vectors). Components of out-of-phase vec-
tors relate to the in-phase components and embody the
structure of the two-atom primitive cell,

ξ−λ,ℓ(q)=
1
2ξ

+
λ,ℓ(q)(e

iq·τA−eiq·τB) + i
∑

m,n

Γmnℓqmξ
−
λ,n(q).

Here, λ denotes any of the acoustic modes and ℓ,m, n
are cyclic permutation of the coordinates. In writing
the expression in the fourth row of the table we have
used the following approximations. The exponential
term, brought by the macroscopic strain, is replaced by
iq · τξ+(q) due to the long-wavelength nature (q → 0).
For the other term, brought by internal displacement,
the only non-vanishing components of the third-rank ten-
sor Γijk are Γxyz = Γyzx = Γzxy in a diamond-crystal
structure.101 Their value is 0.5a/8.24,97

It is emphasized that in this work we use the rigid-
ion model to derive general results of intravalley spin-flip
matrix elements [Eqs. (57) and (58)]. These results do
not depend on the approximate forms of ξ± in Table II.
However, since these approximations are fairly accurate
and become exact along high symmetry directions, we
can make use of them to derive appealing spin-flip matrix
elements of long-wavelength phonon modes (Table V).

IV. INTERVALLEY f-PROCESS SPIN FLIPS

At elevated temperatures, spin relaxation in un-
strained silicon is largely dominated by the intervalley
f -process.15,20,22,87 Therefore, it is crucial to have a com-
plete set of selection rules for f -process spin scatter-
ing. Selection rules of the intervalley momentum relax-
ation (neglecting spin-orbit coupling) were worked out
by Lax and Hopfield and by Streitwolf with single group
theory.98,99 In this section we present a direct and de-
tailed application of double group theory to derive spin-
conserving and spin-flip matrix elements along arbitrary
spin orientation directions.
Rendering double group theory to explain the f -

process spin flips is particularly simple since electron
states involve only the two-dimensional (2D) irreducible
representation (IR) ∆6,

100 and no perturbation between
other symmetry states is needed. For convenience, the
f -process is studied by changing the spin orientation (s)
while fixing the scattering to be between the +x and +y
valleys. While the total number of independent (scat-
tering) constants is not changed, the matrix elements
depend on the chosen spin orientation. As such, the
character table is not sufficient in mapping the depen-
dence on the spin orientation. We bypass this limitation
and use the explicit IR matrices. In this approach spin-
conserving (in momentum scattering) and spin-flip tran-
sitions are treated on equal footing. In the rest of this
section we first study the case of spin orientation along a
valley axis. Then we will remove this restriction and pro-
vide general expressions for the f -process spin-flip matrix
elements [Eqs. (17a)-(17f) and Table IV].
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FIG. 3. (Color online) (a) Phonon dispersion curves in silicon.
Phonon modes at the vicinity of the red circles (black squares)
take part in spin (momentum) intervalley scattering. The f -
process involves the zone-edge phonons near the Σ-symmetry
axis (connecting the Γ and K points). The g-process involves
phonons near the ∆-symmetry axis (between Γ and X points).
It will be shown that leading contributions are associated with
phonon modes with the solid symbols. Intravalley scattering
relates to all branches of long-wavelength phonons around the
Γ point. (b) Relating phonons with ∆j and Σi symmetries to
representative intervalley electron transitions.

A. Spin orientation parallel to a valley axis

The f -process between opposite spin states in the +x
and +y valleys depends on whether s is perpendicular
to both valleys (s‖z) or parallel to one of them (s‖x or
s‖y). For either case, we should consider four phonon
symmetries represented by 1D IRs, Σ1−4. These sym-
metries dictate how each of the phonon-induced interac-
tions, HΣi [Hep in Eq. (5) with Σi phonon], transforms
under symmetry operations of the Σ group. In the left
part of Fig. 3(a) we designate the phonon symmetries
with the six phonon branches and in row 4 of Table III
we associate these symmetries with phonon modes. Row
5 of the table lists the energies of these modes at the
phonon wavevector that connects the valley centers.
The nonvanishing matrix elements 〈k2|HΣi |k1〉

are obtained from selection rules that involve
very few transformations.98,100 These transfor-
mations include common symmetry operations,
gc ∈ {(ǫ|0), (ǭ|0), (ρz |τ), (ρ̄z |τ)}, of the little groups
at k1, −k2 and q. They also include operations
ge ∈ {(ρxy|0), (ρ̄xy|0), (δ2x̄y|τ), (δ̄2x̄y|τ)} that exchange
k1 and −k2. The bar over operations denotes an addi-
tional 2π rotation. The character table of the nontrivial
operations is shown at the upper three rows of Table III.
The number of independent real constants involved
in the matrix elements for each phonon symmetry is
provided by consideration of these operations and time
reversal symmetry,

NΣi =
1

2h0

[

∑

gc

χ−k2

∆6
(gc)χ

k1

∆6
(gc)χ

q
Σi
(gc)

−
∑

ge

χk1

∆6
(g2e)χ

q
Σi
(ge)

]

, (10)

TABLE III. Non-trivial relevant IR matrices in a f -process
between +x and +y valleys [Σ evaluated at (−k0, k0, 0), ∆

at (k0, 0, 0) or (0, k0, 0), k0 = 0.85 × 2π/a]. χ−k2
∆1

= (χk2
∆1

)∗.
Also shown is the effect of exchange operations on ∆ star.
Basis states in D1/2 is along ±z in spin space. The ‖ and ⊥

directions in the mode subscript are relative to z. Ef
q is in

unit of meV and DΣis of meV · 2π/a.

Σ1 Σ2 Σ3 Σ4 ∆1 D1/2

(ρz|τ ) 1 -1 -1 1 e
−ik0a

4

(

−i 0
0 i

)

(ρxy|0) 1 -1 1 -1 k1↔-k2 e- 3πi
4

(

0 1
i 0

)

(δ2x̄y |τ ) 1 1 -1 -1 k1↔-k2 e- 3πi
4

(

0 i
1 0

)

Mode {LA, TO‖} TO⊥ {TA‖, LO} TA⊥

Ef
q 46.6, 58 57 23, 46.8 19

DΣis 6.5, 2.9 3.7 1.7, 1.1

where h0 = 4 is the number of gc or ge operations and
χ∆6 = χ∆1 × χ1/2. The second sum in Eq. (10) repre-
sents the effect of time reversal symmetry and the minus
sign takes into account the parity from the spinor basis
and interaction Hep (see, for example, Refs. [101] and
[102] for more details). By straightforwardly plugging
the characters of Table III into Eq. (10) we get

NΣ1 = 2, NΣ2 = 1, NΣ3 = 1, NΣ4 = 0. (11)

Next, the interaction matrix elements
〈k2,±s|HΣi |k1, s〉 between specific spin species are
expressed in terms of NΣi independent scattering
constants. To reach this goal, we first write down the IR
matrix D∆6 for a given spin orientation. We choose the
spin orientation conveniently along z direction, and then
D∆6 = D∆1 × D1/2 using Table III.103 Via appropriate
group operations (see details in Appendix A), we obtain

〈k2,⇑z |HΣ1 |k1,⇑z〉 = DΣ1m + iDΣ1s, (12a)

〈k2,⇓z |HΣ2 |k1,⇑z〉 = DΣ2s − iDΣ2s, (12b)

〈k2,⇓z |HΣ3 |k1,⇑z〉 = DΣ3s + iDΣ3s, (12c)

and

〈k2,⇑s |HΣi |k1,⇑s〉 = 〈k2,⇓s |HΣi |k1 ⇓s〉∗, (13a)

〈k2,⇓s |HΣi |k1,⇑s〉 = −〈k2,⇑s |HΣi |k1,⇓s〉∗, (13b)

up to a phase freedom for each matrix element. The scat-
tering constants are all real numbers with DΣ1m much
larger (about three orders of magnitude) than the rest.
m denotes momentum and s denotes spin, with the rea-
son more obvious in the general spin orientation case.
Eq. (13) holds for all phonon modes and spin orienta-
tions, and it expresses the effects of time reversal and
space inversion (diamond structure).



7

TABLE IV. |MΣi (k1,⇑s;k2,⇓s)/DΣis|
2 for f -process spin flips between +x and +y valleys. The values of the scattering

constants DΣis are given in Table III. For each of the non-vanishing modes, Σi, the relative amplitude is provided for spin
orientation (s) along any of the inequivalent high-symmetry crystal directions. Results between other valleys can all be obtained
by trivial symmetry arguments.

s [0 0 1] [1 0 0] [1 1 0] [1 1̄ 0] [1 0 1] [1 1 1] [1 1̄ 1]

Σ1 0 1 1 1 1
2

2
3

2
3

Σ2 2 1 0 2 3
2

2
3

2

Σ3 2 1 2 0 3
2

2 2
3

When the spin orientation is parallel to the axis of
one of the valleys that participate in the f -process, then
instead of changing the ∆6 basis states and the matrix
form, we write the new spin states in terms of the pre-
vious ∆6 basis (we call it the ‘original basis’). As an
example, for spin orientation along the x valley we use
the rotation matrix [1,−1; 1, 1]/

√
2 as a unitary transfor-

mation matrix and get104

|k,⇑x〉 ≃ (|k,⇑z〉+ |k,⇓z, 〉) /
√
2 ,

|k,⇓x〉 ≃ (−|k,⇑z〉+ |k,⇓z〉) /
√
2 . (14)

Using Eqs. (12) and (13) we can obtain the results for
spin orientation along one of the involved valleys (s ‖x;
the case of s ‖y is equivalent). For Σ1,

〈k2,⇑x|HΣ1 |k1,⇑x〉

= ( 1√
2

1√
2
)





DΣ1m+iDΣ1s 0

0 DΣ1m−iDΣ1s









1√
2

1√
2





= DΣ1m . (15a)

Repeating the same procedure for the spin-flip case and
for other phonon modes, we get

〈k2,⇓x |HΣ1 |k1,⇑x〉 = −iDΣ1s, (15b)

〈k2,⇑x |HΣ2 |k1,⇑x〉 = −iDΣ2s, (15c)

〈k2,⇓x |HΣ2 |k1,⇑x〉 = DΣ2s, (15d)

〈k2,⇑x |HΣ3 |k1,⇑x〉 = iDΣ3s, (15e)

〈k2,⇓x |HΣ3 |k1,⇑x〉 = DΣ3s. (15f)

Together with Eq. (13), the set of expressions in Eqs. (12)
and (15) complete the results of inequivalent types of f -
process scattering when the spin orientation is set along a
valley axis. Values of the scattering constants, DΣis, are
obtained by numerical calculations and they are listed
in the last row of Table III. Preferably, their values are
extracted from experiments which cover some parameter
range (e.g., temperature, stress and external fields).

B. General dependence on spin orientation

So far we have restricted the spin orientation during
an f -process spin flip to be along a valley axis (main
crystallographic axis). Removing this restriction adds to

the anisotropy of spin relaxation processes and it allows
one to make a direct comparison to a wide range of spin
injection experiments.

We generalized the previous derivation to an arbitrary
spin orientation direction. We define s in terms of polar
and azimuthal angles θ and φ with respect to the +z and
+x directions. The new spin states relate to the original
ones by an ‘active’ rotation matrix in spin space,105

|k,⇑s〉 ≃ cos
θ

2
|k,⇑z〉+ sin

θ

2
eiφ|k,⇓z〉,

|k,⇓s〉 ≃ − sin
θ

2
e−iφ|k,⇑z〉+ cos

θ

2
|k,⇓z〉. (16)

Using the explicit matrix for interaction HΣi between
|k,⇑ (⇓)z〉 basis states, as the example in Eq. (15a), the
spin-flip matrix elements under the new spin orientation
are

〈k2,⇑s |HΣ1 |k1,⇑s〉 = DΣ1m + i cos θDΣ1s, (17a)

〈k2,⇓s |HΣ1 |k1,⇑s〉 = −i sin θeiφDΣ1s, (17b)

〈k2,⇑s |HΣ2 |k1,⇑s〉 = −i
√
2 sin θ sin(φ+

π

4
)DΣ2s, (17c)

〈k2,⇓s |HΣ2 |k1,⇑s〉 =
[

(1 + i) sin2
θ

2
e2iφ

+(1− i) cos2
θ

2

]

DΣ2s, (17d)

〈k2,⇑s |HΣ3 |k1,⇑s〉 = i
√
2 sin θ sin(φ+

3π

4
)DΣ3s, (17e)

〈k2,⇓s |HΣ3 |k1,⇑s〉 =
[

(1− i) sin2
θ

2
e2iφ

+(1 + i) cos2
θ

2

]

DΣ3s , (17f)

with Eq. (13) for other matrix elements. Table IV lists
the relative magnitudes of the squared spin-flip matrix el-
ements for s along all inequivalent high-symmetry direc-
tions of the crystal (they are often the spin orientations of
injected electrons). Analysis of the spin relaxation time
due to f -process spin flips will be given in Sec. VII.
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V. INTRAVALLEY AND INTERVALLEY

g-PROCESS SPIN FLIPS

In this section we will present a rigorous procedure to
reach at compact intravalley and g-process spin-flip ma-
trix elements. Before embarking on the theory, we discuss
key considerations that underly the analysis and exem-
plify their outcomes via representative results (Table V).
This choice allows one to understand the most impor-
tant physical parameters without delving into details of
the analysis (which are provided in Secs. VA through
VD).
Spin-flip matrix elements vanish for intravalley (g-

process) scattering if wavevectors of the initial and final
states are the same (opposite). The wavevector power-
law dependence was mentioned in Table I along with
the fact that suppression of zeroth-order terms in these
processes leads to relative slow spin relaxation compared
with the f -process. However, intravalley and g-process
become more important when shear strain is applied
since different valley minima are split thus suppressing
the scattering by the f -process.15,22 The intravalley spin
flips are also important at low temperature due to the
larger population of long wavelength acoustic phonons
[smaller energies; See Fig. 3(a)].
It is instrumental to compare spin flips with momen-

tum scattering of which the study is more established.
Following the ingenious connection with deformation po-
tential parameters by Bardeen and Shockley,106 Herring
and Vogt derived a detailed angle dependence of intraval-
ley momentum scattering due to interaction with acous-
tic phonon.107 In spin flips, the connection with deforma-
tion potential is more subtle and complicated by the de-
pendence on high-order wavevector components. Later,
we will derive explicit forms while making no a prior as-
sumptions about the form of possible deformation poten-
tial parameters. This approach allows us to identify the
crucial role of the coupling between the lowest pair of con-
duction bands in setting the intravalley spin relaxation.
The dependence of spin-flip matrix elements on high-
order wavevector components makes this coupling effec-
tive in spin relaxation (while being marginal in momen-
tum relaxation). The relaxation rate becomes inversely
proportional to the square of the energy gap between the
conduction bands at the valley center, ∆C ≈ 0.5 eV.
Implications of the above considerations are mani-

fested in the spin-flip expressions of intravalley and g-
process scattering. The matrix element of intravalley
spin flips will be shown to consist of four factors that
represent different aspects of the above considerations

|M intra
λ (k1 ⇑s,k2 ⇓s)|2 =

( |η|
∆C

)2

D2
λSs(q)Iλ(q).

The factor |η|/∆C ≈ 0.03 Å is calculated from band struc-
ture parameters that originate from spin-dependent k·p
perturbation terms in the Hamiltonian. The second fac-
tor, Dλ, depends on the phonon mode. Scattering with

TABLE V. Squared spin-flip matrix element |Msf |
2, induced

by all types of phonon modes in intravalley scattering, and by
the LA phonon mode in g-process scattering. q = k2−k1 and
K = (k2 + k1)/2. Valley centers are set along z axis. Spin
orientations s are taken along all inequivalent crystal symme-
try directions. Results in other valleys can be obtained by
trivial symmetry arguments. See text for related parameters
and further explanations.

|M(k1 ⇑s;k2 ⇓s)|
2 =



















(

|η|

∆C

)2

D2
λSs(q)Iλ(q) , intra

D2
gsSs(K) , g

s Ss(q) λ Iλ(q)

[0 0 1] q2x + q2y TA
(q2x − q2y)2

q2x + q2y
+

4q2xq
2
yq

2
z

(q2x + q2y)|q|2

[1 0 0] q2y LA
4q2xq

2
y

|q|2

[1 1 0]
q2x + q2y

2
TO

q2x + q2y
|q|2

[1 0 1]
q2x
2

+ q2y LO
q2z
|q|2

[1 1 1]
2

3
(q2x + q2y + qxqy)

long-wavelength acoustic modes is governed by a defor-
mation potential constant, DTA/LA = D′

xy, that couples
the two lowest conduction bands. Its explicit integral
expression will be given in Eq. (46) and its numerical
solution (via EPM calculation) yields a value of 6 eV.
This value agrees well with the measured energy splitting,
4D′

xyǫxy, of the lowest conduction bands at the X point

when applying a shear strain.108,109 Scattering with long-
wavelength optical modes is governed by the constant
DTO/LO = Dop ≈ 5 eV · 2π/a which originates from the
out-of-phase motion of atoms in the primitive cell. This
parameter is also calculated from the coupling between
the lowest pair of conduction bands [Eq. (48)]. The re-
maining two factors in the above expression depend on
the valley position. Their forms for electrons that reside
in the z valley are listed in Table V. Iλ and Ss reflects
the dependence on phonon properties and on the electron
spin orientation, respectively. The right column of the ta-
ble lists the values of Iλ for all long-wavelength phonon
modes and the left column lists the values of Ss for five
inequivalent high-symmetry directions in the z valley.
The g-process spin-flip will be shown to share several

properties with the intravalley case. For electron transi-
tion between the±z valleys, the dominant g-process spin-
flip mechanism will be shown to originate from scattering
with LA phonon modes,

|Mg
LA(k1 ⇑s,k2 ⇓s)|2 = D2

gsSs(K),

where its prefactor Dgs ≈ 0.1eV is dominated by the
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sum of two scattering constants. The first is related to
the deformation potential of the lowest conduction band
[Eqs. (E12)-(E14)] and the second couples the lowest con-
duction band with upper valence band by spin-orbit mod-
ulated electron-phonon interaction [Eq. (F12)].
The rest of this section is organized in the following

logical order. In Sec. VA we derive selection rules that
pertain to both the band structure Hamiltonian and the
electron-phonon interaction. The obtained electron state
vectors are used in Secs. VB and VC where we present
the core derivation for intravalley and g-process spin-flip
matrix elements. In these parts we derive exact forms of
the various scattering constants. Finally, the dependence
on spin orientation (s) is given in Sec. VD. Readers
who are not interested in the full derivation may directly
skip to the most general expressions in Eqs. (45)-(48) and
Fig. 5 for intravalley spin-flips in the z valley with s ‖ z; in
Eqs. (54)-(55) and Fig. 6 for g-process spin-flips between
the ±z valleys with s ‖ z; and in Eqs. (57)-(59) for general
spin orientations (ŝ = [cosφ sin θ, sinφ sin θ, cos θ]).

A. X-point selection rules and spin-dependent

eigenstates of the k · p Hamiltonian

In this part we present group theory results and an-
alytically quantify the signature of spin-orbit coupling
on electronic states. Since the bottom of the conduction
band is at the vicinity of the X point [see Fig. 4(a)],
we employ a compact k · p model with a small set of
basis states that pertain to the symmetry of this point.
Findings of this model will be used to derive spin-flip ma-
trix elements. These findings will also be benchmarked
against numerical calculations of an EPM that includes
spin-orbit coupling.23

For intravalley scattering, working with X-point space
group is as effective as working with the group of the ∆
axis (position of the valley center), and bares favorable
features over the latter choice.110 The initial and final
states of a g-process scattering can be expanded to the
same X point, making it possible to relate the matrix
element with a deformation potential parameter, though
with modifications (to be discussed).
We first mention spin independent features.108 Due

to the symmetry of the crystal, only one of the six
conduction band valleys is studied and we arbitrary
identify it as the valley along the +z crystallographic
axis. We choose a basis of four eigenstates of the
Hamiltonian H0 = p2/2m0 + V (r) and denote them by

{|X2′

1 〉, |X1
1 〉, |Xx

4 〉, |Xy
4 〉}, where ψX(r) = 〈r|X〉. These

X-point states are associated with the lowest pair of
conduction bands and upper pair of valence bands at
k = (0, 0, kX), where kX = 2π/a [see Fig. 4(a)]. Inclusion
of the X4 valence states is imperative since they bring the
mass anisotropy of conduction electrons. The X1 and
X4 nomenclature denotes 2D IRs of the space group G2

32

which describes the symmetry of the X point.108,111–115

The dimensionality complies with the two-band degen-

−10
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0 0.020.02
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∆
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∆
2’

∆
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∆
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1

∆
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X
4

E
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U

FIG. 4. (Color online) (a) Energy band structure along the
∆-axis between the X = (0, 0, 1)2π/a and Γ = (0, 0, 0) points
and along the Σ-axis between X and U = (1/4, 1/4, 1)2π/a
points [see Fig. 1(a)]. Solid lines are the results of EPM and
dash lines are taken from Eq. (C4) of the Appendix. EX1 −
EX4 = Eg,X and we set EX1 = 0. ∆C is the energy gap
between the two conduction bands at the valley center k0 ≃
(0, 0, 0.85)2π/a. (b) Conduction band dispersion along the
Z-symmetry axis between X and W = (0, 1/2, 1)2π/a points.
Along this direction the two-band conduction degeneracy can
only be lifted by spin-orbit coupling (spin hot-spot). (c) The
induced energy splitting by zooming-in closer to the X point.

eracies at the X point of diamond crystal structures
(due to time reversal and glide reflection symmetries).
The indexing of the basis states implies of their com-
patibility relations when going from the X point into
the ∆ axis ({|∆2′〉, |∆1〉, |∆x

5〉, |∆y
5〉}).108 For example,

ψ∆2′ ,kz (r) ≃ ei(kz−kX )zψX2′
1
(r) . Finally, we mention

that for the following derivations, the symmetry prop-
erties rather than explicit functional forms of the basis
states are important.

When adding the spin degree of freedom the new ba-
sis set reads { |X2′

1 , ↑〉, |X2′

1 , ↓〉, |X1
1 , ↑〉, |X1

1 , ↓〉, |Xx
4 , ↑〉,

|Xx
4 , ↓〉, |Xy

4 , ↑〉, |Xy
4 , ↓〉 }. Two remarks on this basis are

in place. First, inclusion of the X4 states in the basis set
enables us to capture the salient spin-dependent prop-
erties of conduction electrons (originate from spin-orbit
coupling with the upper pair of valence bands).20 Sec-
ond, the spin-orbit coupling is treated as a perturbation
and, accordingly, the new basis states are not eigenstates
of the spin-dependent Hamiltonian at the X point. In
Eqs. (26)-(27) of this section we find specific forms of
these states for electrons around the bottom of the +z
conduction valley for spin orientation s‖z [see Eq. (6)].
In sections VC we discuss the needed changes when con-
sidering electron states from opposite valleys. In Sec-
tion VD we show the anisotropy of spin-flip processes by
varying s.

Group theory is invoked to construct the band struc-
ture Hamiltonian matrix and matrix elements of electron-
phonon interactions.101,114,116,117 Both depend on cou-
plings of X1 basis states, of X4 basis states, and of X1

with X4 basis states. Using the character table of G2
32

(Appendix B), these couplings are clarified by the follow-
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ing decompositions118,

Hcc : X1 ⊗X1 =M1 ⊕M4 ⊕M ′
2 ⊕M ′

3 , (18a)

Hυυ : X4 ⊗X4 =M1 ⊕M4 ⊕M ′
1 ⊕M ′

4 , (18b)

Hυc : X4 ⊗X1 =M5 ⊕M ′
5 . (18c)

M5 and M ′
5 are 2D IRs and the remaining Mi are 1D

IRs. Next we relate these decomposition with specific lin-
ear combination of state products.101 For example, one
of the X1 states coupling [Eq. (18a)], ψ∗

X2′
1

(r)ψX1
1
(r) +

ψX2′
1
(r)ψ∗

X1
1
(r) is found to transform as M4 (apply the

operations of G2
32 on it). We associate this linear combi-

nation with [0, 1; 1, 0], or ρx, in Hcc block (In this paper,
ρi and σi identify, respectively, Pauli matrices in the 2D
IRs product and spin space). We find the following asso-
ciations for product combinations in intraband coupling,

Hcc: M1↔I , M4↔ρx , M
′
2↔ρy , M

′
3↔ρz , (19a)

Hυυ: M1↔I , M4↔ρx , M
′
1↔ρy , M

′
4↔ρz . (19b)

In case of interband coupling where the decomposed IRs
(M5 and M ′

5) are 2D, we classify pairs of product combi-
nations. For example, {ψ∗

Xx
4
ψX2′

1
+ ψ∗

Xy
4
ψX1

1
, ψ∗

Xx
4
ψX1

1
+

ψ∗
Xy

4
ψX2′

1
} belongs to M ′

5. We find

Hυc : M5 ↔ {ρy , ρz} , M ′
5 ↔ {I , ρx} . (19c)

Non-vanishing matrix elements of any interaction (i.e.,
selection rules) are readily identified once we specify how
terms in that interaction transform under symmetry op-
erations. These terms usually can be made into parts
that transform as components of vectors (r) or axial vec-
tors (R). The longitudinal component of the vector (ax-
ial vector) transforms as M ′

3 (M3), and transverse com-
ponents as M5 (M ′

5):

z ∼M ′
3, {x, y} ∼M5, Rz ∼M3, {Rx, Ry} ∼M ′

5 . (20a)

where the longitudinal component is along the valley axis
(z in our choice). Besides, the symmetric and antisym-
metric potentials [Eq. (7)] are even and odd under space
inversion and transform as

V+ ∼M1, V− ∼M ′
2. (20b)

By the fundamental theorem of group theory, a non-
vanishing matrix element results when the interaction
operator and the states product decomposition belong
to the same IR(s).118 The integrand of the non-vanishing
matrix element as a whole then belongs to the identity IR
(in this case, M1). From Eqs. (18c) and (20a), the trans-
verse components of a vector (M5) or axial vector (M

′
5)

can couple conduction band with valence band. How-
ever, since M1 only appears once in either M5 ⊗M5 or
M ′

5⊗M ′
5, only one of the linear combinations of the oper-

ator and state product can survive and the unique linear
combination read

ixρy − yρz ∼M1 and RxI −Ryρx ∼M1 , (21)

forM5⊗M5 orM
′
5⊗M ′

5, respectively. The IR product de-
compositions and the IR assignments with (axial) vector
are derived from G2

32 character table (see Appendix B).
Transformation under time reversal operation (T ) is

equally essential in obtaining selection rules (in addition
to spatial operations). Time reversal symmetry connects
matrix elements by,101

〈Xj |O|Xi〉 = 〈T Xi|T O†T −1|T Xj〉 . (22a)

Physical operators O have different parities under time
reversal operation,

r → r, ∇V →∇V, p → −p, ∇V×p → −∇V×p, (22b)

and this feature distinguishes between vectors such as
∇V and p. T acting on |Xi〉, by our convention, ex-
changes the basis states,108

|X2′

1 〉 ↔ |X1
1 〉, |Xx

4 〉 ↔ |Xy
4 〉. (22c)

Therefore, for the diagonal blocks (Hcc and Hvv)

I → I, ρx → ρx, ρy → ρy, ρz → −ρz (22d)

under time reversal operation in light of Eq. (22a). A
matrix element vanishes if under time reversal operation
the changes of sign are opposite for the state product
[Eq. (22d)] and the interaction [Eq. (22b)].
The spin-dependent k · p Hamiltonian matrix can be

prescribed using the above group theory analysis, with
perturbation Hamiltonian (H = H0 +H1)

H1=

(

~2k′2

2m0
+
~k′ · p
m0

)

I+ ~[∇V (r)×(p+~k′)]·σ
4m2

0c
2

,(23)

where k′ = (kx, ky, kz−kX) is measured from theX point

and V (r) is the crystal potential
[

∑

j V+(r−Rj)
]

. The

Hamiltonian matrix blocks are thus, respectively

H1cc =
~2

2m0
(k′2I ⊗ I + 2k′0k

′
zρz ⊗ I), (24a)

H1vv =
~2

2m0
k′2I ⊗ I, (24b)

H1vc = −iP (kxρy + ikyρz)⊗ I + i∆X(ρx ⊗ σy

−I ⊗ σx) + α[k′z(iρz ⊗ σx − ρy ⊗ σy)

+(kyρy − ikxρz)⊗ σz] . (24c)

We stress that ∂V (r)/∂z in H1cc block vanishes con-
sidering time reversal symmetry.The spin-independent
constants in Eq. (24) are empirically known from
experiments.108 They relate to the position of the con-
duction band minima k0 = (0, 0, k′0 + kX), and to the
momentum matrix element that sets the mass anisotropy
(P ). The spin-dependent parameters (∆X and α) are
calculated by the empirical pseudopotential model. Ta-
ble VI lists these and other parameters that we use in
this paper. In Appendix C, we provide their integral ex-
pressions and we also apply a partitioning technique to
analytically diagonalize the total Hamiltonian matrix

(

H1cc H†
1vc

H1vc H1vv−Eg,X

)

, (25)
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TABLE VI. Parameters of bulk silicon. The lattice constant
is a=5.43 Å, the X-point energy gap is Eg,X ≈ 4.3 eV, and
the free electron mass is m0.

Symbol Value Unit Expression

k′
0 -0.15 2π/a Eq. (C1a)

P 10 eV·a/2π Eq. (C1b)

∆X 3.6 meV Eq. (C1c)

α -3.1 meV·a/2π Eq. (C1d)

∆C 0.5 eV 2~2k′2
0 /m0

|η| 16.7 meV·a/2π η = 2iP∆X/Eg,X

∆′
X 4.1 meV ∆X + αk′

0

|η′| 18.9 meV·a/2π η′ = 2iP∆′
X/Eg,X

where Eg,X is the energy-gap between the conduction and
valence band at the X point [see Fig. 4(a)].
Appendix D provides a general procedure to align the

resulting degenerate states to spin states that satisfy
Eq. (6). For spin orientation along the valley axis (s‖z),
degenerate states in a conduction band valley read

|k,⇑〉 = exp (ik′ · r) [A(k)| ↑〉+ B(k)| ↓〉] |X〉 ,
|k,⇓〉 = exp (ik′ · r) [A∗(k)| ↓〉 −B∗(k)| ↑〉] |X〉 , (26)

where

|X〉=
[

|X2′

1 〉, |X1
1 〉, |Xx

4 〉, |Xy
4 〉
]T

,

A(k)=

[

2P 2kxky
Eg,X∆C

, 1− P 2kxky
2E2

g,X

, − Pkx
Eg,X

, − Pky
Eg,X

]

,

B(k)=

[

η(kx−iky)
∆C

(

1− kz − k0
k′0

)

,
iη′(kx+iky)

2Eg,X
,

−∆′
X

Eg,X
−iηky
∆C

Pky
Eg,X

, − i∆′
X

Eg,X
+
ηkx
∆C

Pkx
Eg,X

]

. (27)

As shown in Appendix. E, momentum scattering is gov-
erned only by the zeroth- and first-order wavevector com-
ponents of A(k). For spin relaxation, on the other hand,
the ‘negligible’ spin-orbit coupling coefficients become
crucial [B(k) vector]. In writing the coefficients of A(k)
and B(k), we have kept only those terms that are rele-
vant to the spin relaxation analysis of the following sec-
tions. Terms that scale with ∆C/(2Eg,X) ≈ 1/17 are
omitted due to their negligible effect. The energy gap
between the two conduction bands at the valley center
∆C ≈ 0.5 eV [see Fig. 4(a)] will be extensively used when
dealing with intravalley spin relaxation. The main differ-
ence of the above solution from Ref. [20] is that we have
identified all quadratic-wavevector terms that play im-
portant roles in intravalley spin-flip processes. We have
checked the accuracy of these expressions with numeri-
cal EPM solutions.119 The main difference between them
comes from the omission of the lower valence band states
[lower X1 point in Fig. 4(a)]. These states are respon-
sible for making the longitudinal mass slightly less than
m0. In spite of missing some kz dependent components,

the error amounts to a few percent and is irrelevant in
intravalley spin relaxation (to be shown later).

B. Intravalley spin flips

In this subsection we present the theoretical procedure
for deriving intravalley spin-flip matrix elements for all
types of phonon modes. Scattering with long-wavelength
TA phonon modes will be shown to dominate the in-
travalley spin relaxation at low temperature. This prop-
erty is largely set by the phonon dispersion around the
Γ point. Figure 3(a) shows that the energy of long-
wavelength acoustic phonons is linear in q with a smaller
slope for TA, and approaches zero at Γ point. For long-
wavelength optical modes, the phonon energy is almost
wavevector independent (≈63 meV). However, when the
temperature increases, optical modes become more im-
portant and together with the LA mode they provide
about half of the intravalley spin relaxation at room tem-
perature. The reason is twofold. Spin-flip matrix ele-
ments due to scattering with optical modes are linear
in q while being quadratic with acoustic modes (to be
proven below). Second, the rise of phonon population
with temperature is much faster for optical modes.
In Appendix E, by invoking selection rules we have

rederived the leading-order matrix elements of intraval-
ley momentum scattering, which is typically described
in terms of deformation potential constants.106,107 When
extended to analyze the intravalley spin-flip matrix ele-
ments, this group theory approach will be appreciated by
its ability to reach essential terms efficiently. It also pro-
vides flexibility in the sense that no a priori knowledge of
the connection between deformation potential quantities
and spin-flip processes is needed.

long-wavelength acoustic phonon modes

Spin-flip matrix elements due to electron interaction
with long-wavelength acoustic phonon modes have a
quadratic-wavevector dependence. We show it by start-
ing with the most general form,

Mλ

(

k1 = K− q

2 ,⇑ ; k2 = K+ q

2 ,⇓
)

= (28)

〈K+ q

2 ,⇓ |ξ+λ (q) ·∇V+(r) + ξ−λ (q) ·∇V−(r)|K− q

2 ,⇑〉
≡ZZM

(0)
sf,λ +ZZM

(1)
sf,λ +M

(2)
sf,λ +O(q3) .

M
(j)
sf,λ denotes terms of jth order in q due to λ phonon

mode. In the next step we expand the states in Eq. (28)
in increasing orders of q. We show how the zeroth- and

first-order terms vanish (M
(0)
sf,λ =M

(1)
sf,λ = 0), and then we

find the form of the dominant quadratic terms (M
(2)
sf ). In

this wavevector-order analysis, the q dependence of the
in-phase and out-of-phase polarization vectors has to be
taken into account. In Table II we showed these depen-
dencies in the long-wavelength regime which is relevant
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for intravalley scattering (q ≪ 2π/a). The out-of-phase
vector, ξ−λ (q), is linear in q while ξ+λ (q) has a zeroth-
order dependence (e.g., qi/q terms). Hereafter, we ab-

breviate the notation ξ±λ (q) and M
(j)
sf,λ as ξ± and M

(j)
sf .

Zeroth-order: The lowest-order spin-flip matrix ele-
ment has the form

M
(0)
sf = 〈K,⇓ |ξ+ ·∇V+|K,⇑〉. (29)

We exclude the out-of-phase part since the acoustic inter-
action at the infinite wavelength limit is governed solely
by the in-phase motion of atoms in the primitive cell
[ξ−ac(q = 0) = 0 and |ξ+ac(q = 0)| = 1]. In this limit, the
phonon-induced interaction reduces to displacement of
the entire crystal,

∑

j ∇rV+(r−Rj) = ∇Vcrystal. Based
on the relation

∇Vcrystal = i[p, H ]/~, (30)

the coupling of the in-phase part between spin-degenerate
eigenstates of H vanishes. When breaking this vanish-
ing matrix element into parts that come from interaction
with the bare symmetrical potential and with its spin-
orbit coupling part,

〈K,⇓ |∇V+|K,⇑〉+ 〈K,⇓ |∇V so
+ |K,⇑〉 = 0 , (31)

the sum is zero but each of these two contributions is
finite. This result was first pointed out by Elliott.18 Later
we will make use of this property.
First-order: To write the spin-flip matrix elements of

this order we begin by linearizing the state,

|K± q

2 , s〉 = |K, s〉 ± 1
2q ·L|K, s〉+O(q2) , (32)

where L denotes the derivative of the state in k-space,

Li|k, s〉 ≡ lim
δk→0

|k+ δki, s〉 − |k, s〉
δki

. (33)

Substituting Eq. (32) into Eq. (28) and considering the
wavevector dependence of ξ±, the first-order spin-flip ma-
trix elements are,

M
(1)
sf = 〈K,⇓ |ξ− ·∇V−|K,⇑〉 (34)

+ 1
2 〈K,⇓ |

(

q ·L†
)

(

ξ+ ·∇V+

)

|K,⇑〉
− 1

2 〈K,⇓ |
(

ξ+ ·∇V+

)

(q ·L) |K,⇑〉 .
Combining space inversion and time-reversal symmetries,
the out-of-phase term can be shown to vanish (first line
on the right-hand side), and the in-phase terms to cancel
each other (second and third lines). These facts follow
the relations

〈ψ1,Oψ2〉 = 〈Sψ1,SOS−1Sψ2〉 = 〈T ψ2, T O†T −1T ψ1〉 ,
where for the case in hand space inversion provides

S|k,⇑〉 = |-k,⇑〉 , S|k,⇓〉 = |-k,⇓〉
S∇V±S−1 = ∓∇V± , SLS−1 = −L , (35)

and time reversal provides

T |k,⇑〉 = |-k,⇓〉 , T |k,⇓〉 = −|-k,⇑〉
T ∇V†

±T −1 = ∇V± , T (L†)†T −1 = −L . (36)

Yafet separated the in-phase terms into two parts to
prove them vanishing.17 Together with Eq. (31), it is the
celebrated Elliott-Yafet cancellation. We emphasize that
the first-order (linear-in-q) Elliott and Yafet terms van-
ish separately, rather than interfere destructively. All
in all, the zero- and first-order spin-flip matrix element

identically vanish, M
(0)
sf =M

(1)
sf = 0.

Second-order: It is the lowest order at which spin-flip
matrix elements due to electron interaction with acoustic
phonon modes do not vanish. At this order, states are
expanded by

|K± q

2 , s〉 ≃ |K, s〉 ± 1
2q·L|K, s〉+ 1

8q
⊗2 ·L⊗2|K, s〉,(37)

where the vector components of L were formally defined
in Eq. (33), and q⊗2 ·L⊗2 denotes the scalar product of
two second-rank tensors. An explicit form of this state
was derived by a spin-dependent k ·p expansion of the
X-point basis states [Eqs. (26)-(27)]. Using this basis,
the general spin-flip matrix element is converted to

M
(

k1 = K− q

2 ,⇑;k2 = K+ q

2 ,⇓
)

=M
(2)
sf +O(q3) ≈

∑

µ,ν

〈Xµ|e-
iq·r

2

[

Γ+
µ,ν(k1,k2)+Γ−

µ,ν(k1,k2)
]

e-
iq·r

2 |Xν〉. (38)

Γ±
µ,ν(k1,k2) are scalars formed by products of column

and row spinors with the potential matrix,

Γ±
µ,ν(k1,k2) = (39)

[

−BXµ(k1), AXµ(k1)
] (

ξ± ·∇V±,K(r)
)

[

AXν (k2)
BXν (k2)

]

,

where the coefficients of A(k) and B(k) are taken from
Eq. (27), and the K-dependent potential has the form

V±,K = V±I + V so
±,K

= V±I +
~

4m2
0c

2
[∇V±×(p+ ~K′)] · σ . (40)

The bare potential, V±, is diagonal and generates Elliott
products of the type AµBν . The spin-orbit coupling po-
tential, V so

±,k, generates Yafet products of all types but
the dominant signature comes from AmAn terms due to
the smallness of the coefficients in B(k).

We identify the general forms of second-order matrix
elements between the X-point basis states. After ex-
panding the exponential and Γ terms in Eqs. (38)-(39)
into power series, quadratic terms in q are classified by
six integrals that read

M
(2)
sf =

∑

µ,ν

6
∑

n=1

Iµ,ν;n , (41)
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Iµ,ν;1 = − i
2

〈

Xµ

∣

∣

∣C̃µ(k)
{

q · r, ξ− ·∇V−,k(r)
}

Cν(k)
∣

∣

∣Xν

〉

k=k0

(42a)

Iµ,ν;2 =
〈

Xµ

∣

∣

∣

(

q ·∇kC̃µ(k)
)

(

ξ− ·∇V−,k(r)
)

Cν(k)
∣

∣

∣Xν

〉

k=k0

(42b)

Iµ,ν;3 = − 1
4

〈

Xµ

∣

∣

∣

(

q ·∇kC̃µ(k)
)

(

ξ+ ·∇V+,k(r)
)

(q ·∇kCν(k))
∣

∣

∣Xν

〉

k=k0

(42c)

Iµ,ν;4 = − i
2

〈

Xµ

∣

∣

∣

(

q ·∇kC̃µ(k)
)

{

q · r, ξ+ ·∇V+,k(r)
}

Cν(k)
∣

∣

∣Xν

〉

k=k0

(42d)

Iµ,ν;5 = + 1
4

〈

Xµ

∣

∣

∣

(

q⊗2 ·∇⊗2
k C̃µ(k)

)

(

ξ+ ·∇V+,k(r)
)

Cν(k)
∣

∣

∣Xν

〉

k=k0

(42e)

Iµ,ν;6 = − 1
2

〈

Xµ

∣

∣

∣C̃µ(k)q · r
(

ξ+ ·∇V+,k(r)
)

q · rCν(k)
∣

∣

∣Xν

〉

k=k0

, (42f)

where {U,W} = UW +WU and

Cν(k)=[AXν (k), BXν (k)]
T
,

C̃µ(k)=
[

−BXµ(k), AXµ (k)
]

. (43)

In writing these matrix elements we have used time re-
versal and space inversion to unify terms. The mean
wavevector K is replaced with k0, which brings approxi-
mation of O(q3).
At this point, the integrals of Eq. (42) can be numeri-

cally calculated in a straightforward manner. Given the
four basis states and the above integral forms, this nu-
merical procedure involves a few hundreds of different
types of space integrations. Performing selection rules for
all of them also demands a large amount of work. How-
ever, we can avoid these labors and come to an accurate
and compact matrix element [Eq. (45)]. This possibility
is enabled by three observations that greatly simplify the
analysis of Eq. (42). These observations will also allow
us to connect the derived matrix element with an exper-
imentally known deformation potential quantity.
Observation 1 : Integration of bare potential re-

lated terms such as 〈Xµ|∇V±|Xν〉, 〈Xµ|ri∇V±|Xν〉
and 〈Xµ|rirj∇V±|Xν〉 yield numbers of the same or-
der of magnitude given that ri is measured in units
of a/2π. Moreover, these numbers are comparable for
both the in-phase (+) and out-of-phase (−) parts. The
same applies to the integrals of the spin-orbit cou-
pling potential, 〈Xµ|∇V so

±,k|Xν〉, 〈Xµ|{ri,∇V so
±,k}|Xν〉

and 〈Xµ|ri∇V so
±,krj |Xν〉. These conjectures are backed

by explicit numerical calculations. The physical rationale
is that these potentials are significant within the size of
a primitive cell where ri is of the order of 1. In what
follows we keep consistency and measure length in units
of a/2π. Accordingly, band-structure parameters such as
P , η or α are approached as energy scales, and compared
directly with Eg,X or ∆C (see Table VI).
Observation 2 : The number of matrix elements is

greatly reduced by estimating the amplitude of their
coefficients. The largest Elliott and Yafet products
scale, respectively, with |η|/∆C (or |η|P/∆CEg,X) and
2P 2/(Eg,X∆C). For both cases, other products are

significantly smaller. These products relate, respec-
tively, to the bare and spin-orbit coupling poten-
tials. These amplitudes are evaluated by inspection
after substituting the explicit coefficients of A(k) and
B(k) [Eq. (27)] into Eq. (42). Notice that the terms
{C(k),∇kC(k),∇2

kC(k)}|k=k0 are all constants without

k dependence (and similar for C̃).
Observation 3 : Prior to the application of selection

rules, contributions of Elliott and Yafet processes to in-
travalley spin relaxation are conceivably comparable. To
understand this physics we first recall the zeroth-order
Elliott-Yafet cancelation [Eq. (31)]. For states at the
valley center (k = k0) this cancellation means

∣

∣

∣

∣

〈X1|∇V so
+,k0

|X1〉
〈X1|∇V+|X4〉

∣

∣

∣

∣

=
∆X

Eg,X

. (44)

Taking into account observation 1, we can generalize this
order of magnitude to ratios between all Yafet-related
integrals and all Elliott-related ones. Dominant Elliott
processes relate to matrix elements of the type that ap-
pears in the denominator of Eq. (44) multiplied by η/∆C

(see observation 2). Similarly, dominant Yafet processes
relate to matrix elements of the type that appear in the
numerator multiplied by 2P 2/(Eg,X∆C). The overall ra-
tio between Elliott and Yafet processes is thus of the
order of unity (∼ P/Eg,X).
Application of observations 1-3 in Eq. (42) results in a

handful of matrix elements that are worth examination.
For example, the integral classes Iµ,ν;1 and Iµ,ν;6 are elim-
inated on ground of their small coefficients [∆′

X/Eg,X and
1 rather than η/∆C and 2P 2/(Eg,X∆C) in observation 2].
Therefore,

Iµ,ν;1 ∼ 0 and Iµ,ν; 6 ∼ 0 ,

for any possible basis state combination (Xµ and Xν).
We invoke group theory and evaluate the remaining

integrals in Eq. (42). Group theory results [Eqs. (18)-
(22) and their discussion] are extensively utilized, cou-
pling integrals are expressed analytically by reasonable
approximations, and the internal displacement of silicon
structure are carefully accounted. The detailed proce-
dure is shown in Appendix F. We reach at the intravalley
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FIG. 5. (Color online) Analytical (solid lines) and numeri-
cal results (-x- lines) of spin-flip matrix element as a function
of q = k1 − k2 along five different scattering directions, and
with s ‖ [001]. Each direction is represented by a different line
color. The electron resides in the z-valley and its spin is ori-
entated along the valley axis. The analytical results for TA,
LA, TO and LO modes are taken from Table V . Numer-
ical results rely on empirical pseudopotential and adiabatic
bond charge models (to be discussed in Sec. VII A). Analyt-
ical and numerical curves agree very well for all cases where
the quadratic dependence of the acoustic cases holds best for
small q values. Note that analytical results for different q

directions may overlap each other.

spin-flip matrix elements due to interaction with acoustic
phonon modes,

M intra
λ (k1,⇑ ; k2,⇓) =

2η

∆C
D′

xyǫxy,λ(q)(qx − iqy)

=
iηD′

xy

∆C
(qx−iqy)

[

qxξ
+
λ,y(q) + qyξ

+
λ,x(q)

]

, (45)

where λ={TA1, TA2, LA}, with a physical deformation
potential constant D′

xy whose complete integral expres-
sion reads

D′
xy=

−P 2m0

~2
+ Γxyz

〈

X2′

1

∣

∣

∣

∣

∂V−
∂z

∣

∣

∣

∣

X1
1

〉

(46)

−
〈

X2′

1

∣

∣

∣

∣

∣

A,B
∑

α

(y − τα,y)
∂Vat(r − τα)

∂x

∣

∣

∣

∣

∣

X1
1

〉

≈ 6 eV.

long-wavelength optical phonon modes

Using the gained knowledge of spin-flip processes with
acoustic phonon modes, we can readily derive the optical
case. The optical phonon modes have a dominant out-of-
phase polarization vector, ξ−op, with magnitude of about

unity at the long-wavelength regime (Table II). From
the detailed analysis of the out-of-phase acoustic phonon
modes we could have recognized the fact that the anti-
symmetric interaction, ∇V−, has a leading-order matrix
element that is linear in q. Separating the interaction
with optical modes into in-phase and out-of-phase parts,
we find in this case that the out-of-phase part dominates
the in-phase by two orders of magnitude. This result is a
consequence of the q dependence of the polarization vec-
tors as well as of the interaction integrals. The leading
integral term is simply

M intra
χ (k1,⇑ ; k2,⇓) =

−η
∆C

Dop (qx − iqy) ξ
−
χ,z(q) , (47)

where χ={TO1, TO2, LO}, with the associated scatter-
ing integral

Dop = 〈X2′

1 |∂V−/∂z|X1
1〉 ≈ 5 eV · 2π/a. (48)

The ability to investigate for each individual mode is
desired under conditions of anisotropic fields or stress.
Then, the relative importance of different modes may
vary depending on the symmetry breaking mechanism.
We render the elastic continuum approximation in or-

der to achieve complete and analytical q-dependent ma-
trix elements and to facilitate analytical integrations.
The polarization vectors, ξ±(q), in Eqs. (45) and (47)
are then replaced by the expressions of Table II. We
obtain |Msf |2 for each of the modes (TA, LA, TO and
LO).120 The final expressions are given in Table V (the
case of s‖[001]). To examine the accuracy of the q depen-
dence, Fig. 5 shows the analytical intravalley results |Msf |
from Table V next to numerically calculated matrix ele-
ments along inequivalent high-symmetry scattering angle
directions. The numerical procedure will be discussed in
Sec. VII together with application of the derived matrix
elements to (analytically) find the spin lifetime expres-
sion.

C. Intervalley g-process spin flips

g-process scattering angles are strongly directional
(q = k2 − k1 ≈ −2k0 ). The leading spin-flip matrix
element of a g-process depends on the mean wavevector
K = (k1+k2)/2 (and not on q as in the intravalley case;
See Table I). When k2 = −k1 the opposite spin states
are Kramers conjugates and their coupling via scattering
with any type of phonon vanishes.17 As will be shown
below, the LA mode leads the g-process spin relaxation
where its matrix element is linear in K. The scattering
constant, however, is not as concise as in the intraval-
ley case. This is conceivable because the translational
factors, e±ik′

0·r, of the initial and final states are to be
expanded around a common X point (k′ = 0). Other
than the dominant LA phonon mode, we also discuss the
general shape of the matrix element due to scattering
with TA phonon modes. Their contribution to g-process
spin relaxation at room temperature will be shown to be
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non-negligible in comparison with the LA mode. This
property is analogous to g-process momentum scatter-
ing, where TA phonon modes with a higher-order ma-
trix element but lower energy (compared to the lead-
ing LO phonon) are important in describing the charge
transport.121 In what follows we continue to work with
the X-point basis states which can be readily related to
the ∆-axis basis states via ψ∆i,kz ≃ eik

′

zzψXi .

For k1 and k2 at the vicinity of the ±z valley center,
we expand the matrix elements around K = 0,

Mg(k1,⇑;k2,⇓)
=

∑

±
〈q2 +K,⇓

∣

∣ξ±(q) ·∇V±
∣

∣ -q2 +K,⇑〉

=ZZM
(0)
sf +ZZM

(1)
sf,1 +M

(1)
sf,2

+XXXXO(K2) +O(K)O(|q/2 + k0|) +O(K3), (49)

and explain each term separately. In a g-process ξ−(q)
is not treated as a small quantity compared to 1. The
in-phase and out-of-phase interaction are treated on an
equal footing. However, we will find that the out-of-phase
contribution drops.

Applying time reversal symmetry on a spinor state and
k-derivative operator L [Eq. (36)], it is readily seen that
the zeroth-order term (K = 0) vanishes

M
(0)
sf =

∑

±
〈q2 ,⇓

∣

∣ξ±(q) ·∇V±
∣

∣ -q2 ,⇑〉 = 0, (50)

and that the two linear-in-K terms are equal to each
other,

M
(1)
sf =

∑

±
〈q2 ,⇓

∣

∣

(

ξ± ·∇V±
)

(K ·L)
∣

∣ -q2 ,⇑〉

+
∑

±
〈q2 ,⇓

∣

∣

∣
(L† ·K)

(

ξ± ·∇V±
)

∣

∣

∣
-q2 ,⇑〉. (51)

When L acts on the translational part, eik
′·r, the result-

ing matrix element becomes

M
(1)
sf,1 =

∑

±
〈q2 ,⇓

∣

∣[ξ± ·∇V±, iK · r]
∣

∣ -q2 ,⇑〉 ≈ 0, (52)

where [U,W ] = UW − WU . The Elliott part of this
term naturally drops since ∇V and r commute. The
Yafet part results in a small ‘αK’ factor and a weak cou-
pling between basis states (i.e., non-dominant coefficient

products). Thus, M
(1)
sf,1 can be safely discarded.

The second part of the first-order term, M
(1)
sf,2, results

from operating L on the k-dependent coefficient C(k)

and C̃(k) [Eq. (43)] of the bra and ket states in Eq. (51).
Time reversal symmetry is utilized again where following
Eq. (36) we get that 〈q2 ,⇓ | = (T | − q

2 ,⇑〉)†, and the
action of T on individual X-point basis states follows
Eq. (22c). All in all, the second part of the first-order
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FIG. 6. (Color online) Analytical (solid lines) and numeri-
cal results (-x- lines) of g-process spin-flip matrix elements
as a function of K = 1

2
(k1 + k2) due to scattering with LA

phonon modes, and with s ‖ [001]. Results are shown for five
typical scattering directions where each is represented by a
different line color. Analytical expressions are given in Table
V and their results for K‖[110] and [100] overlap each other.
Numerical results rely on empirical pseudopotential and adi-
abatic bond charge models (to be discussed in Sec. VII A)

term reads

M
(1)
sf,2 = 2

∑

µ,ν

∑

±

〈

Xµ

∣

∣

∣K ·∇kC̃µ′(k0)e
ik′

0z

(ξ± ·∇V±)Cν(k0)e
ik′

0z
∣

∣

∣
Xν

〉

+O(|q/2 + k0|2)

= IE + IY +O(|q/2 + k0|2) , (53)

where both C̃µ′ and Cν [Eq. (43)] are evaluated at
k0 ≈ −q/2 and for µ = {1, 2, 3, 4}, µ′ = {2, 1, 4, 3}. The
Yafet part contribution IY is not negligible for g-process.
The detailed derivation of IE and IY (Appendix F) bears
some similarity with that of intravalley spin flip, and in-
vokes the selection rules governing the opposite points of
∆ star.
We obtain the leading g-process matrix element,

Mg,LA(k1,⇑;k2,⇓) ≈ IE + IY

= Dgs(Kx − iKy), (54)

where

Dgs = 2P/Eg,X[Dso + 4∆Xk
′
0Dzz/∆C ] +O(k′30 )

≈ 0.1 eV. (55)

Dzz = Ξd + Ξu denotes the sum of dilation and uniax-
ial deformation potential parameters [see Eq. (E14) and
discussion after Eq. (E16)] and Dso ≈ 6.7 meV is a spin-
dependent scattering constant [see Eq. (F12)].
Squared matrix elements of the g-process are summa-

rized in Table V, and Fig. 6 compares |Msf | with numer-
ical results along typical K directions. The scattering-
angle dependence is predicted correctly where the linear
relation holds best when both states are at the vicinity
of the valleys centers. From numerical results we note
that O(k′0)

3 terms from Elliott interaction yield a nega-
tive 10% correction.
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Before concluding this part we briefly discuss spin-
flips matrix elements of higher order. We only mention
the general nature of these matrix elements without de-
riving explicit forms. The reason is that the g-process
has the weakest contribution to spin relaxation in un-
strained bulk silicon. Among the higher-order matrix
elements [last line of Eq. (49)], the O(K2) terms van-
ish by time reversal symmetry. This property can be
proven by using Eq. (36) and the matrix elements ex-
pansion to quadratic-K terms. On the other hand, the
non-vanishing second-order term has a wavevector depen-
dence of the type O(K)O(|q/2 + k0|). Such a symmetry
allowed term is more important than O(K3) terms and
governs matrix elements of TA phonon modes. Its con-
tribution to spin relaxation time from numerical calcula-
tions will be discussed in Sec. VII. Here it is noted that
compared with intravalley processes the relative contri-
bution to spin relaxation from high-order terms is larger.
In addition, the signature of further bands (outside the
X1 and X4 basis states) is larger in g-process spin flips.

D. Spin orientation dependence

We relax the restriction of a fixed spin orientation (s‖z)
and explore this degree of freedom. The spin orientation
dependence originates from the anisotropy of the con-
duction band. This anisotropy suggests that only the
relative direction of spin orientation to a valley axis is
important. Accordingly, we choose the +z valley and
express s in terms of polar and azimuthal angles (θ, φ)
with respect to the +z and +x directions. This choice
is convenient since selection rules between X-point ba-
sis states of the +z valley have been already derived in
Secs. VA-VB.
Derivation of spin-flip matrix elements when s ∦ z

relies on the specific form of |k,⇑ (⇓)s〉. These states
satisfy the conditions of Eq. (6) and their forms can be
found by solving the Hamiltonian matrix when written
in terms of the new basis {|X〉 ⊗ | ↑ (↓)s〉}. However,
we can avoid this labor and find these states using a
two-step procedure. First, the previously derived forms
of |k,⇑ (⇓)z〉 [Eq. (26)] are re-expressed in terms of the
new basis {|X〉⊗| ↑ (↓)s〉}. This change of basis amounts
to a rotation of the spin coordinate by −θ about the axis
ω = ŝ× ẑ. Specifically, the operator

U = exp

(−iσ ·ω̂ θ
2

)

, (56)

is applied on each of the four spinors [AXi(k), BXi (k)]
T

that Eq. (27) is comprised of.122 In the second step, we
find |k,⇑ (⇓)s〉 by forming linear combinations of the re-
expressed states (still oriented along z) such that Eq. (6)
is satisfied. Technical details of finding this superposi-
tion are summarized in Appendix D. The states can be
expressed in the original {|X〉⊗ | ↑ (↓)z〉} basis using U †.
Having the forms of |k,⇑ (⇓)s〉, we repeat the proce-

dure of Sec. VB and derive the dominant intravalley spin-

flip matrix elements. Scattering with acoustic phonon
modes reads

M intra
λ (k1,⇑s ; k2,⇓s)

= iη/∆CD
′
xy

(

qxξ
+
y,λ(q) + qyξ

+
x,λ(q)

)

×
[

cos2
θ

2
(qx − iqy)− sin2

θ

2
e2iφ(qx + iqy)

]

, (57)

where λ={TA1, TA2, LA}. Scattering with optical
phonon modes reads

M intra
χ (k1,⇑s ; k2,⇓s)

= −η/∆C Dop ξ
−
z,χ(q)

×
[

cos2
θ

2
(qx − iqy)− sin2

θ

2
e2iφ(qx + iqy)

]

. (58)

where χ={TO1, TO2, LO}. Table V lists the squared
matrix element expressions of all phonon modes using
elastic continuum approximation for diamond crystal
structures. These spin-flip expressions are specified for
spin orientations along all inequivalent high-symmetry
crystal directions. This chosen set of directions is im-
portant for two reasons. First, the invoked elastic con-
tinuum approximation is accurate along these directions.
Second, the oriented spins in typical spin injection ex-
periments point along these directions. Using the results
in Table V, we have shown in Fig. 5 that the analytical
expression for n‖z (θ=0) agrees with independent numer-
ical calculations. This agreement is also true (not shown)
for n ∦ z cases in Table V. As will be explained in the
next section, the numerical models automatically incor-
porate time reversal and space-group symmetries of the
crystal. The agreement between these independent cal-
culation approaches manifest the robustness of the major
terms we have kept in intravalley spin flips.
Deriving the g-process spin-flip matrix elements is sim-

ilar. We study scattering from z to −z valley for an arbi-
trary direction of s. Repeating the procedure of Sec. VC,
the dominant spin-flip matrix element reads

Mg,LA(k1,⇑s k2,⇓s) =

Dgs

[

cos2
θ

2
(Kx − iKy)− sin2

θ

2
e2iφ(Kx + iKy)

]

, (59)

and it originates from scattering with LA phonon modes.
Using this expression, Table V lists squared matrix ele-
ments along high-symmetry crystal directions. As can
be seen from the square brackets terms of Eqs. (57)-(59),
the g-process shares the same angular dependence as in
the intravalley case but with replacing q = k1 − k2 with
K = 1

2 (k1 + k2). The similar angular dependence is not
surprising for two related reasons. First, the spin orien-
tation only affects the electron states while the phonon
properties play no role in setting the angular dependance.
Second, the electron states that we use in deriving in-
travalley or g-process matrix elements are all expanded
around the same X point. The replacement of q with K

can be understood by time reversal symmetry.
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Analysis of the spin relaxation time due to scattering
within the +z valley and between ±z valleys will be pro-
vided in Sec. VII C for various directions of s.

VI. INTERPLAY BETWEEN ANALYTICAL

DERIVATION AND EPM

In this work we compare our results with an empirical
method in which the electronic states and phonon po-
larization vectors are calculated, respectively, via empir-
ical pseudopotential and adiabatic bond charge models
(EPM and ABCM).23,24 The states and polarization vec-
tors are used in calculating the electron-phonon interac-
tion following a rigid-ion approximation.25 The EPM and
ABCM provide very accurate symmetry-related results
and trends of contributions from high-order wavevector
components. Given that a sufficiently large plane-wave
basis is employed, then in addition to time reversal sym-
metry these models capture the symmetries of the Bra-
vais lattice and of the primitive cell. This ability is in-
dependent of the specific chosen values of empirical pa-
rameters (e.g, form factors of the pseudopotential). On
the other hand, intensive numerical calculations do not
automatically guarantee an accurate spin-flip matrix el-
ement result. Our theory provides a clear insight to the
identity of critical empirical parameters that are relevant
for spin relaxation. In this section we will elaborate on
fundamental aspects in understanding the application of
EPM in spin-flip processes.
The usual way of finding the energy band structure by

adjusting the pseudopotential form factors is not suffi-
cient for scattering problems. Specific derivative values
of the pseudopotential at the first few reciprocal lattice
vectors [dmV (k)/dkm at k = gn] are additional neces-
sary conditions. In momentum scattering, a correctly
interpolated pseudopotential is capable of reproducing
the energy shifts of the conduction band in response to
applied stress. Spin scattering is more than momentum
scattering in the sense that the leading-order matrix ele-
ment is of higher order in the wavevector (e.g., intraval-
ley and g-process scattering in silicon). One consequence
is that other deformation potential constants may come
into play (e.g., D′

xy as was shown in the previous sec-
tion). In fact, our spin-dependent EPM is matched not
only with energy band structure but also with different
deformation potential quantities (E1 + a, b, d, E2 and E∗

2

in Ref. [109]).
The analytical derivation shows that the two-band de-

generacy at the X point plays an important role in silicon
due to its proximity to the valley center. This proximity
results in ∆C/Eg,X ≪ 1 which allowed us to discard inter-
action terms of the type rirj∂V+/∂rk [Eq. (42f)]. Consid-
ering the Fourier transform of the pseudopotential, this
simplification means that intravalley spin flips are only
sensitive to values of V (gn) and dV (gn)/dk while high-
order derivatives can be discarded. However, silicon is a
specific case. In germanium, for example, intravalley spin

flips have a cubic dependence on the wavevector,123 and
they may require additional information on d2V (gn)/dk

2

and d3V (gn)/dk
3. In the framework of deformation po-

tential theory, this amounts to expanding the strained
crystal potential with quadratic or higher-order strain-
tensor components. Notably, a comprehensive experi-
mental analysis of the intravalley spin relaxation time in
germanium may provide new information on its crystal
potential.
The f -process spin-flip matrix elements in silicon de-

pend on various parts of the pseudopotential curve. An
a priori and independent determination of V (|k|) is dif-
ficult. To empirically interpolate the pseudopotential
curve from momentum and spin relaxation experiments,
one has to know the relaxation times dependencies on
temperature, electric field, stress and related ‘knobs’.
This information can resolve the values of individual scat-
tering constants rather than their combined effect. In ad-
dition, knowledge of the intravalley scattering parameters
allows one to reduce the uncertainties in interpolating the
pseudopotential.
All in all, the k·pmethod and group theory provide an

unambiguous guidance in relating EPM parameters with
different experimental measurements and in determining
the relevant parts for spin relaxation. These consider-
ations rationalize the investigation of spin-flip problems
by joining analytical and numerical approaches.

VII. SPIN LIFETIME

The spin relaxation time is an experimentally acces-
sible quantity. With a specific electron distribution F ,
detailed expressions for spin-flip matrix elements can in
principle provide a transparent physical picture of the
spin relaxation under a variety of conditions. The spin
relaxation rate has the form,17

1

τsf
=

4π

~

〈∫

d3k2
(2π)3

|〈k2|Hsf
ep|k1〉|2δ(Ek2−Ek1±~ωq)

〉

k1

,

(60)

where 〈k2|Hsf
ep|k1〉 denotes the expression of Eq. (4) with

opposite spin states. The material volume Na3/4 is cho-
sen as the unit volume. +(−) corresponds to phonon
emission (absorption). The average over k1 represents
∂F/∂Ek1 weighted integration over k1, which is exact
at the limit of infinitesimal spin-dependent chemical po-
tential splitting. The prefactor of 4π/~ instead of 2π/~
denotes the fact that the net number of spin-polarized
electrons (N⇑-N⇓) changes by two with each spin flip.
A few applications will be shown in this section. Af-

ter briefly describing our numerical integration effort, we
present the commonly used τsf under a normal condi-
tion both analytically and numerically. Here ‘normal’
stands for a non-degenerate bulk silicon without strong
fields (i.e., Boltzmann distribution FMB for electrons),
and with spin orientation along the valley axis. The av-
erage over k1 in Eq. (60) then becomes FMB weighted
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integration over k1. This weighted integration is valid
thanks to the relation dFMB/dE ∝ FMB. In the last
part of this section, some essential relations between the
spin orientation s and τsf are derived.

A. Numerical integrations and approximations

We have performed numerical integrations of Eq. (60)
at different levels of approximation. These calculations
are presented in decreasing order of their computation
time. ‘EPM+ABCM’ denotes the full numerical results
from EPM and ABCM program codes.124 The calculated
electron states and phonon polarization vectors are then
incorporated into a rigid-ion model following the proce-
dure in Ref. [21]. ‘kp+ABCM’ replaces the EPM results
with k ·p energy band [Eq. (C4)]. It employs the general
analytical form of |Msf | from Eqs. (45), (47) and (54).
‘ellip+ω(q)’ further employs a spheroidal energy disper-
sion and replaces the phonon frequency from ABCM with
ω = qvTA/LA for intravalley and g-process scattering with
acoustic phonon modes (vTA/LA are the phonon veloci-
ties). For intravalley scattering with long-wavelength op-
tical phonon modes, it replaces the phonon energy with a
constant ~ωop=63.5 meV. Finally, it employs the elastic
continuum approximation for phonon polarizations (Ta-
ble V with s‖[001]).
Numerical integrations of Eq. (60) were performed us-

ing a grid spacing of 0.01 × 2π/a in k space. This
grid leads to converged results for intermediate and high
temperatures (T > 50K). We take advantage of the
eight-fold symmetry of the ∆ axis valleys and reduce
the intensity of computation whenever possible. The
edges of the irreducible wedge are weighted to pre-
vent overlap with their neighbors. Also helpful is the
strict equality FMB(k1)n(q) = FMB(k2)[n(q) + 1] when
E(k2)− E(k1) = ~ω(q). Typical execution times are as
follows: tens of seconds for ‘ellip+ω(q)’, tens of minutes
for ‘kp+ABCM’ and a few days (with 64 CPU cores) for
‘EPM+ABCM’. The bottleneck of the ‘EPM+ABCM’
computation speed lies in calculation of individual matrix
elements. This calculation involves the product of states
and interactions written, respectively, in vector and ma-
trix forms with a basis of hundreds of plane waves.125

B. Fixed spin orientation along the valley axis

We separately study the spin relaxation time due to
intravalley, g-process, and f -process spin flips. Figure 7
shows results of the intravalley spin relaxation time by
integration of Eq. (60) using the aforementioned nu-
merical procedures. The figure also includes analytical
curves for scattering with acoustic phonon modes (left
and middle panels). These analytical integrations are
carried out by employing an elastic scattering approxi-
mation and a high temperature limit for phonon popu-
lation n(q) ≈ kBT/~ω(q). Together with the mentioned
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FIG. 7. (Color online) Intravalley τsf(T ) induced by scat-
tering with TA, LA and optical (OP) phonon modes. The
relaxation time is contributed from all valleys and the spin
orientation is set along one of the valley axes (∆ axis). An-
alytical curves of the acoustic modes follow Eq. (61). Other
curves refer to numerical approaches with calculation inten-
sities that depend on details of the band structure, phonon
energy, and polarization vectors (see text). Due to the cross-
ing of TO and LO dispersion curves, we do not separate their
contributions in the ABCM calculation.

simplifications in numerical integrations, these common
practices allow us to accurately calculate the relaxation
time by employing the relevant spin-flip matrix elements
in Table V (|M intra

TA/LA|2 with s‖[001] and s‖[100]). The

integrated spin relaxation rate reads

1

τTA(LA)

sf,i

= ζTA(LA)
16

√
2m

5/2
d

3π3/2~6ρ

( |η|
∆C

D′
xy

)2

(kBT )
5
2 ,

ζTA =
1

v2TA

[

−r
4/3(23− 12r + 4r2)

3(1− r)3

+
r5/6(3 + 2r)

(1 − r)7/2
arcsin(

√
1− r)

]

,

ζLA =
1

v2LA

[

r4/3(3 + 16r − 4r2)

3(1− r)3

+
r5/6(1− 6r)

(1 − r)7/2
arcsin(

√
1− r)

]

, (61)

where τTA

sf,i and τ
LA

sf,i are, respectively, the intravalley spin
relaxation times due to scattering with long-wavelength
TA and LA phonon modes. Table VII lists the values
of all parameters in the above expression. To enable an
accurate analytical integration in comparison with the
full numerical integration, the explicit dependence on the
band structure anisotropy has been considered.126 This
anisotropy is expressed in Eq. (61) via r=mt/ml which
denotes the ratio between the longitudinal and transverse
effective masses of the electron (with respect to the valley
axis). As seen from the middle and left panels of Fig. 7,
the analytical integrations match very well with the most
detailed numerical integration. These figures also show
that 1/τsf(T ) of the ‘EPM+ABCM’ numerical results de-
crease slightly faster than T−5/2 for both scattering with
TA and LA phonon modes. It indicates the dependence
of |Msf | on higher-order wavevector components when |q|
gradually increases.21 The figure shows that only minor
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TABLE VII. Parameter values in Eqs. (61)-(63).

Symbol Value Unit Expression

ρ 2.33 gr/cm3

mt 0.19 m0 (m−1
0 + 2P 2/~2Eg,X)−1

ml 0.92 m0

md 0.32 m0 (mlm
2
t )1/3

r 0.2 mt/ml

vTA 5×105 cm/s

vLA 8.7×105 cm/s

∆C 0.5 eV Table VI

|η| 16.7 meV·a/2π Table VI

D′
xy 6 eV Eq. (46)

Eg
q 21 meV

Dgs 0.1 eV Eq. (55)

changes are introduced in all intravalley processes when
replacing the detailed conduction band structure with
spheroid dispersion and the numerical phonon data with
the analytical approximation. This behavior supports
the validity of the invoked approximations, including the
use of an elastic continuum approximation. The stronger
deviation of the ‘EPM+ABCM’ curve in the case of opti-
cal phonon modes shows the effect of higher-order matrix
element terms. Although the contribution to spin relax-
ation from LA and optical phonon modes is negligible
at low temperatures (compared with TA modes), their
effect should be considered at room temperature (espe-
cially the optical modes).
We study the spin relaxation time due to g-process

spin flips in a similar way. Results of the analyti-
cal and numerical integrations are presented in Fig. 8.
The analytical relaxation rate due to scattering with LA
phonon modes (dominant effect) is reached by integrat-
ing Eq. (60) with spin-flip matrix elements taken from
Table V (for the case of s‖[001] and s‖[100]),

1

τLA

sf,g

=

√
2D2

gsmtm
3
2

d E
g
q

16π
3
2 ~4ρ

K2(E
g
q /2kBT )√

kBT sinh(Eg
q /2kBT )

. (62)

Values of the scattering constant, phonon energy and ef-
fective masses are listed in Table VII. Ki is the i

th order
modified Bessel function of the second kind. Figure 8 also
shows a full numerical curve due to scattering with TA
phonon modes. The relative weight of the TA part clearly
increases with temperature. Also can be seen at the high
temperature end, is a relatively large deviation between
the analytical and ‘ellip+ω(q)’ curves. This deviation is
caused by using a constant phonon energy instead of a
linear dispersion relation. The energy difference affects
the phonon population.
Finally, we study the spin relaxation due to f -process

spin flips. Analytical and ‘EPM+ABCM’ numerical in-
tegrations of Eq. (60) are presented in Fig. 9 for each
of the phonon modes. In the analytical integration, we
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FIG. 8. (Color online) g-process τsf(T ) from LA phonon at
different levels of approximation (see text). The ‘TA’ curve
is calculated only by ‘EPM+ABCM’. The relaxation time is
contributed from all valleys and the spin orientation is set
along one of the valley axes. In ‘ellip+ω(q)’, the phonon ve-
locity is the same as that of a long-wavelength LA phonon
mode. In the analytical curve the phonon energy is constant
(21 meV).

have used the approximations of a spheroidal energy dis-
persion in the conduction band, and of wavevector inde-
pendent spin-flip matrix elements and phonon energies
(Sec. IV). The analytical integration becomes relatively
simple for each of the nonvanishing modes and for spin
orientation along the valley axis,

1

τ
Σi

sf

=

√
2m

3
2

d

3π
3
2 ~2ρ

AiD
2
Σi

K1(E
f
q /2kBT )√

kBT sinh(Ef
q /2kBT )

. (63)

Values of the scattering constants and phonon energies
(DΣi and Ef

q ) are listed in Table III where DΣ1 stands

forDΣ1,s. The value of Ai is obtained by summing |Msf |2
over 12 pairs of valleys. Following the results of Sec. IVA,
we get that A1 = 8 and A2/3 = 16. In calculating the
values of Ai we have used the facts that for Σ1, there is
no coupling between valleys of the x-y plane whereas the
coupling is D2

Σ1
between any of the remaining eight pairs

of valleys (assuming that s ‖ z). For Σ2/3, the coupling

is |(1 + i)DΣ2/3
|2 between each of the 4 pairs of the x-y

plane and D2
Σ2/3

between each of the remaining 8 pairs.

Figure 9 shows that the dominant scattering is with
phonon modes of the LA and TA‖ (Σ1 and Σ3 sym-
metries; see Table III). Their temperature trends are
correctly predicted by the wavevector-independent ana-
lytical analysis. The same applies for scattering with
phonon modes of the TO⊥ and TO‖. After a qualitative
analysis we find that the big difference between analyti-
cal and numerical results in the LO phonon case is caused
by quadratic-wavevector terms. This wavevector depen-
dence is further complicated by even higher-order terms
when the electron states are further away from valley cen-
ters. For the TA⊥ phonon case, we found in Sec. IV that
there is no wavevector independent term. The numerical
result is attributed to linear terms and it is non-negligible
due to the higher phonon population of this mode [low-
est energy; see Fig. 3(a)]. In general, wavevector depen-
dent terms contribute at all modes when the temperature
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FIG. 9. (Color online) Analytical (solid lines) and numerical
(-x- lines) results of τsf(T ) in f -process spin flips where each
phonon mode is represented by a different color. The relax-
ation time is from all valleys and the spin orientation is set
along one of the valley axes. ⊥ and ‖ are taken with respect
to the cross product of valley centers (direction of k0,1×k0,2).
The analytical contribution from TA⊥ modes vanishes (at the
zeroth order).

increases. The dependence on the electron wavevectors
(k1,2) can be similarly analyzed between decomposed k·p
basis states (as in the intravalley and g-process cases).
We do not make an explicit derivation of these terms
since the focus is on the leading-order term contribution
(wavevector independent in the f -process case).

C. Spin orientation anisotropy coupled with

symmetry breaking mechanisms

The spin relaxation time is in general a function of spin
orientation [τsf(s)]. It can be obtained by integration
with the general matrix element expressions derived in
Eqs. (17a)-(17f) and (57)-(59). We can firstly calculate
τsf(s) from one valley (intravalley) or a pair of valleys
(intervalley). The total τsf(s) is a summation from all
of the involved valleys, whose individual τsf(s) can be
related to the calculated one by a proper coordination
rotation.
We first discuss the integrated effect of changing s on

intravalley and g-process spin flips. Figure 10 shows the
temperature dependence of τsf(s) due to intravalley scat-
tering of electrons in the z-valley with TA, LA, and op-
tical modes. It also shows τsf(s) due to the dominant
intervalley scattering between the ±z valleys (g-process).
These results were calculated using the ‘kp+ABCM’ inte-
gration procedure with matrix elements taken from Ta-
ble V. Each panel shows results of s along all of the
inequivalent high-symmetry crystallographic directions.
The spin lifetime in a given valley increases with decreas-
ing the projection of the spin orientation on the valley
axis. This effect implies that suppression of the spin re-
laxation in one valley is compensated by enhanced re-
laxation at perpendicular valleys. As a result, the spin
lifetime due to intravalley and g-process scattering from
all valleys is expected to have a diminished dependence
on the spin orientation. Nonetheless, Fig. 10 can be seen
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FIG. 10. (Color online) τsf(T, s) of electrons in the z valley
(intravalley) and ±z valleys (g-process) for spin orientation s

along high symmetry directions. The curves of s‖[001] and
[110] overlap each other since integrations of their respective
spin-flip matrix elements over the azimuthal angle of q yield
the same result. In this sense, only the projection n̂z on the
valley axis is relevant.

as a simplified example of how different spin orientations,
coupled with a symmetry-breaking mechanism, can lead
to different experimentally measurable quantities. For
example, stress or electrical fields can selectively change
the electron distribution of different valleys leading to
a significant electron population only at valleys along a
certain axis. In that case, the total spin lifetime will
present a pronounced degree of anisotropy when chang-
ing the spin orientation.
For f -process spin flips, changing the spin orientation

results in slightly more involved relations between spin re-
laxation times of different pairs of valleys. The wavevec-
tor integration of Eq. (60) is not affected by the spin ori-

entation (Mf
sf are wavevector independent). Therefore,

one only needs to obtain the values of Ai in Eq. (63) for
each of the Σi symmetries. In this application, the 12
pairs of involved valleys can be divided into 6 groups.
Each group consists of two pairs related by space inver-
sion operation and they always have the same value of
|MΣi(s)| = 〈k2,⇓s |HΣi |k1,⇑s〉. For ±x ↔ ±y pairs, we
use Eqs. (17b), (17d) and (17f), and denote them with
M0,Σi(s). Using crystal symmetry, the matrix elements
of all other pairs relate to M0,Σi(s) by,

±x↔ ∓y :MΣi(s) =M0,Σi(sx,−sy, sz),
±x↔ ±z :MΣi(s) =M0,Σi(sx, sz, sy),

±x↔ ∓z :MΣi(s) =M0,Σi(sx,−sz,−sy),
±y ↔ ±z :MΣi(s) =M0,Σi(sz, sy, sx),

±y ↔ ∓z :MΣi(s) =M0,Σi(−sz, sy,−sx). (64)

After summing all of the contributions, one finds that
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A1 = 8 and A2/3 = 16 [the same as those obtained
in Eq. (63)] with the direction of s first expressed in
terms of (θ, φ) and then substituted into expressions of
M0,Σi . Therefore, when all valleys are equally populated
then the total τsf is invariant of s (to the leading order).
On the other hand, when symmetry breaking effects are
introduced then valley repopulation brings in a depen-
dence of the spin relaxation time on the spin orientation.
For example, consider an internally strained structure in
which the f -process scattering with ±z valleys is sup-
pressed (i.e., the ±x and ±y valleys are equivalent and
have sufficiently lower energy). In such a structure, the
above analysis reveals that if the spin is oriented along
z then one should assign in Eq. (63) values of A1 = 0
and A2,3 = 8. Similarly, for orientation along x or y one
should assign A1 = 4 and A2,3 = 4. Using the param-
eters of this stressed configuration, the f -process spin
relaxation time is estimated to be shortened by ∼50%
when changing the spin orientation from the z-axis to
the perpendicular plane.

VIII. SUMMARY AND OUTLOOK

We have presented a comprehensive analysis of all
phonon-induced spin relaxation processes in bulk sili-
con. The applied temperature and doping regime of this
mechanism has been identified, among other mechanisms
(Sec. II). In decreasing order of contributions to spin
relaxation, detailed expressions of f -process, intravalley
and g-process matrix elements have been derived and
their dependence on the spin orientation are unveiled.
We have elaborated on the wavevector dependence and
symmetry properties of each spin-flip process. In analogy
to Herring and Vogt theory on momentum relaxation in
silicon,107 this work unravels the magnitudes and sym-
metries of all phonon-induced spin relaxation processes
in silicon.
In studying the f -process spin flips, double group selec-

tion rules are used to obtain the wavevector-independent
(leading order) matrix elements. Spin orientation depen-
dent spin-flip (and spin-conserving) matrix elements were
expressed in terms of scattering constants DΣis (and also
DΣ1m), for electron-phonon interaction with Σi symme-
try.
Intravalley spin flips were studied by using a combina-

tion of single group theory, k·p perturbation method and
rigid-ion model. The spin-dependent coupling between
the expanded basis functions and symmetrized interac-
tions is formulated via selection rules. This approach
allowed us to derive the leading order intravalley matrix
elements [Eqs. (57) and (58)] and to resolve their exact
dependence on the phonon polarization (ξ), its wavevec-
tor (q), and on the spin orientation with respect to the
valley axis [s(θ, φ)]. By incorporating the diamond crys-
tal structure into an elastic continuum model (express-
ing ξ in terms of q), we have derived appealing forms
of these matrix elements (Table V). Finally, the anal-

ysis identifies the important band structure parameters.
The η parameter is a measure of the wavevector indepen-

dent spin-orbit coupling between conduction and valence
states at the X point (Table VI). The deformation po-
tential parameter due to scattering with long-wavelength
acoustic (optical) phonon modes isDop (D′

xy), and it cor-
responds to interband coupling between the lowest pair
of conduction bands [Eq. (46) and (48)]. This coupling is
brought by the proximity of the valley to the two-band
degeneracy at the X point. The ∆C parameter denotes
the energy gap between the lowest pair of conduction
bands at the valley center.

A complete picture of the relation between intravalley
spin-conserving and spin-flip processes has been provided
(together with the detailed derivations in Appendix E
and F). This comparison reveals important physical as-
pects that are being overlooked when relating spin and
momentum relaxation times via the shift of the g-factor
(conventional approach in quantifying the spin lifetime
due to the Elliott-Yafet relaxation mechanism).

g-process spin flips are studied in a similar way to the
intravalley case. In spite of the opposite valley positions
of an electron before and after scattering, Kramers conju-
gation relation allows us to expand the electronic states
by basis functions of the same X point. One result of
this relation is that the matrix elements depend on the
average between the initial and final electron wavevec-
tors [K = 1

2 (k1 + k2)] rather than on their difference
(q = k1 − k2). The spin orientation dependent ma-
trix element of the g-process is provided in Eq. (59).
The involved scattering constant has a large contribu-
tion from dilation and uniaxial deformation potential
constants [Eq. (55)]. Comparing the derived matrix el-
ements with respective results of independent numerical
calculations shows that our analytical approach provides
accurate spin-flip amplitudes at all scattering angles for
both intravalley and g-process cases (Figs. 5 and 6).

Our analysis provides insights into which parts of the
interaction (spin-independent ‘Elliott’ or spin orbit cou-
pling ‘Yafet’) dominate the phonon-induced spin relax-
ation in silicon. In silicon, the sum of Elliott and Yafet
contributions vanishes at the zero and first order of in-
travalley scattering with acoustic phonon modes.17 At
the leading order of this scattering (quadratic-in-q), we
have shown that the Elliott part dominates the spin re-
laxation. The Elliott contribution is also shown to domi-
nate the spin relaxation due to intravalley scattering with
optical phonon modes and g-process intervalley scatter-
ing. The latter two process are, respectively, linear in
q and K. Yafet contributions, however, cannot be com-
pletely ignored in g-process scattering where the defor-
mation potential constant is affected by the spin-orbit
coupling [Eq. (F12)]. In silicon, Elliott and Yafet contri-
butions are comparable only in the f -process.

We have derived the spin lifetime due to each of the
spin-flip processes by integrating its leading matrix ele-
ments. Analytical forms are given for intravalley scat-
tering with acoustic phonon modes [Eq. (61)] and for
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both types of intervalley scattering [Eqs. (62) and (63)].
Comparison of these results with numerical calculations
at different levels of approximation show good agree-
ments (Figs. 7, 8 and 9). The analysis also identifies
the phonon modes which lead to strongest spin relax-
ation. The f -process is led by scattering with Σ1 and
Σ3 symmetry (LA and TA‖) phonon. Intravalley spin
relaxation is led by scattering with TA phonon. Intraval-
ley contributions from scattering with LA and optical
phonon become comparable to the TA’s at room temper-
atures. g-process is led by scattering with LA phonon.
We have also considered the secondary contribution to g-
process spin relaxation from scattering with TA phonon
(quadratic-wavevector dependence but a larger phonon
population).

Outlook

Results of this work shed light on new research di-
rections in group IV spintronics. By having a thorough
understanding of the underlying physics, one can devise
a means to enhance the spin lifetime of room tempera-
ture silicon spintronic devices. Quenching of the domi-
nant f -process by certain stress configurations is the first
step in this direction.15,22 In this case, only the valleys
along one crystallographic axis are practically populated
with electrons. To further suppress the remaining re-
laxation processes (intravalley and g-process spin-flips),
one can make use of the slower relaxation when the spin
orientation is perpendicular to this crystallographic axis
(Fig. 10).
In addition to quenching the f -process and further

optimization by spin orientation, one can also impose
geometrical constraints on the transport. For example,
promising candidates seem to be stressed silicon wires
with a cross-section area that is large enough to prevent
detrimental surface effects but is small enough to restrict
the phase-space for scattering. Having the wire axis par-
allel to the axis of populated valleys would allow one to
achieve significantly longer spin lifetimes. This fact can
be seen from the detailed intravalley and g-process ma-
trix elements: while in these structures forward and back-
ward scattering with respect to the axis of the wire (and
populated valleys) dominate the transport, these types of
scattering would not be accompanied by spin flips (e.g.,
for z valley electrons, assign qx ≈ qy ≈ 0 in Table V).
This example shows the insights one can gain from un-
derstanding the symmetries of the matrix elements rather
than only having a knowledge of the integrated effect.
The complete set of matrix elements is also instrumen-

tal in calculating the spin relaxation in the presence of
large electric fields. Due to the mass anisotropy, the val-
ley population depends on the direction of the field. In
addition, the field can lead to a large departure of the
electron distribution from equilibrium conditions.127 As
a result of these effects, intervalley processes are enabled
already at low temperatures and certain scattering pro-

cesses are enhanced.87 Using the dependence of the relax-
ation on spin orientation and scattering directions, one
can accurately model and understand the spin relaxation
in these conditions.

The presented theory identifies a handful of scatter-
ing and band structure constants which have not been
experimentally determined yet. Evidently, the most im-
portant constants are DΣ1(3)s of the f -process scattering

with phonon modes along the LA (TA‖) branches, and
∆X which denotes the spin-orbit coupling between con-
duction and valence states at the X point. In the absence
of experimental data, we have used the empirical pseu-
dopotential method to calculate their values (Tables III
and VI). To determine these constants experimentally
one should resolve various contributions to the measured
spin lifetime. Intravalley, g and f -processes have different
dependencies on the wavevector components, phonon po-
larization and spin orientation. In addition, the energies
of the respective phonon modes are different. As a result,
the measured spin lifetime of each of these processes has a
unique dependence on temperature [Eqs. (61)-(63)], and
it can be clearly resolved by application of a symmetry
breaking mechanism (e.g., stress or electric fields as men-
tioned before).

Finally, the theoretical approaches presented in this
paper can be used to study the spin relaxation of ma-
terials with different symmetry groups and consequently
different wavevector-order analysis (e.g., germanium and
graphene with respective utilization of the space groups
at the L and K points of their Brillouin zones). Results
of such a study provide a clear picture of preferred scat-
tering angles, spin orientation and dominant spin relax-
ation mechanisms. As in the case of silicon, having this
information provides guidance in tailoring the spin relax-
ation by application of stress, external fields or geomet-
rical constraints. When such external influences become
too large, one can repeat the steps of the presented pro-
cedure after adding the external perturbation explicitly
in the Hamiltonian and interaction terms.

This work is supported by DOD/AF/AFOSR FA9550-
09-1-0493 and by NSF ECCS-0824075.

Appendix A: detailed application of double group

theory for f-process matrix elements

In this appendix, we intend to express interaction ma-
trix elements 〈k2,±s|HΣi |k1, s〉 in terms of NΣi indepen-
dent constants. First, by the general time reversal and
space inversion symmetries we can connect different ma-
trix elements of each phonon mode [Eq. (13)].

For Σ1 mode, the (ρz |τ) operation equates the spin-
flip matrix element to negative of itself (seen from the
character of Σ1 and the IR matrix of D∆6 = D∆1 ×D1/2
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in Table III). We show this example explicitly,

HΣ1 → HΣ1 ,

|k,⇑z〉 → e
−ik0a

4 × (−i)|k,⇑z〉,
|k,⇓z〉 → e

−ik0a
4 × i|k,⇓z〉,

remembering that basis states in D∆6 are |k,⇑z (⇓z)〉.
(ρz|τ) and other symmetry operations do not provide
constraints on the spin-conserving matrix element. Since
NΣ1 = 2 [Eq. (11)], there are two real constants DΣ1,m

and DΣ1,s. The physical significance of these two con-
stants will become clear later. They are defined such
that

〈k2,⇑z |HΣ1 |k1,⇑z〉 = DΣ1,m + iDΣ1,s. (A1)

For Σ2, spin-conserving matrix element vanishes (can
be seen, for example, by applying the Tσz operation).
The spin-flip matrix element is

〈k2,⇓z |HΣ2 |k1,⇑z〉 TR
= −〈-k1,⇓z |HΣ2 |-k2,⇑z〉

(ρxy|τ)
= i〈k2,⇑z |HΣ2 |k1,⇓z〉,

by time reversal and (ρxy|τ) sequentially. Combined with
Eq. (13b), we are led to

〈k2,⇓z |HΣ2 |k1,⇑z〉 = DΣ2 − iDΣ2 , (A2)

where DΣ2 is the independent real constant.

Applying the same operations for Σ3 and noting
that the only difference from Σ2 mode is the sign of
χΣ3

(ρxy|τ), we get

〈k2,⇓z |HΣ3 |k1,⇑z〉 = DΣ3 + iDΣ3 , (A3)

where DΣ3 is the independent real constant. As shown
in Eq. (11), the Σ4 phonon symmetry does not couple
electrons of any spin species (NΣ4 = 0).

Appendix B: Group G2
32

Symmetry operations of the G2
32 group are listed in

Table VIII. The table refers to the X point in the z
direction. Tables of X points in the x and y directions
are derived by cyclic permutations. From Table VIII one
can study how vectors and axial-vectors are transformed
under the 32 group elements. Character table of the G2

32

group is listed in Table IX. From the character table
one can decompose the direct products of {X1, X4} into
direct sums of IRs [Eq. (18)]. One can also construct
all sorts of direct product rules from IRs that present
components of vectors, axial-vectors or (anti)symmetric
potentials [Eq. (20)].

TABLE VIII. List of operations of the G2
32 group. Notations

follow Ref. 98.

Class symbol Operations

C1 (ǫ|0)

C2 (δ2x|0), (δ2y |0), (δ2x|txy), (δ2y|txy)

C3 δ2z

C4 (δ2xy |τ ),(δ2x̄y|τ + txy)

C5 (δ4x|τ ),(δ−1
4x |τ ),(δ4x|τ + txy),(δ−1

4x |τ + txy)

C6 (ρz|τ ), (ρz|τ + txy)

C7 (ρy|τ ), (ρx|τ ),(ρy|τ + txy), (ρx|τ + txy)

C8 (i|τ ), (i|τ + txy)

C9 (ρxy|0),(ρx̄y|0)

C10 (σ4z|0), (σ−1
4z |0), (σ4z|txy), (σ−1

4z |txy)

C11 (ρxy|txy),(ρx̄y |txy)

C12 (δ2x̄y |τ ),(δ2xy|τ + txy)

C13 (δ2z|txy)

C14 (ǫ|txy)

TABLE IX. Character table of the G2
32 group

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M2 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1

M3 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1

M4 1 -1 1 1 -1 1 -1 1 1 -1 1 1 1 1

M5 2 0 -2 0 0 2 0 -2 0 0 0 0 -2 2

M ′
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1

M ′
2 1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 1

M ′
3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1

M ′
4 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 1

M ′
5 2 0 -2 0 0 -2 0 2 0 0 0 0 -2 2

X1 2 0 2 0 0 0 0 0 2 0 -2 0 -2 -2

X2 2 0 2 0 0 0 0 0 -2 0 2 0 -2 -2

X3 2 0 -2 2 0 0 0 0 0 0 0 -2 2 -2

X4 2 0 -2 -2 0 0 0 0 0 0 0 2 2 -2

Appendix C: k · p Hamiltonian parameters and the

Partitioning

Comparing directly the matrices form of Eq. (24) and
the Hamiltonian H1 in Eq. (23), the four independent
integral constants readily follow,

~k0 =
〈

X2′

1 |pz|X2′

1

〉

, (C1a)

m0P = ~
〈

Xx
4 |py|X2′

1

〉

, (C1b)

4m2
0c

2∆X = i~
〈

Xx
4 |(∇V × p)y |X2′

1

〉

, (C1c)

4m2
0c

2α = −i~2
〈

Xx
4 |∂V/∂y|X2′

1

〉

. (C1d)

These constant can also be expressed as other equivalent
integrals (e.g., ~k0 = −

〈

X1
1 |pz |X1

1

〉

).
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To analytically diagonalize the Hamiltonian matrix in
Eq. (25) we note that the X-point energy gap, Eg,X ≈
4.3 eV, is significantly larger than other energy scales.
Therefore, we use degenerate second-order perturbation
theory and lump the valence band effect onto the con-
duction band (Löwdin partitioning).128 We get a reduced
4× 4 matrix,

H̄cc = Hcc +
H†

vcHvc

Eg,X
, (C2)

whose four spin-dependent basis states are

X̄L = X̄1 +
H†

vc

Eg,X
X̄4 . (C3)

X̄1 = [|X2′

1 , ↑〉, |X2′

1 , ↓〉, |X1
1 , ↑〉, |X1

1 , ↓〉]T and X̄4 =
[|Xx

4 , ↑〉, |Xx
4 , ↓〉, |Xy

4 , ↑〉, |Xy
4 , ↓〉]T . Higher-order pertur-

bation does not bring dominant terms up to quadratic k
dependence. It has been explicitly checked. The eigen-
values of H̄cc that pertain to the energies of the upper
and lower conduction bands read

E±(k) =
~2k

′2
z

2m0
+
~2(k2x + k2y)

2mt
± ∆Ec(k)

2
, (C4)

∆Ec(k) = 2× (C5)
√

(

~2k0k′z
m0

)2

+

(

~2kxky
mcv

)2

+|η|2(k2x + k2y)−
4∆C∆Xαk′z

Eg,X
,

where k′z = kz − 2π/a and mcv = ~2Eg,X/2P
2. The en-

ergy gap between the conduction bands is ∆Ec(k). Val-
ues of the parameters are provided in Tables VI and VII.
The η related term20 as well as the αk′z related term in
Eq. (C4) are the leading spin-orbit effect on the energy.
Along the Z-symmetry axis connecting the X and W
points [k′z = ky = 0 or k′z = kx = 0; see Fig. 3(a)] as
well as the part of ∆ axis very close to the X point, the
splitting between the lower and upper conduction bands
is induced by the spin-orbit coupling. This feature corre-
sponds to the celebrated spin hot-spot at the edge of the
Brillouin zone.20,21 Figures 4(b) and (c) show the energy
dispersion of the two conduction bands along the Z axis.

Appendix D: Spin alignment

In this appendix, we present the routine for linearly
combining doubly degenerate eigenvectors such that the
resulting eigenvectors spins are aligned along a desired
direction of s [Eq. (6)]. This routine is for Hamiltonians
that include spin-orbit coupling and when the crystals
have a space inversion symmetry. Particularly, it is tai-
lored for basis states which go back to themselves after
sequential space inversion and time reversal operations.
The chosen X-point basis as well as general plain-wave
basis belong to this category. Otherwise the routine can
be readily modified and made applicable.
In general, we express the double degenerate eigen-

vectors in basis |X〉 ⊗ | ↑ (↓)s〉, where |X〉 is the spin-
independent part (Secs. VA and VD). σ · ŝ in Eq. (6)

is written as [1,0;0,-1] in this basis. Suppose one of
the double degenerate eigenvectors is ca(k), and it has
2m elements, where m is the number of spin indepen-
dent basis states (m = 4 in our k · p Hamiltonian).
ca2i-1(2i)(k) are coefficients of pure spin up (down) basis

states. Then, from the general consideration of time re-
versal and space inversion symmetries of the Hamiltonian
and the basis states, we know that components of the
other eigenvector cb(k) can be written as cb2i = (ca2i−1)

∗

and cb2i−1 = −(ca2i)
∗. This property satisfies the first

equality of Eq. (6). To satisfy the other spin alignment
definition in Eq. (6), we write a normalized linear com-
bination

c⇑ = (ca + wcb)/
√

1 + w2 (D1)

such that,

(c⇓)†
[

Im ⊗
(

1 0
0 −1

)]

c⇑ = 0,

where c⇓2i = (c⇑2i−1)
∗, c⇓2i−1 = −(c⇑2i)

∗, and Im is a m-
dimensional identity matrix. We are led to

−d− wb + w2d∗ = 0,

where

b =
m
∑

i=1

(|ca2i−1|2 − |ca2i|2), d =
m
∑

i=1

(ca2i−1c
a
2i).

Thus, we get the combination parameter in Eq. (D1)

w = (b−
√

b2 + 4|d|2)/(2d∗). (D2)

We further have w ≈ −d/b if b≫ d. In the case of EPM
states, this general procedure requires to replace the |X〉
basis (m=4) with a plane-wave basis (where typically
m>100).

Appendix E: Intravalley momentum scattering and

deformation potential

In this appendix, we derive results of intravalley mo-
mentum scattering by selection rules with k · p Hamilto-
nian eigenstates. The procedure paves the way for ana-
lyzing more involved intravalley (Sec. VB) and g-process
(Sec. VC) spin-flip scattering in a similar approach.
The leading terms in momentum scattering matrix el-

ements depend linearly on the phonon wavevector. We
show it by a wavevector-order analysis.
Zeroth-order: At k1 = k2, the in-phase atomic vi-

bration does not depend on lattice sites. Thus, the
phonon-induced interaction in Eq. (7) reduces to dis-
placement of the entire crystal,

∑

j ∇rV+(r − Rj) =
∇Vcrystal. Based on the relation

∇Vcrystal = i[p, H ]/~, (E1)
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the coupling of the in-phase part between spin-degenerate
eigenstates of H vanishes,

Mi(k, s;k, s) =Mi(k, s;k, -s) = 0. (E2)

For the out-of-phase part, ξ−(q) is linear with q,

Mo(k, s;k, s) =Mo(k, s;k, -s) = 0. (E3)

Therefore, all the zero-order terms vanish.
First-order: We write the matrix elements of mo-

mentum scattering using the basis states of the X point.
Here, the effect of spin-orbit coupling can be safely ne-
glected. As a result, in the expansion of |k, s〉 [Eqs. (26)-
(27)] we omitB(k) and keep only the coefficients ofA(k).
These coefficients and the translational part are then lin-
earized around K = (k1 + k2)/2 providing

A(k1,2) = A(k0)∓ q/2 ·∇kA(k)
∣

∣

∣

k0

+ ...

=

[

0, 1,± Pqx
2Eg,X

,± Pqy
2Eg,X

]

+ ... , (E4)

exp(ik′
1,2 · r) = exp(ik′

0 · r)(1∓ iq · r/2 + ... , (E5)

where K was replaced by the wavevector of the valley
center (k0). The error brought into the matrix element
with this replacement is of higher order (quadratic) in q.
We substitute these linearized forms into Eq. (26) and the
resulting states are then plugged into the in-phase and
out-of-phase part of Eq. (8). This procedure identifies
three linear terms with relatively large coefficients, and
the matrix element up to leading order reads

M(k1, s;k2, s) =ZZM
(0)
m +M (1)

m =

3
∑

j=1

Im,j

Im,1 = ξ−(q) · 〈X1
1 |∇V−|X1

1 〉

Im,2 =
P

2Eg,X

∑

ℓ=x,y

[

qℓξ
+(q) · 〈Xℓ

4|∇V+|X1
1 〉 − c.c.

]

Im,3 = −ξ+(q) · 〈X1
1 |(iq · r)∇V+|X1

1 〉 , (E6)

where c.c. denotes complex conjugate. These conceiv-
ably dominant terms are further examined to see if they
are kept by selection rules.
The integral forms of intravalley momentum scattering

are further restricted by group theory. Both the basis
states couplings and interactions are identified as parts
belonging to IRs of G2

32. Using Eqs. (18)-(20b) and the
discussion that follows, we write the following decompo-
sitions,

〈X1
1 |...|X1

1 〉 → X1 ⊗X1 =M1 ⊕M ′
3 ⊕HHM4 ⊕HHM2

′ (E7a)

〈Xℓ
4|...|X1

1 〉 → X4 ⊗X1 =M5 ⊕M ′
5 , (E7b)

∇V+ → (M ′
3 ⊕M5)⊗M1 =M ′

3 ⊕M5 , (E7c)

∇V− → (M ′
3 ⊕M5)⊗M ′

2 =M4 ⊕M ′
5 . (E7d)

In writing the first line, we have used Eq. (19a) to cross-
out IRs in which only off-diagonal coupling between ba-
sis states is possible (i.e, between X2′

1 and X1
1 ). The

first integral, Im,1 in Eq. (E6), couples X1
1 states via

a vector-type operation on the antisymmetrical poten-
tial part (∇V−). Since the respective decompositions in
Eqs. (E7a) and (E7d) have no mutual IR, this type of
coupling vanishes. We get

Im,1 = 0 . (E8)

The second integral, Im,2 in Eq. (E6), couples X1 and X4

states via a vector-type operation on the symmetrical po-
tential part (∇V+). M5 appears in the respective decom-
positions [Eqs. (E7b) and (E7c)]. Following the discus-
sion that precedes Eq. (21) we can find the invariant inte-
grand form. Then, by noting that V+ can be replaced by
the crystal potential (set k1,2 = (0, 0, 1)2π/a in Ref. [93]),
the integral is analytically solved using Eq. (E1),

Im,2 =
im0P

2

~2
[

qxξ
+
x (q) + qyξ

+
y (q)

]

. (E9)

The third integral, Im,3 in Eq. (E6), couples X1
1 states

via a second-rank tensor [r⊗∇V+(r)]. To write a de-
composition expression, it should first be casted into a
symmetrized form,

r⊗∇V+=
∑

α

(r− τα)⊗∇Vat(r− τα)+τ⊗∇V− .(E10)

As shown before, ∇V−(r) cannot couple between X1
1

states. The symmetrized sum term on the right-hand
side transforms as

(M ′
3⊕M5)

⊗2 = (M5 ⊗M5)⊕ (M ′
3 ⊗M ′

3)⊕ 2(M ′
3 ⊗M5)

= (M1 ⊕M2 ⊕M3 ⊕M4)⊕ (M1)⊕ 2(M ′
5). (E11)

Combined with Eq. (E7a), we see that the two M1

in Eq. (E11) contribute to Im,3 in Eq. (E6). There
should be two independent parameters associated with
the two M1’s. Out of the nine tensor components of
∑

α(ri − τα,i)∂Vat(r− τα)/∂rj , one independent param-
eter originates from the product of longitudinal compo-
nents (i = j = z) and belongs to M ′

3 ⊗M ′
3 = M1, and

the other from the sum of transverse component products
(i = j = x plus i = j = y) and belongs to the M1 out of
M5 ⊗M5. Putting all of the pieces together, the overall
matrix element of intravalley momentum scattering reads

M(k1, s;k2, s) = (E12)

im0P
2

~2
[

qxξ
+
x (q) + qyξ

+
y (q)

]

−i
x,y,z
∑

j

qjξ
+
j

A,B
∑

α

〈

X1
1

∣

∣ (rj−ταj)
∂Vat(r−τα)

∂rj

∣

∣X1
1

〉

.

Deformation potential theory provides a concise ap-
pearance for the matrix element of intravalley momen-
tum scattering,101,107,129

x,y,z
∑

j

〈k0 |Djj |k0 〉 ǫjj(q), (E13)
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where deformation potential operators and strain tensor
(ǭ) elements at the long-wavelength regime are

Djk = −pjpk
m0

+ lim
ǭ→0

∂Vǫ[(1 + ǭ) · r]
∂ǫjk

, (E14)

ǫjk(q) = i(qjξ
+
k (q) + qkξ

+
j (q))/2. (E15)

Vǫ is the crystal potential under strain ǭ. Here ǫjk(q)
in Eq. (E15) is stripped out of the amplitude factor
√

~/[2ρV ω(q)]
√

n(q) + 1/2± 1/2 in order to compare it
with the expression of Eq. (8). To relate with Eq. (E12)
we substitute Eq. (E14) and (E15) into Eq. (E13) and

use ψk0(r) ≃ eik
′

0zψX1
1
(r). The second term in Djj leads

to exactly the last term of Eq. (E12) with an opposite
sign. For the kinetic term in Djj , we write

〈X1
1 |p2j |X1

1 〉=
∑

n

〈X1
1 |pj |Xn〉〈Xn|pj |X1

1 〉≃
m2

0P
2

~2
,(E16)

where j = {x, y} considering the dominant coupling of
px,y between X1

1 and valence X4 states.130 p2z does not
have this dominant coupling. Therefore, the first term
in Djj is exactly the second line of Eq. (E12) with a
minus sign. Physical results do not change upon this
global minus sign. Of the diagonal deformation potential
constants Djj = 〈k0 |Djj |k0〉, there are two independent
values Dzz and Dxx = Dyy (in z valley). Dilation and
uniaxial deformation potentials are related to them via
Ξd = Dxx and Ξu = Dzz −Dxx.
All in all, we have shown the equivalency of our pro-

cedure with known deformation potential theory for in-
travalley momentum scattering.

Appendix F: some details in intravalley & g-process
spin flip matrix elements

1. intravalley

We invoke group theory and evaluate the integrals
in Eqs. (42b)-(42e). The out-of-phase matrix element,
∑

µ,ν Iµ,ν;2, includes a single dominant Elliott process.

Its coefficient product, iη/∆C , comes from AX1
1

and

∂BX2′
1
/∂kx(y). Its integral reads 〈X1

1 |∇V−|X2′

1 〉. Using

appropriate decompositions

〈X1
1 |...|X2′

1 〉 → X1 ⊗X1 =HHM1 ⊕HHM3
′ ⊕M4 ⊕M ′

2 (F1a)

∇V− → (M ′
3 ⊕M5)⊗M ′

2 =M4 ⊕M ′
5 , (F1b)

we see that these states can be coupled by the longitu-
dinal component of ∇V− (transforms as M4). We have
crossed out IRs in which only diagonal coupling is possi-
ble (e.g, betweenX1

1 andX1
1 ). All in all, one combination

is kept

∑

µ,ν

Iµ,ν;2 =
iη

∆C

〈

X2′

1

∣

∣

∣

∣

∂V−
∂z

∣

∣

∣

∣

X1
1

〉

(iqx + qy)ξ
−
z (q) . (F2)

The remaining non-vanishing matrix elements relate
to the in-phase potential. The sum

∑

µ,ν Iµ,ν;3 in-
cludes a single dominant Elliott process. Its coefficient
product, −iPη/Eg,X∆C , comes from ∂BX2′

1
/∂kx,y and

∂A
X

x(y)
4

/∂kx(y). Its integral reads 〈X2′

1 |∇V+|Xx,y
4 〉. Us-

ing appropriate decompositions

〈X2′

1 |...|Xℓ
4〉 → X4 ⊗X1 =M5 ⊕M ′

5 , (F3a)

∇V+ → (M ′
3 ⊕M5)⊗M1 =M ′

3 ⊕M5 , (F3b)

we see that these states can be coupled by the transverse
components of ∇V+ (transform as M5). Similar to the
derivation of the second momentum integral [Eq. (E9)],
we reach at an analytical result for the third spin integral,

∑

µ,ν

Iµ,ν;3 =
iηP 2m0

2∆C~2
(qx − iqy)

[

qxξ
+
y (q)+qyξ

+
x (q)

]

. (F4)

The sum
∑

µ,ν Iµ,ν;4 also includes a single dominant

Elliott process. Its coefficient product, −iη/∆C , comes

from AX1
1
and ∂BX2′

1
/∂kx,y. Its integral reads 〈X2′

1 |r⊗
∇V+|X1

1 〉. The interaction is first casted into Eq. (E10)
where both parts (tensor and antisymmetric potential)
can couple between the states. Each of the respective
decompositions in Eqs. (E11) and (F1b) share a com-
mon M4 IR with Eq. (F1a). Using the transformation
properties of M4, the resulting integral reads

∑

µ,ν

Iµ,ν;4 =
iη(qx − iqy)

∆C

〈

X2′

1

∣

∣

∣

∣

∂V−
∂z

q · τξ+z (q) (F5)

+

A,B
∑

α

(y − τα,y)
∂Vat(r − τα)

∂x

[

qxξ
+
y (q) + qyξ

+
x (q)

]

∣

∣

∣

∣

∣

X1
1

〉

.

The sum
∑

µ,ν Iµ,ν;5 includes dominant Elliott pro-
cesses coupled by ∇V+. One of the dominant products
comes from AX1

1
and 2∂2BX2′

1
/∂kz∂kx(y). The corre-

sponding integral 〈X2′

1 |∇V+|X1
1 〉 vanishes, for that there

are no common IRs between Eqs. (F1) and (F3b). Other
dominant products come from AX1

1
and ∂2B

X
x(y)
4

/∂k2y(x),

and from B
X

x(y)
4

and 2∂AX2′
1
/∂kx∂ky. Repeating the

analysis that led to Eqs. (E9) and (F4), we reach at

∑

µ,ν

IEµ,ν;5 =
−iP 2m0

2∆C~2
{

η
[

iq2yξ
+
x (q)− q2xξ

+
y (q)

]

−(2η′ − η)qxqy
[

ξ+x (q)− iξ+y (q)
]}

. (F6)

The only Yafet process is included in Iµ,ν;5 with coef-
ficient product 4P 2/(Eg,XEC) that comes from AX1

1
and

2∂2AX2′
1
/∂kx∂ky. Its integral reads 〈X2′

1 |∇V so
+,k0

|X1
1 〉.

The k-independent part of V so
+,k0

does not contribute

to this matrix element: 〈X2′

1 |∇(∇V+ × p)|X1
1 〉 van-

ishes by time reversal symmetry [Eqs. (22b) and (22d)].
The relatively small interaction ∇(∇V+ × ~k0) can cou-

ple X1
1 with X2′

1 states. The interaction transforms as
second-rank tensor and belongs to (M ′

3 ⊕M5)
⊗2. From
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Eqs. (E11) and (F1a), we see thatM4 is the common IR.
To be specific, it is the component ∂2V+/∂x∂y that be-
longs to M4. In spite of the relatively small magnitude,
we still give its expression explicitly,

∑

µ,ν

IYµ,ν;5 =
P 2qxqy(ξ

+
x − iξ+y )

Eg,X∆C

× ~2k′0
4m2

0c
2

〈

X2′

1

∣

∣

∣

∣

∂2V+
∂x∂y

∣

∣

∣

∣

X1
1

〉

, (F7)

and shall find it a compensating part in leading to a
concise result.
Given these dominant contributions for spin relax-

ation, we may attempt to relate them to some known
physical quantities. First of all, we find out that the
terms in Eq. (F4) and Eq. (F6) (excluding small η′ − η
part) can be combined and they share a common factor
iη(qx − iqy)(qxξ

+
y + qyξ

+
x )/∆C with the second term in

Eq. (F5). Secondly, the left-out η′ − η part in Eq. (F6)
is found to be exactly compensated by the Yafet part
[Eq. (F7)]. It is shown with the help of131

~2

4m2
0c

2

〈

X2′

1

∣

∣

∣

∣

∂2V+
∂x∂y

∣

∣

∣

∣

X1
1

〉

≃ 2Pm0α

~2
. (F8)

At this phase, the total of Eqs. (F4)-(F7) closely resemble

to a deformation potential constantD′
xy = 〈X2′

1 |Dxy|X1
1 〉

defined in Eq. (E14), up to a constant prefactor. How-
ever, care should be used due to its off-diagonal na-
ture. Contrary to diagonal deformation potential that
appeared in the momentum scattering (e.g., dilation and
uniaxial), ∂Vǫ[(1 + ǭ) · r]/∂ǫxy contains a part induced
by internal displacement.101 Thus, the sum of Eqs. (F4)-
(F7) alone is not sufficient to form a complete deforma-
tion potential constant. Out-of-phase phonon polariza-
tion vector ξ−, on the other hand, can be expressed in
terms of ξ+ and internal displacement for small q (see
Table II and its discussion). Replacing ξ− in Eq. (F2)
with equivalent ξ+ terms (from the fourth row in Ta-
ble II), we obtain the final intravalley spin-flip matrix
element expression in Eq. (45) with Eq. (46) of the main
text.
Finally, we mention an alternative choice to derive

these results with a basis states of the ∆ axis at k0.
In this case, third -order perturbation theory expanded
around k = k0 gives a similar result (with the help
of wavevector-order analysis and the appropriate adjust-
ments to the space group of ∆-axis). From our results, we
are able to conclude that the leading contributing term
with this alternative approach is

~

m0Eg,k0∆C

∑

i,j

〈∆1↓|q·p|∆i
5 ↓〉〈∆i

5 ↓|Vso|∆2′↑〉

×
〈

∆2′↑
∣

∣

∣

~

m0Eg,k0

[

q·p|∆j
5 ↑〉〈∆j

5 ↑|ξ+(q)·∇V0

]

+ǫxy(q)Vxy

∣

∣

∣∆1↑
〉

,

where i, j = {x, y}. p, |∆〉 andEg,k0 denote, respectively,
the momentum operator, the spin-independent state and

the energy gap between conduction and valence bands
at k0. ǫxy(q)Vxy , with Vjk defined by the last term in
Eq. (E14), is a partial combination of in-phase and out-
of-part interactions.

2. g-process

We analyze the terms IE and IY in Eq. (53) and de-
rive their expressions in detail. Following the reasoning
that led to observation 2 of the intravalley case, the El-
liott part (IE) has a dominant coefficient iη/∆C from
∂BX2′

1
/∂kx,y and AX1

1
. However, the basis states associ-

ated with this coefficients are 〈X1
1 | and |X1

1 〉, as can be
inferred by the index arrangement of µ′ [below Eq. (53)].
The Yafet part (IY ) has a dominant coefficient −P/Eg,X

from ∂A
X

x(y)
4

/∂kx(y) and AX1
1
between 〈Xy(x)

4 | and |X1
1 〉.

In spite of this coefficient disobeying observation 2, the
Yafet part is kept and will be shown not too small com-
pared with the Elliott part.
Having identified the important coupling between ba-

sis states, we can determine which of the phonon modes
dominate the g-process spin relaxation. It is deter-
mined by applying selection rules connecting opposite
points of the ∆ star. The Elliott part is analyzed first.
From Eq. (53), a first Brillouin zone phonon wavevec-
tor q = −2k′

0 ≈ (0, 0, 0.3)2π/a is needed to conserve
the crystal momentum. With ψ∗

X1
1

= ψX2′
1
, the char-

acter of the state product has the following identity,

χk0

∆′

2
χk0

∆1
= χ2k0

∆′

2
= (χ−2k0

∆′

2
)∗ = (χ

−2k′

0

∆1
)∗. The last equal-

ity is obvious if one refers to the character table of the
∆ group (e.g., Table V of Ref. [98]). Thus, the Elliott

part involves a phonon with a character χ
−2k′

0

∆1
. IR of ∆1

with a first Brillouin zone wavevector is identified with
the LA mode. Similarly, the coupling of the Yafet part is

between ψ∆1,k0 and ψ∆5,k0 , and it leads to χ
−2k′

0

∆5
for the

interaction. The spin-orbit potential transforms as ∆5,
and χ∆1(∆′

2)
χ∆5 = χ∆5 . Thus, the Yafet part involves a

phonon mode that transforms as ∆1 or ∆′
2, which corre-

sponds to LA or LO mode, respectively. The LO phonon
has much larger energy than that of the LA phonon and
we drop it from the leading Yafet contribution. In conclu-
sion, the LA mode dominates both the Elliott and Yafet
coupling.
The leading-order matrix element of the g-process

[Eq. (53)] can be related to some form of a deformation
potential parameter. It can be done since the coupling
can be expressed between basis states of the same X
point. The Elliott part is explicitly written as

IE =
−2η

∆C

〈

X1
1

∣

∣

∣

∣

e2ik
′

0z

(

ξ+LA,z

∂V+
∂z

+ ξ−LA,z

∂V−
∂z

)∣

∣

∣

∣

X1
1

〉

×(Kx − iKy) , (F9)

where we have used the approximation that ξ±LA has only
a nonzero longitudinal component (it is exact when the
wavevector is on the ∆ axis). To find the nonvanishing
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part of this integral, the integrand is converted into parts
belonging to IRs of the X-point space group. The new
feature that emerges in a g-process is the phase factor
e2ik

′

0z = 1+2ik′0z− 2k′20 z
2+O((k′0z)

3). For the in-phase
part, ∂V+/∂z and z∂V+/∂z belong to M ′

3 and M1 ⊕M4.
The higher-order term is

z2
∂V+
∂z

=
∑

α

(z − τα,z)
2 ∂Vat(r − τα)

∂z
+ τ2z

∂V+
∂z

+2τz

[

(z−τA,z)
∂Vat(r−τA)

∂z
− (z−τB,z)

∂Vat(r−τB)

∂z

]

,

which belongs to

M ′⊗2
3 ⊗M ′

3 ⊕M ′
3 ⊕M ′

3 ⊗M ′
3 ⊗M ′

2 .

As shown by Eq. (E7a), operators that couple X1
1 states

belong either to M1 or M3. Operators that are all even
under time reversal [Eq. (22b)] are further restricted to
M1 for even-parity states [Eqs. (19a) and (22d)]. Thus,
the allowed coupling interaction is

∑

α(z − τα,z)∂Vat(r−
τα)/∂z. Similarly, we find that there is no comparable
out-of-phase contribution. The resulting Elliott part of
the matrix element reads

IE ≈ (−iη)4k′0
∆C

Dzz(Kx − iKy), (F10)

where we have used ξ+LA,z(−2k′
0) ≈ 1 and Dzz in

Eq. (E14).

For Yafet part, the unity leading term in the ex-
pansion of e2ik

′

0z results in a nonvanishing integral. It
is the reason that we have kept this part in spite of
disobeying observation 2. The symmetry properties
of ∂(∇V+ × p)x(y)/∂z follow M ′

3 ⊗ M ′
5 = M5 which

also appears in the decomposition of the states product

[X
y(x)
4 ⊗ X1

1 ; see Eq. (18c)]. Together with the leading
coefficient of the state expansion, −P/Eg,X, the matrix
element of the Yafet part reads

IY =
2P

Eg,X

Dso(Kx − iKy), (F11)

where the scattering constant integral is denoted by

Dso =
~

4c2m2
0

〈

Xx
4

∣

∣

∣

∣

∂(∇V+ × p)y
∂z

∣

∣

∣

∣

X1
1

〉

≈ 6.7meV · 2π/a (F12)

with its value calculated from EPM. The out-of-
phase part leads to a slightly smaller coupling inte-
gral (≈ 4 meV · 2π/a), but with a small polarization
ξ−LA,z(−2k′0) ≈ 0.2. This property renders its contribu-
tion too small compared with the leading Elliott part. It
is therefore neglected.

All together, the leading g-process matrix element is
Eq. (54) with Eq. (55) in the main text.
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447, 573 (2007).

3 B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta,
Nature Nanotechnology 5, 266 (2010).

4 M. I. Dyakonov and V. I. Perel, Sov. Phys. JETP 33, 1053
(1971); Sov. Phys. Solid State 13, 3023 (1972).

5 F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J.
Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004).

6 P. S. Fodor and J. Levy, J. Phys. Cond. Mat. 18, S745
(2006).

7 A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann,
N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M.
L. W. Thewalt, K. M. Itoh, and S. A. Lyon, Nature Mater.
11, 143 (2012).
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38 D. J. Lépine, Phys. Rev. B 2, 2429 (1970).
39 H. Ue and S. Maekawa, Phys. Rev. B 3, 4232 (1971).
40 J. D. Quirt and J. R. Marko, Phys. Rev. B 5, 1716 (1972).
41 E. M. Gershenzon, N. M. Pevin, and M. S. Fogelson, Phys.

Stat. Sol. (b) 49, 287 (1972).
42 J. H. Pifer, Phys. Rev. B 12, 4391 (1975).
43 Y. Ochiai and E. Matsuura, Phys. Stat. Sol. (a) 38, 243

(1976); 45, K101 (1978).
44 M. A. Paalanen, S. Sachdev, R. N. Bhatt, and A. E. Ruck-

enstein, Phys. Rev. Lett. 57, 2061 (1986).
45 S. Sachdev, Phys. Rev. B 34, 6049 (1986).
46 S. Sachdev, Phys. Rev. B 35, 7558 (1987).
47 V. Zarifis and T. G. Castner, Phys. Rev. B 36, 6198

(1987).
48 B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev.

Lett. 99, 177209 (2007).
49 W. Kohn, Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic, New York, 1957), Vol. 5, pp. 257-
320.

50 D. Pines, J. Bardeen, and C. P. Slichter, Phys. Rev. 106,
489 (1957).

51 H. Hasegawa, Phys. Rev. 118, 1523 (1960).
52 L. M. Roth, Phys. Rev. 118, 1534 (1960).
53 T. G. Castner, Phys. Rev. 155, 816 (1967).
54 D. New and T. G. Castner, Phys. Rev. B 29, 2077 (1984).
55 V. Zarifis and T. G. Castner, Phys. Rev. B 57, 14600

(1998).
56 B. Huang, D. J. Monsma, and I. Appelbaum, J. Appl.

Phys. 102, 013901 (2007).
57 J. Li, B. Q. Huang, and I. Appelbaum, Appl. Phys. Lett.

92, 142507 (2008).
58 B. Q. Huang, H.-J. Jang, and I. Appelbaum, Appl. Phys.

Lett 93, 162508 (2008).
59 J. Li and I. Appelbaum, Appl. Phys. Lett. 95, 152501

(2009).
60 G. Kioseoglou, A. T. Hanbicki, R. Goswami, O. M. J.

van’t Erve, C. H. Li, G. Spanos, P. E. Thompson, and B.
T. Jonker, Appl. Phys. Lett 94, 122106 (2009).

61 C. H. Li, G. Kioseoglou, O. M. J. van’t Erve, P. E.
Thompson, and B. T. Jonker, Appl. Phys. Lett 95, 172102
(2009).

62 L. Grenet, M. Jamet, P. Noé, V. Calvo, J.-M. Hartmann,
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