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We study the finite-temperature spin dynamics of the paraetégphase of iron pnictides within an antifer-
romagnetic/; — J» Heisenberg model on a square lattice with a biquadraticlowip- K (S; - S,)* between
the nearest-neighbor spins. Our focus is on the paramagieise in the parameter regime of thiis— J, — K
model where the ground state i@, 0) collinear antiferromagnet. We treat the biquadratic até&on via
a Hubbard-Stratonovich decomposition, and study the tiagugffective quadratic-coupling model using both
MSW and SBMF theories; the results for the spin dynamicssddrirom the two methods are very similar. We
show that the spectral weight of dynamical structure fast@f, w) is peaked at ellipses in the momentum space
at low excitation energies. With increasing energy, thiptitl features expand towards the zone boundary, and
gradually split into two parts, forming a pattern arouad ). Finally, the spectral weight is anisotropic, being
larger along the major axis of the ellipse than along its mids. These characteristics of the dynamical struc-
ture factor are consistent with the recent measurementeahelastic neutron scattering spectra on B#¥se
and SrFeAs;.

I. INTRODUCTION tion where the spin excitations arise out of incoherent-elec
tronic excitations. Additional evidence for the incipiéviott

The emergence of superconductivity in iron pnictidfes transition picture has come from the observation of a Mott

near an antiferromagnetically ordered statethe phase di- insulating phase in the iron oxychalcoge_niaég'.his mate-
agram suggests strong interplay between the supercomductfia! contains an expanded Fe square lattice compared to the
ity and magnetism in these materials. Elucidating the magl"o" Pnictides, which reduces thereby enhancing//¢ be-
netic excitations is therefore important for understagdint ~ YondU./t (Ref. 22). Likewise, the Mott insulating behavior
only the overall microscopic physics of these systems pyPf the alkaline iron selenld_é%can also be mterpreted as the
also their superconductivity. In the parent compounds, th&esult of a reduced eﬁeégtzl\;eand, correspondingly, an en-
observedr, 0) antiferromagnetic order arises either within a "anced’/ beyondU /.5
weak-coupling approach invoking a Fermi surface nes’ﬁ'ﬁg, In the vicinity of U./t, where correlations are strong, it is
or from a strong-coupling approach whose starting point is aatural that the spin Hamiltonian contains not only twaaspi
local moment/; — J, — K model’ 14 interactions, such a$ and.J; Heisenberg exchange between
The strong-coupling approach is based on the proximity opearest- and next-nearest- neighbor spins on a squace/atti
the metallic ground state of the parent pnictides to a Matt lo Put also interactions involving higher number of spins. Sthe
calization transition, which gives rise to quasi-local megic ~ naturally include, for instance, the ring-exchange coupin-
moments’1215.16This incipient Mott picture corresponds to a volving four spins on a plaquette, and the biquadratic dagpl
ratio of U (a measure of the Coulomb repulsions and Hund'sf the form—K (S, - S;)* in systems with spin siz8 > 1.2
couplings among the Fei3lectrons) ta (the characteristic The subject of the present study is to show how such non-
bandwidth of the Fe @ electrons) which is not too far be- Heisenberg interactions, particularly the biquadratteriac-
low the Mott threshold/, /¢, which is usually of order unity. tion, influence the spin dynamics in the paramagnetic phase.
This is supported by many experimental observations. For Spin dynamics in the parent iron pnictides have been most
instance, the room-temperature electrical resistivitypaf-  extensively studied in the low-temperature stafe < T)
ent iron pnictides is so large (even when the residual rewith both antiferromagnetic order and orthorhombic sticeit
sistivity is relatively small signaling the smallness oa®l distortion. Here, the INS experiments up to high energies
tic scattering) that the extracted mean-free path of gaasip (on the order o200 meV) show that the spin wave excita-
ticles would be comparable to the Fermi wavelength; thigions in these compounds are highly anisotropic, with a dis-
is typical of bad metals near a Mott trasition. Similarly, persion which can be understood in terms of an anisotropic
the Drude weight in optical conductivity*8is strongly sup-  Ji, — Ji, — Jo model with.J,, # J;,.22?728 The anisotropy
pressed from its non-interacting counterpart, providirdj-a in the nearest-neighbor coupling is compatible with the or-
rect measure of the proximity to the Mott transition. This thorhombic structure, and its degree could reflect an drbita
is further corroborated by the the temperature-induced-spe ordering?®-3? Detailed theoretical studies of the magnetic ex-
tral weight transfet®2° which is also characteristic of met- citations in the ordered phase have been carried out in such a
als near a Mott transition. In the spin sector, zone boundary;, — Ji, — J> model*®* and in aJ; — Jo — K model3+3
spin waves have been observed by inelastic neutron scafteri It should also be noted that terms such as the biquadratic cou
(INS) measurements in the magnetically ordered state of sepling could be inferred from the sublattice angle dependenc
eral 122 iron pnictides compounésBoth the large spectral of the ground-state energy in LSDA calculati$hsand were
weight and the relatively-small spin damping suggest quasishown to appear naturally as a result of the orbital ordering
localized moments, which are expected near the Mott transbetween Fe g and d,. orbitals®.



Our focus is instead on the spin dynamics in paeamag-  exchange couplings.
netic phase of the parent iron pnictides, which has only re-
cently been studied experimentally. The initial work by Di-
allo et al.®” measured the spin dynamics of CaRs, at rela- Il. MODEL AND METHODS
tively low energies, below 70 meV. Theoretically, four oftis
studied the spin dynamics in the paramagnetic phase of the The .7, — .J, — K model is defined on a two-dimensional

J1 — J> model (with or without an additional fermion damp- (2D) square lattice with the following Hamiltonian:
ing). We showed that the experimentally observed elliptica

features of the spin spectral weight in momentum space are H=J Z Si Sits + Jo Z Si-Sits

well-described by this model and we determined the change ) 0.5
to the elliptical features at high energies. 2
. -K S;-S; , 1
More recently, Harrigeet al.3° reported measurements of ;( +6) @)

the spin dynamics in the paramagnetic phase up to high en-
ergies (above 200 meV) in Baf&s,. The INS measure- whereJ; andJ; respectively denote the antiferromagnetic ex-
ments confirmed the quasi-two-dimensional spin dynamicghange couplings between spins located in the nearest-neigh
found at low energied] and characterized the evolution of the bor (§ = #,5) and next-nearest neighba¥ (= i =+ ) sites.
low-energy elliptic features as they expand towards theezonK is the coupling for the biquadratic interaction between the
boundary as the energy is raised, and determined the higimearest neighbor spin pairs.
energy dispersion which appears to requiré a # Ji, de- To fully explain the experimentally observéd, 0, 7) an-
scription even though the paramagnetic phase hasago-  tiferromagnetic order, an exchange coupling along thelthir
nal structure. Similar data have also been reported by Eweimension,/, should also be included. However, we find the
ingset al. in SrFeAs,.*° Theoretically, Parlet al.** analyzed model defined in Eq. (1) already allows us to understand the
the spin dynamics in the paramagnetic state within a dynamexperimentally observed quasi-2D spin dynamics. Hence, we
ical mean-field theory (DMFT) for interactioi$/t < U./t,  concentrate on this 2D model in the main text, and discuss the
demonstrating that the DMFT approach captures key featuraafluence of the interlayer coupling, on the spin dynamics
of the neutron scattering results, including the ellipyicif the  in Appendix C.
map of the structure-factor peak in the Brillouin zone. The Hamiltonian of Eq. (1) is studied using both M&#

In this paper, we study the spin dynamics ofthe-J,— K  and SBMF* methods. Here, we focus on the parameter
model in the tetragonal paramagnetic phase using both modiegime where the ground state has a collingar0) anti-
ified spin wave (MSW) and Schwinger boson mean-fieldferromagnetic order, and decompose the biquadratic cxera
(SBMF) theories. The results from the two methods are irfion term of the Hamiltonian using two Hubbard-Stratondvic
very good quantitative agreement with each other. We shoWieldsI’; ; ;). The effective Hamiltonian reads as
that, for a moderate biquadratic coupliig, the dynamical

structure factorS(q,w) has not only elliptic features near H=71Y SiSis+J2) Si-Sits
(m,0), which expand with increasing energy and split into i,0 0,8’
peaks surroundingr, ), but also an anisotropic distribution 9K Z T;5S:i Sivs + K Z F?,a- @)

of the spectral weight that is larger along the major axis of
each ellipse than along its minor axis. These propertieseagr
well with the INS experiment§4° At the mean-field level, the Hubbard-Stratonovich fields are

The remainder of the paper is organized as follows. Irfreated as static quantities, and can be expressed usiat equ
Sec. Il we introduce thé; — J» — K model and describe the time spin correlators ad’; 5 = (S; - S;1s). The Hubbard-
MSW and SBMF theories used in this paper. In Sec. Ill weStratonovich transformationitself is exact. The statiprapi-
show how the biquadratic coupling influences the mean- mation is made in accordance with the level of approximation
field phase diagram and magnetic excitation spectrum. linherent to the MSW and SBMF methods, which incorporate
Sec. IV we calculate the dynamical structure fackog,w).  static self-energies for the respective boson fields. Asvsho
We also show that the spectral weight exhibits anisotragie f  below, our approach has two important features: i) it is eapa
tures, discuss the evolution of the anisotropic featuréisini  ble of studying the Ising correlations at nonzero tempeestu
creasing excitation energy, and explain how these pragserti and ii) the MSW and SBMF approaches yield consistent re-
arise from our theory. In Sec. V we first discuss some possisults.
ble generalizations of thé, — J, — K model we are studying
in this paper. In the same section, we then consider theteffec
of itinerant electrons, and compare our study with othepthe A.  The modified spin wave theory
retical approaches to the spin dynamics. Sec. VI is deveted t
a comparison with the INS experiments on the paramagnetic The MSW theor§?*3has been applied to thg — J, model
phases of the parent 122 iron pnictides, and Sec VIl containgy four of us3® In this approach, a local spin quantization axis
a few concluding remarks. In three appendices, we expounid defined at each site along the classical ordering dinectio
on the Ising transition at small, /.J, ratios, and discuss the Q¢. The Hamiltonian in Eq. (2) is then expressed in terms of
effects of both the ring-exchange interactions and ingerla Dyson-Maleev (DM) bosons via a local DM transformation:

2,6 ,0
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S:- Q¢ =5 —ala;, ST =251 —ala;/25)a;, andS; = Note that these self-consistent equations are exactly the
V25a]. Minimizing the free energy under the constraint of same as those for the isotropi¢ — J> model*® But the defi-
zero sublattice magnetizatidss — a;fai> — 0 by introducing n|t|ons.ofAk and By are different. In Eqs..(7) and (8) above,

a Lagrange multiplieg:, and with respect t@'s (= I'; 5, by we defined the effective exchange couplins (J/1,) along

assuming translational symmetry), we obtain thez(y) direction as follows:
Fz — COS2 %fﬁ o sin2 §g§7 le(y) = Jl — QKTI(y), (9)
expressed in terms of the Hubbard-Stratonovich fi¢lgs,
T —=si 2 (b 2 .2 (b 2 . . . .
y = S §fy oS 59y (3)  of spin-spin correlators in Eq. (3). Although in thie—.J,— K
: model the bare nearest neighbor exchange couplings
where¢ = arccos(Q' - Q7L ;). fs = (a;ai+5) andgs = still isotropic, a nonzero biquadratic couplifg leads to an

(a;aivs) are the ferromagnetic and antiferromagnetic bondanisotropiceffective coupling .J,,, # .Jy,, in the Ising ordered
operators, respectively. Minimizing the free energy weh r  phase wher&, # T, i.e. the nearest-neighbor spin correla-
spect top gives eithesin ¢ = 0 for nonzerofs andgs, or ¢ tors alongr andy are unequal, similarly to the situation found
can be arbitrary iffs = gs = 0. This defines two phases sep- originally*® for the .J; — J, model.

arated by a mean-field temperature s€alg,: atT > 7,0,

¢ is arbitrary, and the system hé§, lattice rotational sym-

metry; while forT" < T, the Cy, Ssymmetry is broken and B. The Schwinger boson theory

the system is Ising ordered, corresponding to either 0 or

¢ = . IN MSW theory, the Ising order parameter can be de- - in the Schwinger boson representatféthe SU@) spin op-
fined aso = 2(cos” 5(f7 + g;,) —sin” 5(f; + gz)). From  erators are rewritten in terms of two Schwinger bosons via

Eq. (3), if we definel'x = (I'; +T',)/2 as the symmetric oo yransformations: — L(afa; — bibi), S = albs, and
and antisymmetric Hubbard-Stratonovich fields, we find that , t . 20 . ! ! .
I_=o/d. S; = bja;. To limit the boson Hilbert space to the physi-

Minimizing the free energy with respect to other variatibna Cal Sector, a constraing a; + bb; = 2 is imposed on each

parameters, we obtain a set of self-consistent equations: ~ Site. This can be generalized to the case of either\§&(
or SP(V)*647 spins, in either case there will B¢ boson de-

fs = mo + iz/% <nk n 1) cos(k - &) (4) grees of freedom at each site. For the experimentally obderv
N o Sk 2 ’ Q = (m,0) or (0, 7) antiferromagnetic collinear phase in the
122 parent compounds, tlieb)-plane spin-spin correlations

1 A 1
gs = mo + NZIE—I‘ <nk + 5) cos(k - 8'), (5) areexpressed as:
K
k .o AT A
1 1 ' B 1 S;-S;=—-(1- @(273))[29;91’3’ - 52]
S+ -=mo+ — — |+ 2, 6 N
3 =™ N%:@<k ;) © +06, )2fl iy - S5+ 1), (1)
W/hergj\( i§ th? total number of lattice site, = #,7, and  wherefs = f;i5 = %(ajam; +bibi1s) andgs = giivs =
0" =12,9,% 9. In Egs. (4)-(6), 1(a;ibirs —bia;ys) are respectively the ferromagnetic and an-
o b = tiferromagnetic bond operators. The functi®i, j) = 1 if
Ay = 2sin 5 /120a COSky + 2 cos™ 5 J1ygy cos ky i andj are on the same stripe sublattice, @i, j) = 0
4T3y cOS kg cos k, ) if + andj are on different stripe sublattices. The Hubbard-

b - 3 Stratonovich field is thei's = |fs|2> — |gs|?, and in the case
By = 429, 1y — pu + 2sin? §(legz — Jiyfy(1 —cosky)) of (w,0) ordering we find

Fz - _gga

r,=f; (11)

and the Bogoliubov angl®y is defined viatanh 26, = . . .
; o Ry _ Comparing this to Eq. (3), we see that the spin correlators

fgn/ f:mgzzkbfﬁ;géi?g%‘__u,1B‘At TA:k S\nﬁ];hseptég_ coincide with those in the MSW theory if one sets= .
trum of the DM bosons becomes gapless at Wa\;e végtand Similarly, the case of0, ) ordering correqundg =0 n
0. This corresponds to a long-range antiferromagnetic ordellz'q' 3). I_n both cgse:f,w a”d_Fy ha\_/e opposite sign, Igadmg
atQ + 0 with a nonzero spontaneous magnetizatiog In to the anisotropy in the effective spin-spin exchange daggl
this case, the summation, ' runs over alk values that make Jl”é% Jtly,dfrom Eg‘ 9). transt 6
ek > 0, and the contribution from thg, = 0 terms is taken y introducing Fourner transtormat
into account separately by. ForT > 0, my = 0, and the 1 i(k—Q)r; 12
system is paramagnetic. Here the summation is performed in di = VN Z ax€ ’ (12)
the full momentum space. In the presence of a small third- k
dimension coupling/;, there will be a nonzero mean-field b; = L Zbkei(k‘i’%)'ri’ (13)
Néel temperaturely; this is discussed in Appendix C. VN ”

+2 cos’ g(jlygy - jlzfm(l — COs kz))v (8)



and making a Bogoliubov transformation to a new quasi-
particle creation/annihilation operatosg, = cosh6yax + ' ' ' ' ' '

1 sinh ekbik, one arrives at the mean-field free energy den- 3
sity, which can be generalized to the 8p(form*’

Fyr = % Zln [2 sinh (;}—;)} + NA <S’ + %) 2 _ I _
Kk ~ J

= =1,J /1 =1
2

- S5 gsl1fsl? - losP), (14
5

multiplier associated with the imposed constraint that wn a . .
erage, the number of bosons per ﬁié;’:l n,, = NS. Here 0.0 02 0.4 0.6 0.8
wk = /(Bx — \)? — A2 is the dispersion of the Bogoliubov K/J,

guasiparticles, expressedn terms of the variables

where z is the coordination number, andis the Lagrange - \4 i
| L . 1

o —ik-8, _ —ik-§. FIG. 1. (Color online) Mean-field phase diagram in the MSWbtiye
A = ZZ Jsgs P D= Z Js fs » (19) for S = 1 andJ;/J. = 1. Phases |, Il, and Ill respectively denote
° o the (7,0)/(0, w) long-range antiferromagnetically ordered state (at
the Bogoliubov angleanh 26, = Ay /(A — By). The dis- T = 0), the Ising ordered paramagnetic state, and the isotrapa: p
persion relationuy explicitly depends on the ordering wave- magnetic state. The solid red curve refgrs to the meqn-beiqb@r-
vectorQ and has minima arourid = +Q/2. In the regime ature _scajtﬁfao = To. In the shaded region the effective exchange
whenJy; > J;/2, the minimization of the free energy results couplingJi, < 0.
in Q = (m,0) or (0,7). For example, foQ = (m,0), the
expressions forl, and By become:
~ . . Ill.  MEAN-FIELD PHASE DIAGRAM AND EXCITATION
Ax = 2J159, sinky + 4J2g44y sin kg cosky,  (16) SPECTRUM
By = 2J1yfycosk,. a7

In the largeAV limit of the Sp(V) spin, the mean-field free ~ Since INS measurements suggést~ J» for several 122
energy Eq. (14) becomes ex4tt” The observable magnetic compounds>*"3%our discussion on thg; — J, — K model
excitation spectrum is obtained fram by aQ/2 shift: ¢ = IS focused on this parameter regime. Fig. 1 shows the mean-
wi_qy2- At T = 0, the magnetic order results in the gaplessfield phase diagram of the 2y — .J, — K" model using the
Goldstone modes & = 0 andQ, as expected. The SBMF MSW method forS = 1 and.J;/J> = 1. We identify three
theory is known to reproduce well the spectrum of spin wavedlifferent phases. Phase | corresponds to(th@)/ (0, 7) an-
in both ferro- and antiferro-magnets?® tiferromagneticaly long-range ordered phase; it existg ah
Below, we focus on the paramagnetic phasé& at 0, with 7' = 0in the 2D model. Phase Il and phase Ill are both para-
short-rangeQ = (7,0) antiferromagnetic correlations (the magnetic. They are separated by a mean-field Ising transitio
caseQ = (0, 7) is obtained by lattice rotation). We obtain temperaturel,o. We find that for.J;/J> = 1, this transi-

the following self-consistent equations from the saddiexp ~ tion is first-order, as shown in Fig. 2. But it can be either
minimization of the free energy Eq. (14): first-order or second-order fof /J; < 0.9, as discussed in

more detail in Appendix A. In the low-temperature phase Il,
o N K Wik

<nk + l) cos(k-8), (18) either fo # fyOrgy # 9y (s_ee Fig. 2), corresponding to
2 an Ising ordered phase with eithr, 0) or (0, w) short-range
antiferromagnetic correlations. This Ising ordered phalse

gs = 1 Z A (nk + 1) sin (k- 48'), (19) ready exists in the isotropi€; —.J, model*847-49But here, we
N K Wk 2 find that a nonzerd< enhanceq,(, andK drives the effec-
1 1 Bx — A 1 tive nearest-neighbor exchange couplings to be anisatropi
S+ 2 N Z Wi (ruc + 5)’ (20)  As shown in Fig. 2, in thdr,0) Ising ordered phase (cor-
” -

responds tap = w), the effective coupling/;, can even be
whered = ¢, andd’ = 7, &+ §. Under the transformation ferromagnetic. This is important for understanding thesgxp

By — A — By andk — k — Q/2, Egs. (16)-(20) in the imentally observed anisotropic magnetic excitations ghhi
SBMF theory and Egs. (4)-(8) in the MSW mean-field theoryenergies in Ca-122 and Ba-122° Phase lll atl’ > T, is

have exactly the same form in the short-ratge)) correlated  the Ising disordered paramagnetic phase. In this phase the
paramagnetic phase. Therefore, the two methods yieldlgxacteffective nearest-neighbor exchange couplings are igigtro
the same mean-field phase diagram and boson dispersion, ascause the nearest-neighbor bond correlators are zetto. Bu
corroborated by explicit numerical comparison. We furtherthe next-nearest-neighbor bond correlations may still be fi
verified that these two theories give similar results fordhm  nite in this phase. One may define another temperature scale
dynamics of the/; — J; — K model. Ty, above which the next-nearest-neighbor bond correlations
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FIG. 2. (Color online) The temperature evolution of the méalu é)
parameters in the MSW theory f6f =1, J1/J. = 1, andK/J> =
0.8.
O " Il "
vanish and the system are decoupled into isolated local mo- (0,0) (m,0) (m.m)

ments. Note thalfy does not refer to a phase transition, and

the discontinuity of the bond correlations’&f is an artifact

of the mean-field theor? In generall, andT, are two dif-  FIG. 3. (Color online) (a): MSW dispersion along high symryet
ferent temperature scales satisfyifig > 7,,.3847 But for  directions in the paramagnetic Brillouin zone for the 2D- J, — K
Ji/Js > 0.9, Ty = Ty for any K/.J ratio, as shown in model atS =1, J;/J2 = 1.0, T/ J2 = 1.0, and variousk values.

: . : : . For comparison, the red dashed curve shows the dispersitirein
ilzilgﬁt?c.:al-rtgethpehgﬁz grl]%%\:ir:—] (I):?éalf ed in the SBMF theory i BMF theory for the same parameters diigdJ. = 0.8. The gaps

.- . at (0,0) and (7, 0) are too small to be seen in the figure. (b): The
The finite couplingi” not only changes the phase boundarysymbols show the dispersion from the INS dat&at= 150 K in

of the mean-field phase diagram, but can also dramaticallgareAs,, taken from Ref. 39. The data can be fit by any of the

influence the boson excitation spectrum. In Fig. 3(a), wevsho theoretical dispersion curves [as in (a)] that lie withie tshaded
the dispersions of the DM and Schwinger bosons along tw@egion.

high-symmetry directions in momentum space for variéus
values in phase Il witlp = 7 using the same parameters as in

Fig. 1. We see that the dispersion in Schwinger boson theoryhe excitation develops to the gapless Goldstone mofie-at

matches the one in the MSW theory exactly. 0. At (7, 7) (and also at0, 7)) the dispersion has a different
The dispersion shows a gap @t, 0) (and also a0, 0)), gap
with the size
A = \/ —11(8J2guty + 410G — 1) (1) A= \/ (8J2Guty — 4J1y fy = 1) (4T 1290 — 4J1y f — ?2)21)

At low temperatures the gap is small singe—~ 0 as7" < The features that;, # vy, andA; # A, already exists in
T,o. In this limit, the excitation neafr,0) can be approx- the isotropic/; — J, model. In theJ; — J, — K model,A;
imated bye, = /v}, (1 — k;)? + 13, k2 + A3, where the at(m,0) is only weakly affected by< because it is dominated
o by p. But As at (7, 7) is strongly influenced. It increases
. with K. For sufficiently largeK’, approximately wherefly
Uiz = 4290y + 21292, (22) changes sign to be ferromagnetic (the shaded region in Fig. 1
= = = the dispersion atr, 7) turns from a local minimum to a maxi-
Uy = \/(4J29m+y +201290) (4290 4y = 2J1y fy) + 21y fyp- mum, as shown in Fig. 3(a). Similar behavior in the spin-wave
(23) dispersion of the/; — J, — K model has also been discussed

velocities are respectively:




form in both MSW and Schwinger boson theories,

(%)

C /
S(q,w) = 27TN¥ Z [cosh(20y1q — 20k) — ss]

s,s'==+1

o

X0 (w — Sektq — s’ak)nf{Jrqnf(/, (25)

whereY "’ refers to the summation over the magnetic Brillouin
zone corresponding to ther, 0) order, which is enclosed by
/2 < ky < 7/2,and—7 < k, < 7. ni = nx+1
andn, = nx. C = 1inthe MSW theory, and’ = 3/2 in

the Schwinger boson theory with S2)(symmetry2° We see
from Eq. (25) that the contribution t6(q,w) comes from
two-boson processes. Hence, in general cases the peak of
S(q,w) does not follow the boson dispersion. But at low

3 temperatures, the largest contribution®fq, w) in the sum-
mation overk comes from the term dt = (0,0) since the
small gapA; at this point results in a large boson numhegr

To satisfy the energy conservation in théunction,S(q, w)

must be peaked at ~ ¢4. Actually this leads to a two-peak
structure corresponding t8 = +1 nearw = ¢4 for a fixed

q. But the separation of these two peaks is proportional to
£(0,0) @nd is very small at low temperatures. In the numeri-
cal calculations performed, the gap between the two peaks is
healed by substituting the delta function by a Lorentziattwi

—

N8}

—_—

0 a small broadening width. As a result of this small broaden-
0 1 0 1 2 ing, S(q,w) only shows a single peak structure. Therefore,
in this limit the peak positions of(q,w) follow the boson
/T A/ dispersion.

To better discuss the anisotropic distribution of the spec-

FIG. 4. (Color online) Constant energy cuts of the rotatieyan-  tral weight in momentum space, we plot the constant energy
metrized spin dynamical structure factor in the momentumcep CUts of the calculated(q,w) at a fixed temperaturg < 7,

in the MSW theory forS = 1, J1/J» = 1.0, K/J» = 0.8, and in Fig. 4. At low energies, the peaks 6fq,w) form a el-
T/J> = 1.0. The corresponding energies are respectively 4./ liptic ring centered atw,0) (and also its symmetry related
in (a),w = 10J2 in (b),w = 11.5J2 in (¢),w = 12J2 in (d). Inall  point (0, ) after rotation symmetrization), as displayed in
the panels, a broadening factas.J> has been used for the conve- Figs. 4(a),(b). The elliptic feature is a consequence of the
nience of calculation. anisotropic correlation lengths in the Ising ordered phasd

the ellipticity near(r, 0) is proportional t&€,, /&, = viz/v1y,
which is not sensitive to temperature since the mean-field pa
rameters are only weakly temperature dependeriffer 7,

(Fig. 2). The ellipticity also only weakly depends &t for
Ji/Jo =1, wefind{, /¢, ~ 1.7atK =0, and{, /¢, ~ 1.4

at K/J2 =0.8.

With increasing energy, the ellipse centered around)
expands towards the Brillouin zone boundary, as seen in
Figs. 4(a)-(d). For sufficiently large energy, the spectral

IV. DYNAMICAL STRUCTURE FACTOR weight reduces greatly along thg direction, and the&S(q, w)
is peaked neag, = +7/2 along theg, direction (Fig. 4(c)).
The elliptical peak feature appears to have been split imbo t

In order to investigate the magnetic excitations, which areparts in the direction of its major axis. As the energy gets
directly accessible by INS measurements, we have calcllateclose toe (. ), the two peaks move towards, +7), form-
the magnetic structure factdf(q,w). Our main interest is ing patterns that are centered arond+r); cf. Figs. 4(c)-
to understand the experimentally observed anisotroptafea (d). In our theory, there are two factors that contributehie t
of the magnetic excitations in the paramagnetic phase abowmnisotropic distribution of the spectral weight along the e
the Néel temperature. As already discussed in Sec. llhignt lipses. Firstly, forw > (. /2 o), along theg, axis the energy
temperature regime, the most relevant factor for the img@la conservation in thé function of Eq. (25) can only be satisfied
anisotropy is the Ising order. Therefore, we will concetetra whenk # (0,0). A nonzerok corresponds to a smallei,,
our discussion on the magnetic structure factor in phase Il owhich greatly reduces§(g,,w). Along theg, axis, however,
the 2D.J; — J» — K model. In this phas&(q,w) has the same  S(g,,w) is not reduced because tke= (0, 0) mode can still

in Ref. 34 in the antiferromagnetically ordered phase, lowt o
results apply to the paramagnetic phase.



satisfy the energy conservation. Secondly, for a gikethe  and found the mean-field phase diagram is similar to the one

coherence factarosh(26x — 26k ) along the ellipse is also in Fig. 1. Approximatelyf,, andZ} are increased by a factor

anisotropic. To see this, recall that the largest contisouio ~ of S(S + 1)/2. The boson dispersion shown in Fig. 5(a) also

S(q,w) is from thek = (0,0) term in Eq. (25). For simplic- exhibits the similar features as in the= 1 case. In Fig. 5(b)

ity, we take a single mode approximation, namelyg, w) we compare the ratio of the effective nearest neighbor cou-

can be approximated by this= (0, 0) term. Then the ellipse plings Ji,/Ji,, defined in Eq. (9), folS = 1 and.S = 2 (at

showing spectral weight peaks is determinedhy= w, and  zero temperature). We find that with increasitigthe mini-

the coherence factopsh(20x —26x 1) x (Bq—Aq)/eq- FOr  mal K/ .J; value where/;,, becomes ferromagnetic is dropped
[02¢62 1 4262 A A _ 97 2 fromK/J, ~ 0.53to K/.J> ~ 0.13. Hence, we conclude that
G+ a4ty <T/A Fq Aa > A~ fa/ B =200 fydy, the aniéotropy of the e]zfective exchange couplings indimed

whereA = 8J29,4y + 4J129.. SinceJy, < 0 for the choice  non-Heisenberg coupling is more significant for larger spin

of model parameters, it is easy to see that along the ellipsgize S.

€q = w, the maximum of the coherence factor is located along e can further compare our MSW resultiat= 0 with the

the ¢, axis but not they, axis. Since within the single mode one in a recent MSW study, which used a mean-field treatment

approximationS(q, w) is proportional to the coherence fac- thatis different from our85 The two theories yield exactly the

tor, S(q, w) is also anisotropic along the ellipse. Note that atsame results when the spin sige— co. For finite spin sizes,

low energies (/262 + 262 < T/Ay), jlyfng < A, so by comparing the behavio_r ofy, /Ji, ratio in Fig. 5(b) and

the anisotropy is very small. This coherence-factor-irtic € corresponding results in Ref. 35, we observe that the two

anisotropy becomes sizable when the ellipse is large (fop"leorles give qualitatively similar results for the anisply in

the exchange couplings: The biquadratic couplingeduces
\/ G+ q5&5 2 T/ M), the ratio of the effective ratids, /J1,. Quantitatively, there

are some differences between the two approaches. In particu
lar, while for S > 1, the ratio.J,, /J1, changes sign at a finite

V. DISCUSSIONS K value in both theories, this sign change does not appear for
S =1in Ref. 35.

A. The effects of spin size

B. Generalizations of theJ; — J> — K model

3 @ e | s=2 Several remarks on thg — J» — K model studied in this
Ko 1 paper. From the incipient Mott picture, when the system is

20 - —m}o_z /: in the vicinity of U.. /¢, the spin Hamiltonian contains interac-
tions involving more than just two spins. To see this, wetstar

from a multi-orbital Hubbard model on a square lattice, and
assume that Hund'’s rule coupling locks the spins in differen
orbitals to a high spin state. Then we may obtain a spin-only
Hamiltonian by integrating out the fermion degrees of free-
dom based on perturbationdi/. To thet? /U order, we ob-
tain the usual; — J; Heisenberg interaction between nearest-
and next-nearest- neighbor spins. The next-order termesapp
inthe ordert* /U3, and include the biquadratic term as well
as the ring exchange interactions. Here, we have focused on
the effects of the biquadratic interaction. The influencthef

L ring exchange interactions in the regime we are considésing
05| - briefly discussed in Appendix B.

P R B T - To fully understand the antiferromagnetic 0, =) order re-
0002 04 06 08 L0 vealed in the experiments, the 2B — J, — K model needs to
K/, be extended to the 3D case by including an interlayer cogplin

J.. A nonzeroJ, will support the antiferromagnetic order up
FIG. 5. (Color online) (a): MSW dispersion along high symmeli-  to the Néel temperatufBy. In the mean-field treatment, the
rections in the paramagnetic Brillouin zone for the ZD— J. — K antiferromagnetic order emerges at a mean-field Néel tempe
model atS = 2, J1/J> = 1.0, T/J> = 1.0, and variousk val-  aturel’yo. The details of the effects of the interlayer coupling
ues. (b): The ratio off1, /J1., showing the anisotropy in effective .J, to the magnetic phase diagram of the— .J, — K model
exchange couplings, see Eq. (9), as a function of the biatiadou-  and the magnetic excitation spectrum is further discussed i
pling for S = 1andS = 2. Appendix C.
When fluctuations beyond the mean-field level are taken
Besides theS' = 1 results shown in Sec. Ill and Sec. IV, we into account, the actual Néel and Ising transition tempera
have also studied th§ — .J> — K model with larger spin sizes, tures,Ty andT, can be well below their mean-field values.
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The mean-field temperaturés;, and7,, then correspondto We therefore conclude that both the ellipticity and intgnsi
some crossover temperature scales, below which the fluctuatnisotropy of the spectral peaks in momentum space are con-
ing order have significant effects. The fluctuating anigutto trolled by the exchange interactions.
effects we have presented will be dominant in the tempegatur We note that the Ising order parameter is also coupled to
regimely < T < T,(.38 the itinerant electrons. Since the Ising order parametaks
the Cy,, symmetry, it couples to those spin singlet fermion
bilinears that correspond to the,, representation. Conse-
C. Effect of itinerant electrons quently a nonzero Ising order parameter will induce a namzer
d,2_,» nematic charge densityos k, — cos ky)c;f(,ackya for
Within the bad-metal description of the iron pnictides, theall the d-orbital electrons, whereis the orbital index. In ad-
quasi-localized moments are coupled to itinerant elestrondition the Ising order parameter will induce a nonzero charg
with a spectral weight that depends on the proximity to thegensity imbalanceLzzckmz — CLyzCkyz between thel,, and
Mott transition. A convenient way to describe the effect ofthed,, orbitals, which is also referred as the ferro-orbital or-
itinerant electrons on the spin dynamics is to reformulaée t der. As a result the spin fluctuations from the incoherent de-
results of the local-moment-based calculations in terma of grees of freedom can give rise to an orbitally ordered, aharg
non-linear sigma model, and introduce into the latter a dampnematic metal, with anisotropic transport properties. In a
ing caused by the itinerant electrons; for details, we refer model with 3D coupling (see Appendix C), the coupling to

Ref. 38. Well belowl;,( and in the vicinity of(r, 0), the ef-  the itinerant electrons will reduce the Néel transitiomper-
fects of the itinerant electrons are described in terms ef thature from its mean-field valu€y, to Ty < Two, through

effective action for the staggered magnetizadn the positiveAr noted above. It will likewise decrease the
Ising transition temperature from its mean-field valijg to
S[M] = T/dqz [r+ Ar 4+ 07,62 + 01,4, + Wi T, < T,,. However, the correlation lengths are still size-
! able and should be anisotropic upXg,.2® This implies that,
+|wi|] M? 4+ uM* + O(MP). (26)  inthe 3D model with three-dimensional coupling, we expect

) anisotropic magnetic excitations to exist frarg all the way
Here,M = m+m is the sum oin andm’, the O(3) vectors  up to the crossover temperature schlg, in the absence of a
respectively for the magnetizations of the two decoupldd su static Ising order.
lattices on the square lattice, angthe Matsubara frequency.
This action arises in aw-expansion”, which is based on a
proximity to the Mott transition and is described in Refs. 12 D. Comparison with other approaches
and 13; it has the form of the usuatmodeP?. In the first
term, Ar > ( is @ mass shift and describes the strength of & . «tudies in thel, — J, — K model, with or without

spin damping from coupling to fermions. (See Fig. 6) Atrel- e oo pling to the itinerant electrons, are very differfeomn
atively low energies, this introduces a procedure that @n by, ey jtinerant studies withy /¢ much smaller thai,/t. Be-
used to describe the broadening of the spin spectral peaks I, ;s the Fermi surface comprises small electron and hole

momentum space due to coupling to itinerant electféns. pockets, such calculations are expected to yield very small
spin spectral weight. Experimentally, the total spectraiight
is known to be large, with an effective moment that is larger

M M
thanl up/Fe in CaFeAs, (Ref. 21). Such a large spectral
weight arises naturally in our approach using as the startin
pointthe.J; — J> model (with or without thex term).

Our approach can be compared more closely with that of
FIG. 6. (Color online) Diagramm of the second-order contiitmto ~ the DMFT studies of Ref. 41, in which the ratio of the effec-
the effective action in Eq. (26) due to coupling to fermions. tive interaction (combined Coulomb and Hund’s interactjon
to the characteristic bandwidth is close to the Mott-tramisi
We should emphasize that this procedure is a qualitativealue,U/t < U./t. The proximity to the Mott transition en-
treatment of the spin damping. Incorporating the full detai sures that a large part of the electronic spectral weight lie
of the electronic bandstructure will introduce momentum-in the incoherent regime, which will naturally give rise to a
dependence of the damping rate, making it possible to gerarge spin spectral weight. The consistency of the momentum
erate the type of anisotropic damping that was proposed phelependence determined by the DMFT calculations and that of
nomenologically by Harrigest al 3. our J; — J; — K calculations further suggests the compati-
Comparing our results for thd; — J, — K model in  bility of the two approaches. There are some important dif-
Fig. 4(a)-(d) with those of thé, — .J, model (Fig. 4 of Ref. 38)  ferences, however. In the DMFT calculation, the anisotropy
shows that, the biquadratic termitself brings outan anigyt  of the structure factor has been attributed to the geométry o
in the spectral weight of the elliptic peaks. The spectrapive  the Fermi surface(s). Thé — J> — K results however tie
is larger along the major axis of the ellipse than along its mi the anisotropy of the spin spectral weight in momentum space
nor axis. This anisotropy goes in the same direction as thawith the Ising correlations.
of the experimental data on Baf#es,, illustrated in Fig. 4(f). Experimentally, the Ising correlations can be very natyral
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connected with the —y anisotropy observed in ARPE&and  find K/.J, ~ 0.8 fits the data the best. On the other hand, for

transport®> measurements in the detwinned 122 iron pnictidesS = 2, the best fittedk'/.J, ratio is substantially reduced to

at temperatures abov®y. A recent theoretical calculatih  about0.2.

shows how resistivity anisotropy in the tetragonal phaswab For BaFgAs,, detailed measurements in the momentum

Ty follows from the existence of the Ising correlations dis- space have been reported by Harrigeal 3. This allows us

cussed here. to see that the agreement between our theory and the experi-
ment is not only for the dispersion, but also for the anigaitro
distribution of the spectral weight &(q,w) in momentum

VI. COMPARISON WITH EXPERIMENTS ON THE space. ) ) )
PARAMAGNETIC PHASES OF PARENT 122 IRON In order to make a comparison with experimental data, we
PNICTIDES use Eqg. (25) in the calculation 6fq, w) and approximate the

delta function by the following Lorentzian broadening

Spin dynamics in the paramagnetic phase of the par- 1 v
ent 122 iron pnictides has been recently studied via INS 6(w—Ae) — P PR NS R L (27)
measurement¥:3%40For CaFgAs,, spin dynamics at low en- (W= Ag’+y
ergies (belowr0 meV) has been studied by Dial@ al.3” It ~ Here we have assumed that the broadening mainly comes
is found that the peaks of the dynamical structure factanfor from the damping effect due to coupling to itinerant eleaso
anisotropic elliptic features at low energies, similarhe te- It is then reasonable to take the phenomenological broaden-
sults in the antiferromagnetic pha8eMore recently, Harriger  ing factor to be the dampingintroduced in Eq. (26) since in
et al.>°® measured the spin dynamics of BaRe, up t0200  either the MSW or Schwinger boson theory, the damping is
meV. At low energies, they found the distribution of spelctra still due to the same bubble in Fig. 6. Calculating the mag-
weights in the momentum space forms similar elliptic featur nitude ofy requires a detailed microscopic theory and is be-
as in the CaFgAs, case. With increasing energy, the elliptic yond the scope of this article, however we can use Ref. 38
feature expands towards the Brillouin zone boundary. Morefor reference, where it has been determined that, ~ 3
over, they determined the magnetic dispersion to be peakedr CaFeAs,. Here we assume that this ratio still holds for
(or flat-topped) neafr, 7). Similar results have also been re- BaFgAs, and the damping is isotropic. In Figs. 7(a)-(d) we
ported for SrFgAs; .4 replot the theoretical dynamical spin structure factorim B

Our study on the/; — J, — K model have already pro- with this damping factor, and compare them with the experi-
vided valuable information for understanding these experimental data in Ref. 39. At low energies, our theory correctly
mental observations. In real materials, the various fluctuacaptures the elliptical feature centeredrat0) as displayed in
tion mechanisms and the coupling to fermions/phonons wilFigs. 7(a),(b). Experimentally, this is seen as a fillechétial
reduce the Néel and Ising transition temperatures. Horvevespot due to damping effect, which is also shown in our theo-
below the mean-field Ising temperatdig, the effective cou- retical plot in Fig. 7(a). The evolution of the ellipticaldtire
plings between the nearest neighbors are always anisotropiwith increasing energy is also consistent with the expemnime
Hence we expect the magnetic fluctuations to be anisotropital observation: as the ellipse expands towards zone boynda
for Tn(< T,) < T < Ty, which corresponds to the upper it gradually splits into two parts, and forms a pattern agun
portion of region Il in Fig. 1. This anisotropy is reflected in (7, 7) (see Figs. 7(c), (d), and (f)). We reiterate that such
the spin dynamics in the paramagnetic phase. anisotropic features are the properties of dur— J, — K

To be specific, the anisotropic elliptic feature at low ener-model either with an isotropic or without additional dangpin
gies observed in CakAs, and other parent 122 compounds due to itinerant electrons. While anisotropic damping pro-
can already been understood within the— J, model®® We  posed in Ref. 39 could reinforce the effect, it is not necgssa
have shown in Fig. 4 that thg —.J, — K model gives the simi- to understand the INS experiments. In Ca&® the ellipti-
lar low-energy elliptic feature. It will be importantto nmae  cal feature arounér, 0) persists up to high energies, while in
the spin dynamics at high energies in this material. BaFeAs, this elliptical feature splits into two parts at inter-

Our calculated evolution of this elliptic feature as the en-mediate energ$? These two different behaviors can both be
ergy is raised in the;, — J, — K model can be systematically understood within ow/; — .J, — K model with similar, nearly
compared with the experimental observations in B#e  isotropic damping but different” values.
and SrFeAs,. To see this, we fit the peak positions of cal-
culatedS(q,w) to the experimental magnetic excitation dis-

persion data in Baké\s,, from which we can extract the best VIl. CONCLUSIONS
fitted values of the exchange couplings. Assumthg= 1,
we find the fitted exchange couplings ake= 17 + 4 meV, In this paper we have investigated the finite temperature

J1/Jo = 1.0+0.5,andK/.J; = 0.84+0.3. We find thatavery  spin dynamics of a/; — J, — K antiferromagnetic Heisen-
broad range of the, / J; ratio can all fit the experimental data berg model using both MSW and SBMF theories. The spin
quite well. As illustrated in Fig. 3(b), any dispersion cerv dynamics obtained from these two methods are similar to each
within the shaded region fits the experimental data within erother.

ror bars. But to fit the dispersion data near the local maximum We have found that by including a moderate biquadratic
at (w, ), @ moderatds/J, ratio is necessary. F¢t = 1, we  coupling K, the magnetic excitation spectrum of the —
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FIG. 7. (Color online) Evolution 08 (q,w) in the paramagnetic phase of thie — J. — K model, showing that the elliptical features near
(m,0) at low energies (top panels) are split into features thatanéered arounfir, 7v), as the energy is increased towards the zone-boundary
spin-excitation energy (bottom panels). This trend is test with the inelastic neutron scattering experimesit®wn in the box on the
right for two energies measured in the paramagnetic phaBaB&As. (data taken from Ref. 39). (a)-(d): Same as Fig. 4(a)-(cf) wath
dampingy = 3Js. (e)-(f): The INS data al' = 150 K in BaFeAs,, taken from Ref. 39. The energy transfewis= 50 + 10 meV in (e), and

w = 150 & 10 meV in (f). Here we find that the best agreement between thewyexperimental data achieves when takings 13 meV in

the model.

Jo — K model is anisotropic below a mean-field Ising tran-the experiments.

sition temperatur&,. As in the case of thé; — J, modef?,

the peak of the low-temperature dynamical structure factor

S(q,w) contains elliptical features neégr, 0) in the param- ACKNOWLEDGMENTS
agnetic Brillouin zone at low excitation energies. However
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We have also compared our calculated dynamical spin _ _ - _
structure factor of the;, — J» — K model with the recent in- Appendix A: Ising transition at small .J,/.J; ratios
elastic neutron-scattering measurements in the parartiagne
phases of the 122 iron pnictid8s®4? The theoretical results ~ We find that the nature of the mean-field Ising transition at
provide a very natural understanding of the salient featafe T,, depends on bott, /J> and K/ .J; ratios. AtK = 0 and
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Ji/Je < 0.9, we findT,o < Tp, and the Ising transition at magnetic state, and reduces the size of the Ising order param
T, is always second-order (Fig. 8). Whdn/J> = 0.9, Too eter. For consistency with the experimental results weirequ
meetsTy and the Ising transition becomes first-order. This isK > Kp.

an artifact of the mean-field approximation since the tit#zonsi

atT, is always first-ordet?>*3 Still for .J, /Jo < 0.9, increas-

ing K from zero, the transition af,, changes from second- Appendix C: Effects of interlayer exchange coupling

order to first-order wherk is bigger than a bicritical point
K. As shown in Fig. 8 fotJ; /J> = 0.6, K./J> = 0.04. At

K z K., T,o < Ty. This suggests that the Ising transition
nearK. is not influenced byl , but the order of this transi-
tion is tuned byK . Hence the first-order transition &t is
not an artifact of the mean-field treatment.

i 0.0 0.2 0.4 0.6 0.8 1.0
S=1,3/1=0.6 .. K/J
4 2

T/,

I
) \I\\ | | FIG. 9. (Color online) Mean-field magnetic phase diagramhie t
1'500 02 0.4 MSW theory forS = 1, J1/J: = 1, and an interlayer exchange
' T K ' couplingJ. /J2 = 0.1. The dashed blue and solid red curves refer to
2

the mean-field temperature scalks, andT,o, respectively. In the
shaded region, the effective exchange coupling < 0.
FIG. 8. (Color online) Mean-field magnetic phase diagramhia t
MSW theory forS = 1, J1/J2 = 0.6. The dashed blue and dashed
dotted brown curves refer to the mean-field temperaturesalo

and Ty, respectively. The thicker solid red curve refers to a sdeon Lo ' '
order Ising transition af’,o, while the thinner solid red curve refers 0.8 b
to afirst-order transition. In the shaded region, the effeexchange 0.6 _\‘ ]
couplingJiy < 0. 7 A — TN0—> |
0.2+ g, .
E 0.0 : }
Appendix B: Effects of ring exchange couplings ‘g oz - T T T T [
<
=
Besides the quadratic and biquadratic interactions, ather 8 sk — % 1
teractions involving more than two spins can also appear in 3 -7 & T =T;/—
the spin Hamiltonian in the vicinity of Mott transition. For 2 g,
instance, the four-spin ring exchange interaction can appe g 0.0 :
as a consequence of the fourth-order perturbation asedciat ‘é’ 3 T
with the electron hopping process. We can consider the ef- 2 [— ok 4
fects of a four-spin ring exchange process on the spin dy- o JI—ZKFX T
namics by adding a terikn >, 5, [(Si - S;)(Sk - Si) — Ir Ly 0
(Si - Sk)(S; - Si) + (Si - Si)(S; - S)] to the Hamiltonian, 0t T
where K > 0, and the sitesi, j, k, 1) are the vertices of a ] ST T T T
square plaquette, labeled clockwise. The four spin ring ex- 2 T/ 3
change competes againkt and J; and tends to weaken the 2

antiferromagnetic order coming froth or J,. In the linear
spin wave description of thér, 0) ordered state, we obtain FIG. 10. (quor online) The temperature evolution of the méald
jl - Ji—2(K — KD)SQ and j2 — J, + KoS?, and a and with an interlayer exchange couplidg/J> = 0.1.
y - 1 - 1
reduced spin gap &tr, ). This trend also persists in the para-
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in the MSW mean-field theory, and

AiD = Ax +2J.g.sink, (C3)
BiP = By. (C4)
in the SBMF theory.

In Fig. 9 we show the phase diagram at the experimentally
suggested ratia/,/J, = 0.1. Similar to the 2D case, the
mean-field phase diagram consists of an Ising and Néel or-
dered antiferromagnetic phase (1), an Ising ordered bt Né
disordered paramagnetic phase (ll), and an Ising and Néel
disordered paramagnetic phase (lll), separated by melan-fie
/ temperatured’yo andT, (see also Fig. 10). For the param-
(0‘30,“) (7,0,7) (r,m,m) eters in Fig. _9, the tran_sitions are both first-order, andh bot

Tno andT, increase withK'. For K/J; 2 0.2, Tyo meets
T,0, and there is only a single transition between phases | and
[ll. The absence of phase Il in this regime is an artifact ef th
mean-field theory, sincg, is always bounded above by the
mean-field scal&y.

In connection to the real materials, we note that the struc-
tural and magnetic transitions in the 1111 pnictides aré wel
separated. Butin 122 compounds, they are either very adose t
each other, or become a single first-order transition. Téis c
be understood in terms of the present theory, providets

The real materials have a 3D tetragonal structure. In thatronger in the 122 materials. By comparing Fig. 9 and Fig. 2
J1 — Jo — K model, the 3D effects can be studied by extend-we see that the magnetic transition is closer to the Ising tra
ing the model to include a finite interlayer exchange interacsition for a largerJ,. Recent experiments also show that the
tionJ. >, S; - Si+:. In 3D the long-range antiferromagnetic electron doping may cause the separation of the structodal a
phase survives at finite temperature up to the Néel temperanagnetic transition temperatures in Ba(Fe £2@) Systent®
ture Ty. In MSW and SBMF theories, the mean-field Néel The similarity between this behavior and thedependence
temperaturél’y is determined by the onset of spontaneousof T, and T in the phase diagram of Fig. 9 suggests the
sublattice magnetizatiomg. In generalTyo < T, < Tp. possibility that electron doping is positively correlatgith a
The modification to our discussion in Sec. Il comes throughreduction of the biquadratic interaction. It would then ei-
an additional interlayer antiferromanetic bond correlapa-  esting to reveal the link between them in future experimenta
rametely,. Inthe presence of., the self-consistent equations and theoretical studies.
of Egs. (4)-(6) and Egs. (18)-(20) are unchanged, but the ex- In Fig. 11 we show the low-temperature boson disper-
pressions fordy and By are modified according to sions of the 3D model for variouk™ values along two high-
symmetry directions in the, = 7 plane. Aside from a larger
gap at(0, 0, 7), the dispersion is very similar to the one in 2D:
the dispersion is highly anisotropic, and with increasiig
the local minimum atr, 7, ) turns to a maximum. This is
not too surprising because the in-plane anisotropy is agzons

FIG. 11. (Color online) Dispersion of thé, — J> — K model in
the MSW theory for variouss values atS = 1, J1/J. = 1.0,
T/J> = 0.1, and with an interlayer exchange couplifg/ J> = 0.1.

AP = Ax +2J.g. cosk, (C1) qguence of the 2D Ising-type fluctuations, and is not semsitiv
BiP = By +2J.g., (C2) tothe interlayer exchange coupling.
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