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Spatially varying strain patterns can qualitatively alter the electronic properties of graphene,
acting as effective valley-dependent magnetic fields and giving rise to pseudo-Landau-level (PLL)
quantization. Here, we show that the strain-induced magnetic field is one component of a non-
Abelian SU(2) gauge field within the low-energy theory of graphene, and identify the other two
components as period-3 charge-density waves. We show that these density-waves, if spatially varied,
give rise to PLL quantization. We also argue that strain-induced magnetic fields can induce density-
wave order in graphene, thus dynamically gapping out the lowest PLL; moreover, the ordering should
generically be accompanied by dislocations. We discuss experimental signatures of these effects.

The discovery of graphene1—a carbon monolayer with
low-energy electronic properties governed by the Dirac
equation2—has stimulated enormous interest in con-
densed matter systems having Dirac quasiparticles. Al-
though other systems supporting Dirac quasiparticles
have subsequently been discovered (e.g., the surface
bands of topological insulators3,4), graphene is uniquely
tunable through lattice deformations and strains, be-
ing a soft two-dimensional membrane2. Strain alters
the electronic structure of graphene by modulating the
hopping amplitudes between neighboring lattice sites.
A striking example of the electronic consequences of
strain is that certain spatially varying strain patterns
can mimic the effects of a pseudo-“magnetic field” that
has opposite signs in the vicinity of the two Dirac points
(which we shall refer to as the valleys K and K′5).
Such pseudo-magnetic fields, on the order of 300 Tesla,
were recently demonstrated in pioneering experiments6

on nanoscale graphene bubbles; subsequently, effective
fields greater than 60 Tesla were also realized in “molec-
ular graphene”7. At these fields, each valley is deep in
the quantum Hall regime, so that its electronic structure
consists of well-spaced pseudo-Landau levels (PLLs). Be-
cause the PLLs are highly degenerate, one expects cor-
relation effects to be strong within them; indeed, re-
cent works have shown that, in the presence of inter-
actions, partially-filled PLLs are unstable to forming or-
dered states such as valley ferromagnets, spin-Hall phases
and triplet superconductors8,9.

In the present work we show that the strain-induced,
valley-dependent magnetic field is one component of a
non-Abelian SU(2) gauge field within the low-energy the-
ory of graphene. We identify the other two generators of
this SU(2) gauge field as period-3 charge-density waves
(3CDWs) (Fig. 1) that mix the K and K′ valleys. We
show that these charge-density waves act as gauge po-
tentials: when their amplitude is constant, they move
the Dirac cones [Fig. 2(B)]; but when their amplitude
is spatially varied, they give rise to Landau-level quan-
tization, as shown in Fig. 3. Although methods for re-
alizing non-Abelian SU(2) gauge fields had previously
been proposed in ultracold atomic settings10–12, twisted
bilayer graphene13, and fullerene molecules14, such fields
have yet to be experimentally realized in condensed mat-

ter. The present work suggests an alternative approach,
which might be easier to implement, e.g., in molecular
graphene7.

Having established the SU(2) gauge structure, we turn
to the effects of the 3CDW patterns on the strain-induced
PLL structure. We find that, although these perturba-
tions do not open up gaps in unstrained graphene, they
do gap out the lowest (i.e., zero-energy) PLL. On gen-
eral grounds, then, we expect these gaps, and the cor-
responding 3CDW patterns, to be dynamically gener-
ated by electron-electron or electron-phonon interactions
whenever graphene is strained, as they would reduce
the ground-state energy. (The relation between different
mass gaps and the corresponding ordered states was pre-
viously explored, for unstrained graphene, in Refs.15–18.)

After discussing the 3CDW patterns, we turn to their
defects (i.e., dislocations), and show that these defects
are entwined with the ordering in a distinctive way, owing
to the valley-dependence of the pseudo-magnetic field.
In contrast with the case of a regular field, for a strain-
induced field a uniform 3CDW perturbation does not mix
the spatially coincident Landau orbitals in the two val-
leys, as these are counter-propagating. However, a 3CDW
perturbation with a defect at the origin can mix the val-
leys and open up a gap. Thus, in experimental geometries
such as that of Ref.6, the defects as well as the order are
likely to be dynamically generated.

Model. In the absence of interactions, the tight-binding
Hamiltonian of strained graphene reads as

H0 =
∑
ri

∑
a=1,2,3

(t+δta(ri))(a
†(ri)b(ri+δa)+h.c.), (1)

where δta(ri) is the strain-induced variation of the
nearest neighbour hopping amplitude between the A-
sublattice site at ri and the B-sublattice site at ri + δa
of the honeycomb lattice2. The vectors δa connect
any A-sublattice atom to its three B-sublattice nearest
neighbors. In the absence of strain, the low-energy ex-
citations correspond to linearly dispersing states close
to the two Dirac points at momenta ±K with K =
(4π/3

√
3a0)ex, a0 being the carbon-carbon bond length2.

Near the Dirac points K and K′ the wavefunctions of
such states can be written as four-component spinors
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FIG. 1. SU(2) gauge potentials [i.e., charge-density-wave
(3CDW) patterns] and their defects. Panels (a) and (b) show
the patterns corresponding to ζx,1 and ζy,2 respectively (see
Table I); the remaining patterns are related to these by trans-
lation. Black (white) circles denote excess positive (negative)
charge; larger circles correspond to greater excess charge.
Panel (c) sketches a dislocation in the 3CDW pattern; the
dislocation core is marked in gray. Dashed red lines trace
crests of the 3CDW pattern.

Ψ ≡ (ψA,K, ψB,K, ψA,K′ , ψB,K′) where the first index de-
notes the component of the wavefunction on the A(B)
sublattice of the honeycomb unit cell, and the second
index denotes the component of the state that is asso-
ciated with the K (K′) valley. The low energy effective
Hamiltonian close to the Dirac points reads as:

H0 = vF [p̂xΓx + p̂yΓy] (2)

where Γx = τ3σ1, Γy = τ0σ2, vF is the Fermi velocity,
and the σ and τ operators are Pauli matrices acting on
sublattice and valley indices respectively. We have not
included the physical spin index as it does not affect our
analysis, provided that the spin-orbit coupling is negligi-
ble.

There are three terms in the low-energy theory (i.e.,
“charges”) that commute with the Hamiltonian (2):
Q1 ≡ −τ2σ2, Q2 ≡ τ1σ2, Q3 ≡ τ3σ0. These realize
an SU(2) pseudo-spin algebra [Qi, Qj ] = 2iεijkQj . We
also define the electromagnetic U(1) charge Q0 ≡ τ0σ0
(i.e., the identity operator), which commutes with the
other charges. We can minimally couple H0 to the gauge
potentials associated with these charges, arriving at the
Hamiltonian:

H = vF

[
Γx

(
p̂x −

3∑
i=0

AixQi

)
+ Γy

(
p̂y −

3∑
i=0

AiyQi

)]
.

(3)

FIG. 2. (A) Band structure in the presence of strain, cal-
culated for a 100-site thick graphene nanoribbon with zigzag
edges, showing pseudo-Landau levels (PLLs). All energies are
computed in terms of the unperturbed hopping; in the pres-
ence of strain, the hopping along one of the three directions
increases linearly from t to 1.9t across the sample. The zero-
energy level is in fact fourfold degenerate, including two zero-
energy PLLs and two modes localized on zigzag edges. (B)
Location of Dirac cones in the absence of strain, both with
the perturbation ζx,i (thin solid line) and without it (thick
line). Constant gauge potentials (see main text) are expected
to shift the Dirac cones. (C) Band structure in the presence
of both strain and ζx,i. The fourfold-degenerate zero-energy
mode is split; the two more widely separated levels corre-
spond to the lowest PLL. (This was checked by computing
the wavefunctions.)

We turn to the microscopic origins of the SU(2) gauge
potentials, ζµ,i ≡ ΓµQi, where µ = x, y and i = 1, 2, 3.
Of these, ζµ,3 comprise the familiar strain-induced vec-
tor potential. Strain generates a gauge field given by

A0
x+ iA3

y =
∑
a=1,2,3 δta(r)e±iK·δa near the Dirac points

±K. Note that
∑
a=1,2,3 δta(r)e±iK·δa is complex be-

cause the nearest-neighbor hoppings are not symmetric
under inversion. The real part of the strain gauge field
A0
x is the same in both valleys and therefore couples to

Q0; it can be gauged away assuming time-reversal sym-
metry holds. On the other hand, the imaginary part iA3

y

has opposite sign in the two valleys and couples to Q3,
leading to the valley-dependent magnetic fields realized
in the experiments of Refs.6,7.

The four remaining gauge potentials (see Table I) orig-
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Term Low-energy LPLL Microscopic

ζx,1 τ1σ3 τ1 cos(G · r) cos
[
π(y/a0 + 1

4
)
]

ζx,2 τ2σ3 τ2 sin(G · r) cos
[
π(y/a0 + 1

4
)
]

ζy,1 τ2σ0 τ2 sin(G · r)

ζy,2 τ1σ0 τ1 cos(G · r)

TABLE I. Density-wave-based gauge potentials. This table
lists microscopic and low-energy forms of the potentials, as
well as forms when projected onto the lowest pseudo-Landau
level (LPLL).

inate, as we shall now see, as 3CDWs. That they should
be charge density waves can be seen as follows: (a) the
perturbations mix the valleys, and must therefore involve
spatial modulations that enlarge the unit cell19; (b) they
do not mix the sublattices (i.e., they are proportional
either to σ3 or to σ0), and can therefore include only on-
site charge offsets and intra-sublattice (e.g., next-nearest
neighbor) hopping. Two simple perturbations satisfying
both criteria are charge modulations of wavevector G
(where G ≡ K−K′ is a vector connecting the two Dirac
points), which realize τ1 and τ2 respectively:

τ1 ↔ cos(G · r), τ2 ↔ sin(G · r). (4)

The gauge potentials ζx,i are realized when the density
waves on A and B sublattices are π out of phase, whereas
the potentials ζy,i are realized when the density waves on
the A and B sublattices are in phase. Fig. 1 shows the
two corresponding density-wave arrangements, which are
listed in Table I.

Numerical band structure calculations on nano-ribbons
including these terms are shown in Figs. 2 and 3; evi-
dently, the ζ’s do not open up gaps in the absence of
strain, but shift the Dirac points in momentum space,
as a vector potential is expected to do. Moreover, if the
coefficient of ζy,2, say, is varied linearly with x (cf. the
Landau gauge description of a uniform magnetic field), it
gives rise to PLL quantization as shown in Fig. 3. Hence
these terms can be regarded, together with the strain-
induced gauge potentials, as enabling the realization of a
general SU(2) gauge field.

Strain-induced PLLs and their mass gaps. The pseu-
dospin SU(2) symmetry (at low energies) allowed us to
treat the strain and 3CDWs on the same footing above.
We now break this symmetry by considering the PLL
structure created by a strain pattern inducing a uniform
pseudo-magnetic field. The eigenstates of H then fall
into PLLs at energies En ∼

√
n, and in particular there

is a PLL at zero energy in each valley2, which we term
the LPLL. While the LPLL shares some features with
the zero-energy Landau levels induced by a real mag-
netic field, it is distinct in two essential ways, as fol-
lows. (1) In contrast with the case of a real magnetic
field (in which the lowest Landau level wavefunctions
in the two valleys are located on opposite sublattices),
the LPLL wavefunctions in both valleys are located en-
tirely on the A sublattice8. (2) The LPLL wavefunc-

FIG. 3. Pseudo-Landau levels (PLLs) generated by the SU(2)
pseudo-gauge potential A2

xQ2 = BQ2y on a 100-site nanorib-
bon with zigzag edges. Potential strength varies linearly from
zero at one end of the ribbon to 0.74t at the other end. Main
panel shows wavefunctions in the lowest three distinct PLLs,
calculated on a 100-site nanoribbon with zigzag edges. Inset
shows the PLL structure (cf. Fig. 2A), indicating that the
PLLs are indeed flat for momenta near the Dirac points.

tions in the K(K′) valleys have the four-component form

ΨK
0,m = (φ0,m, 0, 0, 0) and ΨK′

0,m = (0, 0, φ∗0,m, 0), respec-
tively, where φ0,m is the mth Landau orbital in the lowest
(nonrelativistic) Landau level (see below). [By contrast,
for a real magnetic field, the second of these would be
ΨK′

0,m = (0, 0, 0, φ0,m).] Thus, in a pseudo-magnetic field,
the PLL orbitals are counter-propagating, whereas in a
real magnetic field they are co-propagating. For a real
magnetic field, the valley index can therefore be regarded
as a mere flavor degree of freedom, and a uniform valley-
mixing perturbation mixes Landau orbitals in the two
valleys. However, for strained graphene, the valley index
should not be interpreted as a flavor index, because the
wavefunctions in the two valleys are spatially distinct.
As argued below, this implies that mass terms with de-
fects are necessary to gap the LPLL. The precise conse-
quences depend on which gauge in pseudo-vector poten-
tials is simulated by the strain. (This is possible because,
while two gauge-equivalent electromagnetic vector poten-
tials are physically identical, different pseudo-vector po-
tentials correspond to different strain patterns and are
thus microscopically distinct; therefore, the physics of
pseudo-magnetic fields is not guaranteed to be gauge-
invariant.)

Uniform perturbations. We now address point (1)
above, ignoring spatial structure and considering the ef-
fects of uniform (i.e., defect-free) 3CDW perturbations
precisely at the Dirac point. Many of the properties of
the LPLL follow from its trivial sublattice structure: in
particular, one can find the form of any perturbation in



4

the LPLL by projecting it onto the A sublattice. Thus,
perturbations within the LPLL are completely described
by 2 × 2 matrices in τ (i.e., valley) space (Table I); and
several perturbations that open up gaps in unstrained
graphene, such as an intra-unit-cell charge-density wave
(σ3τ0) and the Kekulé distortion (σ1τ1), are trivial when
projected to the LPLL. However, the SU(2) gauge po-
tentials ζµ,i do gap out the LPLL, as they project onto
either τ1 or τ2 (Table I), and can thus mix LPLL orbitals
from the K and K′ valleys.

Two further perturbations that split the LPLL are val-
ley polarization, mp ≡ τ3σ0, and the Haldane mass20,
mH ≡ τ3σ3. Within the LPLL, these terms are equiva-
lent ; both correspond to τ3, which shifts the energy of
one valley relative to the other. Both terms anticom-
mute with the gauge fields; therefore, within the low-
energy theory, it seems that these gaps can be continu-
ously deformed into one another. (Thus, the fate of the
topologically-protected edge mode associated with mH

cannot be addressed within the low-energy theory. Nu-
merical calculations of the band structure in the presence
of both mH and ζx,i suggest that as ζx,i is increased, the
edge state drifts away from the Dirac points; it is there-
fore plausible that ζx,i and mH compete away from the
Dirac points. We shall revisit this question in future
work.)

The perturbations discussed above are likely to be
dynamically generated in experiments with neutral
graphene (i.e., a half-filled LPLL), as opening up a
gap would lower the ground-state energy. The 3CDWs
could arise either because of electron-phonon or electron-
electron interactions; moreover, electron-electron interac-
tions can give rise to a spontaneous valley polarization8.

Momentum dependence. We now turn to the second
distinctive feature of the PLLs [point (2) above] and dis-
cuss the role played by the spatial structure of PLL wave-
functions. To address this, we shall consider the nature
of the 3CDW perturbations on orbitals away from the
Dirac point.

We first consider the strain pattern realizing the
Landau gauge; here, if the 3CDW amplitude is
uniform, the K-valley Landau orbital φ0,m(x, y) ∝
ei

2πm
L xe−(y− 2πm

L l2)
2
/l2 (l being the magnetic length) can

hybridize only with the K′-valley orbital φ∗0,−m(x, y) ∝
ei

2πm
L xe−(y+ 2πm

L l2)
2
/l2 , due to the conservation of kx.

The overlap between these two states, though nonzero,
decreases as |m| is increased, and becomes exponentially
small for ml � L. This decrease of overlap leads to
the convexity of the LPLL gap (Fig. 2), and implies
that the 3CDW gap is an inherently mesoscopic phe-
nomenon. (However, note that all experimental real-
izations of pseudo-magnetic fields in strained graphene
involve mesoscopic systems.)

Point defects. If the strain realizes a symmetric gauge

pattern, φ0,m(r, θ) ∝ eimθrme−r
2/l2 , as in the experi-

ments of Ref.6, the consequences are even more striking.
Here, the only allowed orbitals have m ≥ 0; otherwise

φ0,m is not normalizable. As a result, no uniform per-
turbation can gap out the m 6= 0 orbitals. Thus, in order
to open up a gap, it is necessary to consider perturba-
tions having defects, i.e., edge dislocations in the 3CDW
case. Within the LPLL, the two independent 3CDW or-
ders are represented by τ1 and τ2 (Table I). The 3CDWs
can support edge dislocations [Fig. 1(c)], which appear
as vortices within the LPLL theory:

∆(r) [τ1 cos(nθ) + τ2 sin(nθ)] =

(
0 ∆(r)einθ

∆(r)e−inθ 0

)
(5)

where ∆(r) is a function that vanishes at r = 0 and is
constant for r � lM . Such vortex solutions carry angu-
lar momentum, and can thus hybridize LPLL orbitals:
for vorticity n, any orbital with m < n can hybridize
with the orbital with m′ = n−m. Hence a larger vortic-
ity can gap out more Landau orbitals, leading to lower
energy (although it might also cost greater electrostatic
or elastic energy). Therefore, one expects defects to be
dynamically generated along with the 3CDW patterns.

Effects in higher PLLs. We now turn to the effects
of the aforementioned perturbations within the higher
PLLs. Here, the sublattice structure is not trivial, so that
the six masses are distinct perturbations. These pertur-
bations fall into two classes, depending on whether their
sublattice component is σ0 or σ3. Perturbations of the
former class split all the PLLs. For mp, this is clear by
inspection; similarly, one can see from degenerate pertur-
bation theory that ζy,i mix ΨK

n,m and ΨK′

n,m (assuming the
strain pattern realizes the Landau gauge). However, mH

and ζx,i do not mix ΨK
n,m and ΨK′

n,m, and thus preserve
the double degeneracy of higher PLLs. However, these
perturbations do mix ΨK

n,m and ΨK′

−n,m, thus shifting the

energy of the nth PLL by α2/(2∆0
√
n), where ∆0 is the

cyclotron energy scale.
These considerations might influence which perturba-

tions are dynamically generated in experiments. If one
of the nonzero PLLs is half-filled, the favored perturba-
tions are of the σ0 class; by contrast, at half-filling of
the LPLL (i.e., for neutral graphene), the σ3 perturba-
tions are preferred, as these lower the energy of the filled
negative-energy PLLs. Moreover, because the perturba-
tions with τ3 open up momentum-independent gaps, they
are preferred at the level of the low-energy theory; thus,
in agreement with Ref.21, a low-energy analysis would
predict that the Haldane mass is likeliest to be generated
in the case of a half-filled LPLL. However, it should be
emphasized that these considerations can generically be
outweighed by changes in the band structure away from
the Dirac points.

Experimental aspects. We close by touching upon some
experimental considerations. The 3CDW ordering de-
scribed here can either be dynamically generated via
strain, or externally imposed. In the former case, the
ordering can be readily detected via scanning-tunneling
microscopy (STM); this technique is commonly used to
study stripe ordering (see, e.g., Ref.22). Alternatively,
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the 3CDW perturbations can be studied by externally
imposing them. This is easiest to do for engineered sys-
tems, such as molecular graphene7, where a 3CDW pat-
tern such as ζy,i can be imposed by hand on the triangu-
lar network of adsorbate molecules (or, alternatively, for
hexagonal optical lattices23). However, it might also be
possible to realize it using systems of graphene grown on
anisotropic substrates, which favor 3CDW formation.
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