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Quantum oscillations of nonlinear resistance are investigated in response to electric current and
magnetic field applied perpendicular to single GaAs quantum wells with two populated subbands.
At small magnetic fields current-induced oscillations appear as Landau-Zener transitions between
Landau levels inside the lowest subband. The period of these oscillations is proportional to the
magnetic field. At high magnetic fields, a different kind of quantum oscillations emerges with a
period, that is independent of the magnetic field. At a fixed current the oscillations are periodic
in inverse magnetic field with a period that is independent of the dc bias. The proposed model
considers these oscillations as a result of spatial variations of the energy separation between two
subbands induced by the electric current.

PACS numbers: 72.20.My, 73.43.Qt, 73.50.Jt, 73.63.Hs

I. INTRODUCTION

The magnetotransport phenomena in high-mobility,
modulation-doped semiconductor structures are com-
monly studied with only one populated subband (E1),
because the electron mobility decreases with filling the
second subband (E2) due to inter-subband scattering1.
The latter also gives rise to magneto-inter-subband os-
cillations (MISO) of the dissipative resistance2. In elec-
tron systems with two populated subbands MISO have
maxima in magnetic fields B satisfying the relation3–5:
∆12 = l · h̄ωc, where ∆12 = E2 − E1 is the energy sep-
aration of the bottoms of the subbands, ωc = eB/m∗ is
cyclotron frequency, m∗ is effective electron mass and l
is a positive integer. In contrast to Shubnikov de Haas
(SdH) oscillations the MIS-oscillations exist at high tem-
perature kT > h̄ωc. An interference of these oscillations
with phonon-induced oscillations has been reported6.

At small quantizing magnetic fields a finite electric
current induces several additional nonlinear phenom-
ena. At low temperatures small currents considerably
decrease the resistance. The dominant mechanism in-
ducing the resistance drop is a peculiar Joule heating
(quantal heating), which produces a non-uniform spec-
tral diffusion of electrons over the quantized spectrum.
The spectral diffusion is stabilized by inelastic processes
(”inelastic” mechanism)7. The heating hs been recently
observed and studied8–11. At higher currents electron
transitions between Landau levels occur due to an elas-
tic electron scattering on impurities in the presence of
an electric field12,13. The transitions increase the resis-
tance, which was observed in electron systems both with
a single occupied subband14–16 and with multi-subband
occupation17–20. In the latter case, an interference of
the magneto-inter-subband quantum oscillations (MISO)
with the current induced inter-level scattering was re-
ported.

Recent investigations of the nonlinear transport in

stronger magnetic fields reveal another kind of current-
induced resistance oscillations in electron systems with
a single band occupation21. These oscillations occur
in electric fields that are significantly smaller than the
one required for the current-induced Landau-Zener tran-
sitions between Landau levels12. The period of these
current-induced oscillations is found to be independent
of the magnetic field. The oscillations are considered to
be a result of spatial variations of the electron filling fac-
tor (electron density δn) with the applied electric field.

In this paper we report an observation of current-
induced resistance oscillations of the dissipative resis-
tance in electron systems with two populated subbands.
Two kinds of oscillations are detected. At small mag-
netic fields we observed resistance oscillations with a
period proportional to the magnetic field. We found
that these oscillations are related to the current-induced
Landau-Zener transitions between Landau levels12,17,19.
At higher magnetic fields another type of the resistance
oscillations emerges with a period that is independent
of the magnetic field. In the paper these oscillations
are studied at high temperatures at which only MIS-
oscillations are present.

Despite a similarity between the current-induced oscil-
lations with the B-independent period, which are found
in single subband systems21 and the oscillations reported
in this paper, there is at least one distinct feature to
distinguish the two. Namely the oscillations in the two-
subband systems occur at high temperatures kT ≫ h̄ωc

and, therefore, the total number of the electron states
carrying the electric current (inside the energy inter-
val kT) does not oscillate with the Fermi energy (in
other words with the total electron density n). In this
regime the SdH oscillations are damped and in sin-
gle subband systems the curren-induced oscillations are
absent21. Thus even if both kinds of observed oscillations
have a common origin, the oscillations reported in this
paper are not directly (simply) related to the spatial vari-
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ations of the electron density δn induced by the electric
current. Another interesting feature is the phase of these
oscillations. The oscillations appears to be quasi-periodic
with respect to the applied current but with an apparent
π-phase shift with respect to the zero bias. Below we
present our findings and provide an interpretation of the
obtained results.

II. EXPERIMENTAL SETUP

Our samples are high-mobility GaAs quantum wells
grown by molecular beam epitaxy on semi-insulating
(001) GaAs substrates. The width of the GaAs quan-
tum well is 13 nm. Two AlAs/GaAs type-II superlattices
grown on both sides of the well served as barriers, pro-
viding a high mobility of 2D electrons inside the well at a
high electron density22. Two samples were studied with
electron density n1,2 = 8.09 ×1015 m−2 and mobility µ1=
121 m2/Vs and µ2= 73 m2/Vs
The studied 2D electron systems are etched in the

shape of a Hall bar. The width and the length of the mea-
sured part of the samples are d =50µm and L =450µm.
To measure the resistance we use the four point probe
method. Direct electric current Idc (dc bias) is applied
simultaneously with 12 Hz ac excitation Iac through the
same current contacts (x-direction). The longitudinal ac
(dc) voltage V ac

xx (V dc
xx ) is measured between potential

contacts displaced 450µm along each side of the sam-
ple. The Hall voltage VH is measured between potential
contacts displaced 50µm across the electric current in y-
direction.
The current contacts are separated from the measured

area by a distance of 500µm, which is much greater
than the inelastic relaxation length of the 2D electrons
Lin = (Dτin)

1/2 ∼ 1 − 5µm. The longitudinal and Hall
voltages were measured simultaneously, using two lockin
amplifiers with 10 MΩ input impedances. The potential
contacts provided insignificant contribution to the over-
all response due to small values of the contact resistance
(about 1kΩ) and negligibly small electric current flowing
through the contacts.
Measurements were taken at different temperatures

and magnetic fields in a He-3 insert inside a supercon-
ducting solenoid. Samples and a calibrated thermometer
were mounted on a cold copper finger in vacuum. The
magnetic field was applied perpendicular to the 2D elec-
tron layers.

III. RESULTS

Figure 1 presents the dependence of the dissipative re-
sistance on the magnetic field at temperature T = 4.35 K.
At this temperature kT > h̄ωc and Shubnikov de Haas os-
cillations are suppressed at B <0.5 T. The maximums of
the observed magneto-intersubband oscillations (MISO)
are due to the enhancement of elastic electron scattering,
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FIG. 1: Dependence of the resistance Rxx on magnetic field
with no dc bias applied. Sample N1.
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FIG. 2: a) Dependence of differential resistance Rxx on mag-
netic field and averaged density of electric current J ; (b) De-
pendence of the resistance on the current density J at fixed
magnetic field as labeled. Index j = ±1,±2... numerates
Landau-Zener transitions inside lowest subband, which obey
Eq.(1). T=5.1 K. Sample N1.

which occurs when the Landau levels in two subbands
are lined up with each other (state P in Fig.1). At this
condition elastic electron transitions occur between the
subbands, increasing the total electron scattering rate
and, thus, the resistance. Minima of the oscillations oc-
cur when the Landau levels in one subband are between
the levels of another subband. In this condition the elas-
tic electron scattering between subbands is suppressed
(state M in Fig.1)5.

Figure 2(a) presents differential resistance Rxx at dif-
ferent averaged density of the electric current J =
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FIG. 3: Dependence of resistance Rxx on magnetic field and
current density J . Labels +A, +B and +C indicate different
maximums induced by dc bias. T=2.1 K. Sample N1.

Idc/(d = 50µ) and small magnetic fields. The differential
resistance oscillates with the dc bias. An example of the
oscillations is shown in figure 2(b) at fixed magnetic field
B=0.12 Tesla. The dependence is a horizontal cut of the
2D plot and is shown by the dashed line in Fig.2(a). The
position of a resistance maximum j is proportional to the
magnetic field and satisfies the following relation:

2eEjR
(1)
c = j · h̄ωc, (1)

where Ej is the electric field (mostly the Hall electric field

in the sample) corresponding to the maximum j , R
(1)
c is

the cyclotron radius of electrons in the first subband (the
lowest subband) and j = 0, 1, 2... is an integer. Eq.(1) de-
scribes Landau-Zener transitions between Landau levels
in the first subband12.
At a higher resolution the data shows oscillations of

the magnitude of the maximums j = ±1 with the mag-
netic field at B > 0.1 (T). The oscillations are periodic
in inverse magnetic field and are in-phase with the in-
tersubband oscillations at zero dc bias (j = 0). Similar
oscillations are observed for the minimum between j = 0
and j = ±1 maximums. These oscillations are shifted by
phase π with respect to the oscillations of the maximums
j = 0,±1. The observed oscillations appear as an inter-
play between the dc bias induced Landau-Zener transi-
tions between Landau levels inside the lowest subband
and the intersubband transitions, which are periodic in
inverse magnetic field 1/B. At higher dc biases (|j| > 1)
the amplitude modulation with the 1/B periodicity dis-
appears. In particular no amplitude modulation is found
for j = ±2, 3 maximums.
Figure 3 presents a typical nonlinear response at a high
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FIG. 4: (a) Dependence of resistance Rxx on magnetic field
and current density J . indicating strong correlation of fea-
tures ±A and ±C with MISO minimums and features ±B
with MISO maximums. (b) Dependence of Rxx on current
density J at magnetic field B=0.418 T corresponding to MISO
maximum and at magnetic field B=0.408 T corresponding to
MISO minimum. T= 4.7K. Sample N1.

magnetic field. The response is symmetric with respect to
applied dc bias and is shown for the positive bias. There
are several distinct features, which appear with the dc
bias. The features are labeled in the figure. Firstly, we
discuss the evolution of the resistance with the dc bias
at the minimum of a MIS oscillation (state M in fig.1).
When the dc bias is applied, the resistance falls down
and, then, develops a shoulder labeled by symbol +A.
The initial drop of the resistance is mostly due to the
quantal heating. Further increase of the dc current leads
to formation of a maximum labeled by symbol +C.
When the dc bias is applied to state P (see fig.1), cor-

responding to the maximum of a MIS oscillation, the
resistance drops much more abruptly and significantly
in comparison with the previous case. At low temper-
atures the resistance drop reaches zero and forms zero
resistance state (ZDRS)18,23–25. Further increase of the
dc bias leads to the formation of a maximum labeled by
symbol +B.
An evolution of the discussed features with the mag-

netic field is shown in figure 4(a). The figure demon-
strates that the positions of all features (±A, ±B, ±C)
are essentially independent of the magnetic field. Figure
4(b) presents horizontal cuts of the 2D plot through a
maximum (B=0.418 T) and a minimum (B=0.408 T) of
the inter-subband quantum oscillations.
Figure 5 presents an overall behavior of the quantum

oscillations in a broad range of magnetic fields and dc
biases. The data was obtained from sample N2. The fig-
ure shows the crossover of the intraband Landau-Zener
transitions, obeying Eq.(1), and the oscillations marked
as ±A, ±B, ±C, which have the MISO periodicity. The
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FIG. 5: Evolution of differential resistance with magnetic field
and current density in broad range of magnetic fields. White
straight lines indicate Landau-Zener transitions which obey
Eq.(1). Upper panel presents horizontal cut through MISO
maximum at B=0.548T (gray line) and cut through MISO
minimum at B=0.532 T (black line). Sign +(-) indicates re-
gions of current density J, inside which the current-induced
oscillations have 0(180) degree phase shift with respect to
MIS-oscillations at J=0A/m. Right panel presents two verti-
cal cuts of the 2D plot taken at current densities as labeled.
Magnetic filed dependence at J=3.03 A/m indicates strong
reduction of the resistance oscillations at B < Bc inside the
region corresponding to Landau-Zener transitions. T=5K.
Sample N2.

apparent crossover occurs near the Landau-Zener transi-
tion corresponding to j = ±1. Namely the oscillations
with 1/B MISO periodicity occurs at magnetic fieds Bc

corresponding to

h̄ωc ≥ 2eE1R
(1)
c . (2)

At smaller magnetic fields (B < Bc) the oscillations are
significantly reduced. Two vertical cuts of the 2D plot
taken at different currents are shown in the right panel of
Fig. 5. The curve taken at J=3.03 A/m shows the strong
reduction of the oscillations at B < Bc in a compari-
son with the MISO at J=0A. Thus the main intraband
Landau-Zener transition (j = ±1) forms a boundary be-
low which the current-induced oscillations with 1/B in-
tersubband periodicity are strongly damped.
The upper panel of Fig. 5 shows two horizontal cuts of

the 2D plot. The black solid line presents the dependence
of the resistance Rxx on dc bias taken at B=0.532(T)
corresponding to a mimumum of MISO. The grey line
presents the dependence taken at B = 0.548 (T) corre-
sponding to a MISO maximum. The two curves inter-
sect at 8 points. These intersections marks the regions
at which the oscillations with MISO periodicity changes
their phase by π. At the intersections the oscillations are

-4 -2 0 2 4
0.0

0.2

0.4

0.6

j=-1

+C+B+A-A-B

j=1

j=2

B
[T
]

J[A/m]

j=3

-C

FIG. 6: Positions of resistance maximums and different mag-
netic fields and current density. Two kind of oscillations are
observed: in magnetic fields at and below Bc, which satisfy
Eq.(2), the maximums correspond to Landau-Zener transi-
tions in lowest subband that obey Eq.(1). Solid straight lines
at j = ±1, 2, and 3 represent the equation. At B > Bc the re-
sistance maximums follow the vertical solid lines representing
features ±A, ±B and ±C shown on Fig.3,4,5. The crossover
between two kind of oscillations occurs at B = Bc presented
by line j = ±1. Sample N1.

nearly vanished. Sign ”+” indicates the region between
two intersections in which the oscillations are in-phase
with the MISO, whereas sign ”-” indicates the regions in
which the oscillations are shifted by phase π with respect
to the MISO.

Figure 6 presents an accurate position of the resis-
tance maximums with 1/B periodicity at different cur-
rents and magnetic fields for sample N1. The figure indi-
cates clearly that atB = Bc (j = ±1) the resistance max-
imums follow the main Landau-Zener transition j = ±1
whereas at B > Bc the maximums are nearly indepen-
dent of magnetic field (features ±A, ±B, ±C). The solid
lines j = ±1 mark the boundary between the two kinds
of oscillations. The lines obey eq.(1) at j = ±1 with the
cyclotron radius R1

c corresponding to the lowest subband.
The complete theory of the current-induced oscillations
of the resistance of 2D electron system with two popu-
lated subbands is not available for a general case. The
case of a bilayer electron system with two closely spaced
and almost equally populated electronic subbands has
been studied recently17,19. These results are in qualita-
tive agreement with the present data at small magnetic
fields B < Bc.

At high magnetic fields B > Bc figures 5 and 6 present
a new kind of current-induced quantum oscillations. A
striking feature of these oscillations is the independence
of the position of these oscillations on magnetic field. An
interesting property of these oscillations is the region in
which the oscillations occur. Figures 5, 6 show that these
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oscillations start at the line corresponding to Landau-
Zener transitions at j = ±1 in the lowest subband and
propagate to higher magnetic fields. Another interesting
property is an apparent quasi-periodicity of the oscilla-
tions with applied current. Namely the features ±A, ±B,
±C are displaced by about the same value of the electric
current density from each other: δJ ∼1.27 (A/m). The
phase of the oscillations is shifted by π with respect to
zero dc bias. It seems strange that the MIS-oscillations
(J=0 (A/m)) are not a part of this periodic set.
Figure 7 demonstrates the 1/B periodicity and the

phase of the current-induced oscillations at different dc
biases as labeled. The figure indicates that oscillations
at J=1.97 (A/m) ( B+ feature) are in phase with MISO,
whereas oscillations at J=0.575 A/m (A+ feature) are
shifted by π with respect to MISO. Figure 7 shows also
the strong reduction of the oscillations at J=0.971 A/m.
At this current the oscillations change phase by π. The
current corresponds to the intersection of two curves
shown in upper panel of Fig.5.
The 1/B periodicity of the oscillations and the mag-

netic field independence of the electric current Idc, in-
ducing the oscillations at B > Bc, indicates a similarity
of these quantum oscillations with the current-induced
quantum oscillations reported recently in Ref.21. Below
we consider a model, which is, in many respects, analo-
gous to one described in Ref.21. The model reproduces
the main properties of the observed quantum oscillations.

IV. MODEL AND DISCUSSION

Current-induced quantum oscillations with 1/B peri-
odicity were recently observed in 2D electron systems
with a single occupied subband21. The oscillations occur
in a strong magnetic field at which Shubnikov de Haas

oscillations (SdH) are well developed26. With respect to
the electric current, the oscillations are periodic with a
period that is independent of the magnetic field. The
proposed model considers the oscillations as the result
of a variation of the electron filling factor with the dc
bias. In contrast to SdH oscillations, the variation ap-
pears across the sample and is related to a spatial change
of the electron density δn. If the change δn is compara-
ble with the number of electron states in a Landau level
n0 = m/(πh̄2) · h̄ωc, then one should expect a variation
of the electron resistivity. The spatial variation of the re-
sistivity leads to oscillations of the sample resistance21.
MIS-oscillations are due to a periodic enhancement of

the inter-subband scattering, when Landau levels in two
subbands are lined up as shown in Fig.1. MISO have
maxima in magnetic fields B satisfying the relation3–5:
∆12 = l · h̄ωc, where ∆12 = E2−E1 is the energy separa-
tion of the bottoms of the subbands and l is an integer.
In contrast to SdH oscillations, the MIS-oscillations ex-
ist at high temperature kT > h̄ωc and are insensitive to
variations of the Fermi energy and/or electron density n
for non-interacting 2D carriers.
For interacting electron systems the situation is dif-

ferent. Recent direct experiment indicates that gap E0

between conducting and valence bands of 2D electron sys-
tems formed in GaAs quantum wells depends consider-
ably on the electron density n27. This observation opens
a way to consider the dependence of the energy separa-
tion between two subbands ∆12 on the electron density
as a mechanism leading to the current-induced quantum
oscillations in magnetic fields B > Bc. Indeed the ex-
periment Ref.27 demonstrated about one percent change
of the gap E0 at a Hall voltage VH=75 (mV) in mag-
netic field B=0.3 (T). The Hall voltage is comparable
with the one observed in our experiment: VH ≈ 50 mV
at B=0.35 (T) and J=4 (A/m). At B=0.35 (T) the phase
of the MISO 2π∆12/h̄ωc ≈ 2π · 30 requires about 3 per-
cent change of the inter-subband energy separation ∆12

to make an additional MIS-oscillation cycle. The com-
parison indicates the feasibility of the proposed mecha-
nism, taking into account that in our samples the GaAs
quantum well is sandwiched between conducting layers,
which enhance significantly the electron screening and,
therefore, the variations of the electron density δn with
the dc bias21.
In the model described below we assume that the

dc bias-induced variation of the electron density δn(r)
changes the energy separation ∆12(n) between two sub-
bands across samples. Since relative variations of the
electron density is small δn/n ≪ 1, we will consider only
the linear term of the dependence ∆12(n):

∆12(n) = ∆0 + γδn(r), (3)

where ∆0 is the energy separation at zero dc bias and the
parameter γ is a constant. The following consideration is
qualitatively similar to the model described in detail in
Ref.21. Below we describe the main parts of the model,
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omitting some details.

The conducting 2D electron system in the GaAs quan-
tum well is sandwiched between two layers of AlAs/GaAs
superlattices (SL) of the second kind22. The parame-
ters of the superlattices are adjusted to set the system
close to a metal-insulator transition. At this condition,
the barely-conducting SL layers efficiently screen electric
charges but do not contribute considerably to the overall
conductivity of the structure. Electric contacts connect
the GaAs and the SL layers. Thus the system is consid-
ered as a set of parallel conductors. At zero magnetic
field the distribution of the electric potential driving the
current is the same in all layers due to the same shape of
the conductors. That is to say at B=0 the potential dif-
ference between different layers is absent. In the poorly
conducting SL layers the electric current is several order
of magnitude smaller than the one in the highly conduct-
ing GaAs quantum well.

The layers have a different distribution of the electric
potential in a strong magnetic field, at which ωcτ

2D
tr ≫ 1

and ωcτ
SL
tr ≪ 1, where τ2Dtr and τSL

tr are transport times
in the GaAs and in the SL layers. At ωτ2Dtr ≫ 1 the
electric field in the GaAs layer is almost perpendicular
to the current due to the strong Hall effect. In contrast
the very small electric current in the SL layer induces a
negligible Hall voltage. The Hall voltages are shown in
Fig.8 (a) for small currents ( linear response). Figure 8(b)
presents distribution of electric charges in the structure.
Electric charges are accumulated near the edges of the 2D
highly conducting GaAs layer, inducing the Hall electric
field EH . The charges are partially screened by charges
accumulated in the conducting SL layers.

Due to the small Hall voltage V SL
H and the absence

of the electric current across the system the change of
the electric potential φSL(y) in the SL layer is negligibly
small. Below we consider the potential φSL as a con-
stant. Due to a finite screening length λs in the SL layer
the charge accumulation occurs at a distance d ∼ λs. Be-
low we approximate the charge distribution by a charged
capacitor with an effective distance deff between con-
ducting plates.
The proposed model considers a long 2D Hall bar with

a width Ly
28,29. Electric current is in x-direction and the

Hall electric field is in y-direction. In a long conductor

the electric field ~E = (Ex, Ey) is independent of x, due
to the uniformity of the system in the x direction:

∂Ex

∂x
=

∂Ey

∂x
= 0 (4)

For a steady current Maxwell equations yield:

∂Ex

∂y
=

∂Ey

∂x
(5)

Eq.(4) and eq.(5) indicate, that the x component of the
electric field is the same at any location: Ex = E =const.
Boundary conditions and the continuity equation re-

quire that the density of the electric current in y direction
is zero: Jy = 0 and therefore,

Ex = ρxxJx Ey = ρyxJx (6)

where ρxx and ρyx are longitudinal and Hall components
of the resistivity tensor30. We approximate the MIS-
oscillations of the resistivity by a simple expression5:

ρxx(n(y)) = ρD[1 +Amis · cos(
2π∆12

h̄ωc
)] (7)

where ρD is Drude resistivity, and Amis describes the
amplitude of the intersubband quantum oscillations. The
amplitude is different from the amplitude of Shubnikov
de Haas oscillations, since the two phenomena have a
different origin5.
An electrostatic evaluation of the voltage between con-

ducting layers, shown in Fig.8(b), yields:

φ2D(y) = φSL +
eδn(y)deff

2ǫǫ0
(8)

where φ2D and φSL are electric potentials of the GaAs
(2DEG) and superlattice (SL) layers, and ǫ is permittiv-
ity of the SL layer. Expressing the electron density δn
in terms of electric potential φ2D from Eq.(8) and sub-
stituting the relation into eq.(3) and then into eq.(7) one
can find dependence of the resistitivity on the electric
potential: ρxx(φ

2D).
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The relation Ey = −dφ2D/dy together with eq.(6)
yields:

−
dφ2D

dy
ρxx(φ

2D) = ρyxE (9)

Separation of the variables φ2D and y and subsequent
integration of eq.9 between two sides of the 2D conduc-
tor (y-direction) with corresponding electric potentials
φ1 and φ2 yield the following result:

ρD(φ2 − φ1 +
2Amis

β [sin[β2 (φ2 − φ1)]

×cos[β2 (φ2 + φ1) + θ0]]) = ρxyELy

β = 4πǫ0ǫγ/(edeff h̄ωc),
θ0 = 2π∆0/h̄ωc − βφSL,

(10)

where Ly is the width of the sample. Taking into ac-
count that longitudinal voltage is Vxx = ELx, where Lx

is a distance between the potential contacts, and the Hall
voltage VH = φ2 − φ1 = −

∫
Eydy = −ρyxI (see eq.6),

the following relation is obtained:

Vxx = RD(I −
2Amis

βρxy
[sin(

βρxyI

2
) · cos[

β

2
(φ2 +φ1)+ θ0]])

(11)
, where RD = LxρD/Ly is the Drude resistance.
Eq.11 is simplified further for two cases corresponding

to a minimum and a maximum of MIS-oscillations. In
these cases the voltage φ2D(δy)−φSL is expected to be an
asymmetric function of the relative position δy = y − y0
with respect to the center of the sample y0 (as shown in
fig. 8) and, thus, φ1 − φSL = −(φ2 − φSL) and the argu-
ment of the cosine in eq.11 becomes to be independent
on the electric current. In these cases the differential
resistance rxx = dVxx/dI is found to be

rxx = RD[1 +Amis · cos(2π
I

Imis
) · cos(

2π∆0

h̄ωc
)], (12)

where the electric current Imis = e3h̄deffn/ǫǫ0mγ deter-
mines the period of the dc bias induced oscillations. The
current is proportional to the effective screening length
deff and inversely proportional to the parameter γ re-
lating variations of the sub-band energy separation ∆12

with variations of the electron density n in Eq.3.
Eq.12 demonstrates oscillations of the differential re-

sistance with the electric current. The period of the os-
cillations Imis does not depend on the magnetic field in
accordance with the experiment. A similar periodicity
of the resistance is found in electron systems with a sin-
gle populated sub-band21. In this case the period of the
oscillations I0 = (e3deffn)/(πh̄ǫǫ0) is also independent
of the magnetic field and proportional to the screening
length deff (see Eq.9 in Ref.21). In both cases the ob-
served dependence on the screening length deff follows
from the fact that an electron system with an effective
screening (small deff ) requires strong variations of the

electron density δn in the conducting layer to produce
the same electric field (current). Thus a smaller elec-
tric current is required to depopulate a Landau level or
to change the inter-band energy separation ∆12 in the
systems with stronger screening.
The independence of the characteristic currents Imis

and I0 on the magnetic field is a direct consequence of
the origin of the observed phenomena. In the case of
electron systems with a single band populated the resis-
tance oscillations are induced by a variation of electron
density δNSdH , which is on the order of the total number
of electron states in a Landau level n0: δNSdH ≈ n0 =
eB/πh̄ ∼ B and, thus, is proportional to the magnetic
field. The variation of electron density δNSdH produces
Hall voltage VH , which, due to the principle of the lin-
ear superposition of electric fields, is proportional to the
density variation: VH = F [δNSdH ], where F [x] is a lin-
ear functional (A ·F (x) = F [Ax]). Characteristic electric
current I0 obeys I0 = VH/ρxy = (1/ρxy · F [δNSdH ] =
F [δNSdH/ρxy]. Due to the independence of the argu-
ment (δNSdH ∼ B)/(ρxy ∼ B) on the magnetic field
B the current I0 does not depend on the magnetic field
either.
In electron systems with two populated subbands

the resistance oscillations are induced by variations of
the inter-subband separation ∆12 on the order of h̄ωc:
γδNmis = h̄ωc ∼ B. We note that in this case the char-
acteristic scale of the electron density variations is also
proportional to the magnetic field. Arguments, which are
similar to one used above, yield Imis = F [h̄ωc/(γ · ρxy)]
and, as in the previous case, the characteristic electric
current does not depend on the magnetic field.
The Eq.(12) indicates that the amplitude of the MIS-

oscillations is strongly modulated by the dc bias. In par-
ticular at I = Imis/4 the amplitude is zero. At this node
the 1/B periodic oscillations change phase by π. The
strong amplitude modulation with the dc bias and the π
phase shift at a node agree with the experiment.
Following from Eq.(12) the positions of the nodes and

anti-nodes of the oscillations with respect to the elec-
tric current I do not agree with the experiment. In ac-
cordance with Eq.(12) the nodes occurs at the averaged
density of the electric current (J = I/Ly)

Jk = Imis

4Ly
· k,

k = 2i− 1; i = 1, 2, 3...,
(13)

where k is a node index. Upper panel of Fig.5 shows
nodes at 0.22, 0.93, 2.41 and 3.91 A/m. Thus the relative
positions of the nodes observed in the experiment do not
follow the node positions (or index k) in Eq.(13). Below
we show that the disagreement is reduced significantly
taking into account the Joule heating.
The model discussed above does not take into account

the dc heating of the 2D electrons. The Joule heating in
systems with a discrete spectrum (quantal heating) has
a peculiar form providing strong impact on the electron
transport9. In electron systems with two subbands occu-
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pied the quantal heating inverts the MIS-oscillations10,11.
A quantitative account of the heating will be done in this
paper in a simplified form, taking into account an analyt-
ical approximation of the heating which is valid for two
subbands with equal electron population. As shown be-
low, the approach yields the positions of the nodes which
agree with the experiment.
The expression for the resistivity of 2D electron sys-

tems with two equally populated subbands in crossed
electric and quantizing magnetic field reads11

ρxx = ρD[1 + exp(− 2π
ωcτq

)1−3Q
1+Q (1 + cos(2π∆12

h̄ωc
)]

Q = 2π3J2

e2nω2
c
· τin
τtr

,
(14)

where τq is quantum scattering time, τin and τtr are in-
elastic and transport scattering times. To account for
the heating we replace Eq.(7) by Eq.(14) and evaluate
differential Eq.(9) numerically with fitting parameters
approximating the experimental data. Due to a quite
rough approximation of the heating, the fitting param-
eters may deviate significantly from actual physical val-
ues. To find the fitting parameter corresponding to the
inelastic scattering time we use the fact that the second
term of Eq.(14) is zero at Q=1/311. Assuming that at a
small dc bias and low temperatures the quantal heating
dominates9,11, we related the first node shown in Fig.5
at J=0.22 A/m to the condition Q=1/3. This yields
τin = 1.8 ns at B=0.53T. Using this value we solved
Eq.(9) numerically. The result is shown in Fig.9 (a). At
small dc bias J ≈0.17 A/m the figure demonstrates the
oscillation node, induced by the heating with a small con-
tribution from the variation of the band separation ∆12.
Other nodes occur at considerably higher dc biases and
are shifted with respect to the nodes shown in Fig.9(b)),
which obtained by the numerical evaluation, ignoring the
quantal heating (Q=0).
At Q > 1/3 the heating not only shift the nodes but

also inverts the oscillations induced by the variation of
the band separation. Namely, shown in Fig.9(a) the max-
imum at J=1.75 A/m is a result of the dc bias induced
evolution of the MISO maximum at J=0A/m. Without
the heating the MISO maximum evolves into a minimum
at J=1.65 A/m shown in Fig.9(b). Thus the heating
inverts minimums to maximums and visa versa. The in-
version is directly related to the sign change of the second
term in Eq.(14) at Q=1/3.
The heating and the variation of the band separation

affect differently the maximums and minimums of MIS-
oscillations. Conversely, quantal heating decreases the
resistance at any magnetic field. A variation of the re-
sistance, induced by the change of the band separation,
depends on the magnetic field. At a maximum (state P in
Fig.(1)), a variation of ∆12 destroys the level alignment
decreasing the inter-band scattering and, thus, the resis-
tance. At a minimum (state M in Fig.(1), a variation of
∆12 improves the level alignment and increases the inter-
band scattering and the resistance. Thus at a MISO max-
imum both the heating and the variations of the band

0 1 2 3 4
0.8

1.2

0 2 4
0.0

0.4

0.8

1.2

(b)

R
/R

0

J[A/m]

R
/R

0

J[A/m]

(a)

FIG. 9: (a) Numerical simulation of the dependence of dif-
ferential resistance on dc bias at B=0.53 T. Fitting param-
eters used in the numerical simulation: τin=1.8 ns, τq=2.5
ps and τtr=45 ps; electron density n=8.09·1015 1/m2; effec-
tive screening length deff=30 nm; parameter γ=1·10−37 Jm2

(see Eq.(3)). (b) Numerical simulation of the dependence of
differential resistance on dc bias with the same fitting pa-
rameters as in (a) but without dc heating: τin=0 ns (Q=0).
Filled (open) circles present evolution of a MISO maximum
(minimum) with the dc bias

separation decreases the resistance whereas at a MISO
minimum two mechanisms work against each other. As
a result the drop of the resistance at a MISO maximum
is considerably stronger than the one at a MISO mini-
mum. In fact, the shoulder (feature +A in Fig.3) is a
result of the competition between two mechanisms at a
MISO minimum whereas ZDRS states, developed from
MISO maximums, is a strong indication of the joint de-
crease of the resistance due to both mechanisms. The
behavior is reproduced in the proposed model. Indeed,
Fig.9(a) shows that the initial drop of the MISO max-
imum is considerably stronger than the decrease of the
MISO minimum with the dc bias.

Figure 10 presents a comparison of the positions of
oscillation nodes, obtained in the model, with the ex-
periment. For the purpose of a comparison, the node
positions are plotted versus the index k, which is defined
in Eq.(13). Without the heating, nodes of oscillations
obey Eq.13. Filled triangles demonstrate this behavior.
When the heating is on ( filled squares), the first node (
k=1) is due mostly to the heating. The following nodes (
k=3,5, and 7) are due mostly to the variation of the band
separation. As shown in the figure the positions of the
nodes correlate well with the experimental values (open
circles) taken from the upper panel of Fig.5.

The quantal heating produces an additional node of the
dc bias induced oscillations. It changes the systematic
placement of the node positions described by Eq.(13). In



9

0 1 2 3 4 5 6 7
0

1

2

3

4

 experiment
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 simulation, heating is on

J[
A
/m

]

index of node position

FIG. 10: Position of nodes of dc bias induced oscillations
shown in Fig.9 and Fig.5 at different node index k. Filled tri-
angles present nodes, which are obtained numerically without
heating and obey Eq.(13) (solid line). Account of the heat-
ing (filled squares) improves significantly agreement with the
experiment (open circles). Dashed line is a shift of the solid
line to the right by two units (see text for detail).

the case of a strong quantal heating (as in Fig.9) the addi-
tional node occurs at the very beginning of the resistance
evolution. Expected from Eq.(13) node counting can be
largely restored by a reduction of the node index by two,
which is the difference between consecutive indexes k in
Eq.(13). The corresponding transformation is shown in
Fig.10: the dashed line is the shift by two units to the
right of the solid line representing index k in Eq.(13).

V. CONCLUSION

Quantum oscillations of nonlinear resistance, which oc-
cur in response to electric current and magnetic field
applied perpendicular to GaAs quantum wells with two
populated subbands, are investigated. At small magnetic
fields, the current-induced oscillations are found to be re-
lated to Landau-Zener transitions between Landau levels
inside the lowest subband. The period of these oscil-
lations is proportional to the magnetic field. At high
magnetic fields, a different kind of quantum oscillations
are observed. With respect to the dc bias, these resis-
tance oscillations are quasi-periodic with a period that
is independent of the magnetic field. At a fixed electric
current, the oscillations are periodic in inverse magnetic
field. The period is independent of the dc bias. The
proposed model considers these oscillations as a result
of a joint effect between the Joule heating in the sys-
tems with discrete spectrum and the spatial variations
of the energy separation between two subbands, which is
induced by the electric current. The obtained results in-
dicate the feasibility of considerable modification of the
electron spectrum by applied electric current in two di-
mensional electron systems.
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