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We map out the possible ordered states in bilayer graphene at the neutrality point by extending the
previous renormalization group treatment of many-body instabilities to finite temperature, trigonal
warping and externally applied perpendicular electric field. We were able to analytically determine
all outcomes of the RG flow equations for the 9 four-fermion coupling constants. While the full
phase diagram exhibits a rich structure, we confirm that when forward scattering dominates, the
only ordering tendency with divergent susceptibility at finite temperature is the nematic. At finite
temperature this result is stable with respect to small back and layer imbalance scattering; further
increasing their strength leads to the layer antiferromagnet. We also determine conditions for other
ordered states to appear and compare our results to the special cases of attractive and repulsive
Hubbard models where exact results are available.

I. INTRODUCTION

Understanding itinerant electronic systems with com-
peting ordering tendencies is among the most profound
challenges in today’s condensed matter theory. In one-
dimensional systems, powerful theoretical tools are avail-
able for answering some of the questions1, but extending
the techniques to higher dimensions has met with limited
success. Often the problem is how to treat the various
ordering tendencies on equal footing without an inherent
bias towards any one of the possible ordered states.
In this regard, bilayer graphene at, and near, the neu-

trality point can be regarded as a model system. To a
first approximation, there is a conduction band and a
valence band that touch quadratically near two points,
K and K′ = −K, in the Brillouin zone2,3. Even when
all electron-electron interactions are ignored, such a sys-
tem would have low-temperature susceptibilities which
diverge as ∼ lnT towards a number of different ordered
states. While there are no known exact solutions, such
a situation is expected to lead to instabilities with re-
spect to infinitesimal electron-electron interactions. The
challenge is then to identify the conditions under which
any one combination of the various possible states gets
preferably selected as the temperature is lowered.
Since a many-body ordering appears already at weak

coupling this problem is amenable to the renormaliza-
ton group (RG) approach, whose advantage is that it
can account for the competing tendencies in an unbi-
ased way. Moreover, since the few-meV energy scales
associated with ordering extracted from present-day
experiments4–10 are much smaller than the natural upper
cutoff in the problem originating from the split-off bands
derived from the dimerized sites (∼ 200− 300 meV), the
physical system itself is expected to be well described
by a weak coupling theory. Therefore, we expect that
the competition among the number of inherently strong-
coupling phases can be accessed within such a weak cou-
pling approximation.
The previous RG treatments of this problem presented

in Refs. 11,12 consisted of first building a low-energy ef-

fective field theory, which, when electron-electron inter-
actions are neglected, can be thought of as a Gaussian
fixed point of the RG scale transformation13 with dy-
namical critical exponent z = 2. Except under some
non-generic fine-tuned initial conditions, contact interac-
tions have been shown to be marginally relevant at this
fixed point. Such four-fermion terms in the low-energy
effective field theory arise from microscopic electron-
electron interactions Vee(r) whose Fourier transform is
non-divergent in the small wavevector limit. They could,
for instance, correspond to 1/r Coulomb interactions
screened by proximity to metallic gates. Within this ap-
proach, the electronic modes with momenta in a thin shell
(1−∆ℓ)Λ < |k| < Λ near the cutoff Λ, and arbitrary fre-
quency ω, are integrated out, while the change in the ef-
fective action is monitored as the process is iterated13,14.
To determine the leading instability, infinitesimal sym-
metry breaking source terms were introduced11,12,15 and
included in the process of renormalization. The source
term with the strongest divergence was then identified
as the most dominant ordering tendency. In the case of
purely forward scattering, or, in the notation of this pa-
per, for gA1g only, the leading instability was found to be
toward the electronic nematic state. This state is gapless,
with either two or four Dirac points near each K-point
depending on the strength of the order parameter. In
the case of the Hubbard model, there is additional back
scattering, gEK

= 1
2gA1g , and layer imbalance scatter-

ing gA2u = gA1g , and the leading instability is found to
be toward the layer antiferromagnetic state. The single-
particle (electronic) spectrum of this phase is gapped.

In a similar approach16,17, the 1/r Coulomb inter-
actions among the electrons in bilayer graphene were
first screened using RPA, and then the full q- and ω-
dependent effective interaction was used as the initial
condition for the subsequent Wilson-like RG treatment.
While said approach can be criticized on the grounds that
the screening of the long-range tail of the Coulomb in-
teraction originates from integrating out electrons all the
way down to the Fermi energy, which are double-counted
when reintroduced for the RG treatment, the results ob-
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tained using this approach are in qualitative agreement
with the results obtained previously11,12.

To this end, we present an extension of the previous RG
treatment of the problem to finite temperature18–20 and
finite externally applied perpendicular electric field. This
allows us to include the competition between broken-
symmetry phases with gaps in the electronic spectrum,
which may be energetically favorable, and gapless states,
which may be entropically favorable. We also study the
gradual suppression of an ordered state as the externally
applied electric field is increased. Since temperature is
treated explicitly, we can obtain the transition tempera-
ture directly, without making any of the ad hoc assump-
tions inherent in translating the value of the RG scale ℓ
at which the couplings diverge into temperature.

As has been noted early on in the context of one-
dimensional electron systems21,22, it is very useful to
compare the results of an approximate RG approach to
known exact results23–25. Despite the scarcity of exact
results in higher dimensions, we can compare our re-
sults to some of the non-trivial properties of the Hub-
bard model at half-filling, which can be either estab-
lished exactly26–29 or can be obtained from Monte Carlo
simulations30–32. In this regard, it was shown in Ref.
12 that starting with a repulsive Hubbard model on a
honeycomb bilayer lattice at half-filling for U ≪ t⊥ . t
leads to the layer antiferromagnet as the most dominant
instability. In this work we confirm the previous find-
ing using the finite temperature RG scheme. We further
establish that, if we fix the value of the 9 four-fermion
coupling constants to correspond to the values derivable
from the Hubbard model, then the low-energy effective
field theory possesses the SO(4) symmetry of the micro-
scopic Hubbard model28. As a consequence, for an at-
tractive Hubbard model the result of our (approximate)
RG analysis recovers the exact result that the s-wave su-
perconducting order parameter can be continuously ro-
tated to the “CDW” order parameter26,27. Since, for bi-
layer graphene, the charge-ordered state does not break
the discrete translational symmetry of the lattice, it is
not strictly a density wave, but rather corresponds to
the layer-polarized state (LP). This can be seen in our
RG equations; the LP and s++ superconducting source
terms are identical provided that we start with the val-
ues of the four-fermion coupling constants corresponding
to the Hubbard model with U ≪ t⊥ . t. Moreover,
since, in the weak coupling limit, we can map the micro-
scopic lattice interactions to the four-fermion coupling
constants in the continuum effective field theory, we can
ask what happens when we add a b1-b2 interaction V in
addition to the on-site attraction U (see Fig. 1). When
V is repulsive (attractive) we find that the exact degen-
eracy between the LP and s++ SC states is lifted in favor
of the LP (s++ SC) as expected29,33.

Among the differences between our present approach
and the related weak coupling approach employed in
Refs. 16,17 is the fact that we perform our analysis at
finite temperature, which leads to different RG equations

for the couplings than at zero temperature. In addition
to the advantages mentioned above, this allows us to sys-
tematically determine all possible outcomes of the RG
equations in the 9-dimensional space of initial couplings.
We also avoid screening the Coulomb interaction with the
bilayer graphene low-energy degrees of freedom which en-
ter our Wilson RG analysis. Rather, we assume that it
is screened due to either finite temperature or the pres-
ence of external metallic gates. Finally, we do not rely on
mean-field theory to determine the phases either directly
from the bare couplings (i.e., without RG)34–39, or on a
renormalized mean field treatment17. The shortcomings
of other approaches34,36 have been discussed in Ref. 17.

Within this formulation, as shown later in the text, the
flow equations for the nine12,16 coupling constants con-
tain additional thermal factors, with an effective temper-
ature T that grows under RG as e2ℓ. The flow equations
(19) for the coupling constants describe two competing
tendencies – the term proportional to a product of two
four-fermion coupling constants tends to enhance their
growth, while the thermal factors suppress the flow of
the coupling. For any fixed initial couplings and at a
high enough temperature, the couplings saturate to fi-
nite values as ℓ → ∞. As the temperature is lowered,
the coupling constants saturate at higher, but still finite,
values. At the transition temperature, Tc, the coupling
constants diverge as ℓ → ∞. Below Tc, the coupling
constants diverge at a finite value of ℓ. The effects of
trigonal warping, parametrized by a velocity v3, can be
readily included within this formalism as well16,17. Like
temperature, trigonal warping tends to suppress the flow
of the couplings. As a result, even at T = 0, a critical
coupling strength must be exceeded for a phase transi-
tion to occur11,16. The strength of the critical coupling
vanishes as v3 vanishes.

The RG flow equations of the (infinitesimal) source
terms for a multitude of symmetry-breaking order pa-
rameters reveal that, at the transition temperature, the
source terms ∆ acquire an anomalous dimension, η∆.
Analysis of the free energy correction to O

(

∆2
)

fur-
ther reveals that, within this approximation, the phys-
ical susceptibility for a particular ∆ diverges as T → Tc
if η∆ > 1. Using this condition, we determine the phase
diagram for different initial couplings (see Fig. 5).

We find that, for purely forward electron-electron scat-
tering, gA1g , the only order parameter with a divergent
susceptibility at finite T is the nematic. Moreover, this
is stable with respect to the presence of small, but fi-
nite, back scattering gEK

and layer imbalance scattering
(i.e. the difference between intra- and interlayer scatter-
ing) gA2u . Performing the analysis at finite temperature
is crucial for revealing this stability. Upon increasing
the back and layer imbalance scattering, the only other
divergent susceptibility is towards a layer antiferromag-
netic (AF) state. Reversing the sign of the back scat-
tering while fixing the layer imbalance scattering results
in a quantum spin Hall state (QSH). Reversing the sign
of the layer imbalance scattering while fixing the sign of
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the back scattering gives us a layer-polarized state (LP).
Reversing the sign of both may lead to an s-wave super-
conductor. For small gA2u/gEK

and gEK
≈ gA1g > 0, we

may find a Kekulé current state (KC). These results are
summarized in Fig. 5 which shows the phase diagram in
the space of initial gA1g , gEK

, and gA2u .
Remarkably, the flow equations for the 9 coupling con-

stants can be analyzed in their entirety at Tc. We find
that, if a coupling constant diverges, it grows as e2ℓ. At
the same time, the ratios of the coupling constants may
either approach values determined by a two-parameter
family of functions, which we call the target plane, or
four isolated fixed ratios which do not belong to the
fixed plane. For each of these cases we determine the
symmetry-breaking channels with divergent susceptibili-
ties at Tc. The results are summarized in Figure 9.
The rest of the paper is organized as follows. In Section

II, we present our model for the system. Section III is
dedicated to the thorough analysis of the RG equations
and our main results. Section IV deals with the effects
of an applied perpendicular electric field on the phase
boundaries. Our conclusions are presented in Section V.
We give details of our derivations in the appendices.

II. HAMILTONIAN

We will be employing a low-energy effective theory
for the bilayer graphene lattice. This lattice and the
associated Brillouin zone are shown in Figure 1. Our
model includes the nearest-neighbor intralayer hopping
γ0 ≡ t, the hopping between dimerized sites γ1 ≡ t⊥, and
the nearest-neighbor interlayer hopping between non-
dimerized sites γ3. It is this last hopping that is respon-
sible for trigonal warping. Experimentally40, γ0 ≈ 3 eV,
γ1 ≈ 0.4 eV, and γ3 ≈ 0.3 eV. Throughout this paper,
we will use units in which kB = ~ = 1.

A. Non-interacting Hamiltonian

The tight-binding model for the lattice described above
is3

Htb = − γ0
∑

R,δ,σ

(a†1σ(R)b1σ(R + δ) + a†2σ(R)b2σ(R− δ)

+ h.c.)

− γ1
∑

R,σ

(a†1σ(R)a2σ(R) + h.c.)

− γ3
∑

R,δ′,σ

(b†1σ(R+ δ)b2σ(R+ δ + δ′) + h.c.), (1)

where (a, b)mσ(r) annihilates an electron on the (a, b)
sublattice on layer m and site r with spin σ. The vectors
R are the positions of the dimerized sites within a unit
cell, and δ represents one of three vectors connecting an
a1 site with a nearest-neighbor b1 site. The possible val-

ues of δ are −
√
3
2 ax̂+

1
2aŷ,

√
3
2 ax̂+

1
2aŷ, and −aŷ, where

a2

b2

a1

b1

Γ0

Γ1

Γ3

HaL

G KK'

HbL

FIG. 1: (a) The honeycomb bilayer lattice formed by bilayer
graphene. We represent the bottom layer, 1, with black circles
and the top layer, 2, with red squares. The ai sites are the
dimerized sites, and the bi sites are the non-dimerized sites.
We include the nearest-neighbor intralayer hopping γ0, the
hopping between dimerized sites γ1, and the nearest-neighbor
interlayer hopping between non-dimerized sites γ3. (b) The
Brillouin zone associated with the honeycomb bilayer with
the parabolic degeneracy points K = 4π

3
√

3a
x̂ and K′ = −K

marked.

the lattice constant a ≈ 1.4 Å. Whenever there is a sum
on δ, we sum over these three values; if δ appears without
a summation over it, on the other hand, then we choose
one of these three values for it.
We may derive our low-energy effective theory for the

above system by either projecting out the high-energy
modes41 or equivalently by writing the above theory as a
coherent-state path integral, integrating out the dimer-
ized sites12,15, and expanding around the K and K′

points. The resulting theory is

H = H0 +Hint (2)

where

H0 =
∑

|k|<Λ

∑

σ=↑,↓
ψ†
kσHkψkσ. (3)

In the above Hamiltonian, the Fermi spinor, which de-
scribes the modes in the vicinity of the ±K points and
concentrated at b sites in layers 1 and 2, is

ψkσ =











ψ
(b1)
Kσ (k)

ψ
(b2)
Kσ (k)

ψ
(b1)
−Kσ(k)

ψ
(b2)
−Kσ(k)











. (4)

The first of the two matrices in (3) describes the parabolic
dispersion and the second is a linear term that results in
trigonal warping:

Hk = H
(2)
k +H

(tw)
k (5)

H
(2)
k =

1

2m∗
(

(k2x − k2y)Σx + 2kxkyΣy

)

(6)

H
(tw)
k = v3 (kxΛx + kyΛy) . (7)
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where

Σx = 1σ1, Σy = τ3σ2 (8)

Λx = τ3σ1, Λy = −1σ2. (9)

In terms of the tight-binding parameters in our lattice
Hamiltonian, the effective mass m∗ is

m∗ =
2γ1

9a2γ20
(10)

and the trigonal warping velocity v3 is

v3 = 3aγ3. (11)

Experimentally6,7, m∗ ≈ 0.029me, while the value that
we obtain from the above formula and the experimental
values of the hopping parameters given above is m∗ ≈
0.038me. The value of the trigonal warping velocity used
in fitting the experimental data6 is v3 ≈ 1.41× 105 m/s,
while that obtained from the above formula is v3 ≈ 1.91×
105 m/s (reference 16 assumes a value of v3 = 105 m/s).
The origin of these admittedly unimportant and small
discrepancies is unclear at this time.

B. Symmetry classification

The space group symmetry operations which leave the
Hamiltonian invariant at the Γ point form a point group
D3d. Similarly, at the ±K points, the symmetry opera-
tions form a point group D3. The character tables42 of
these two groups are shown below.

D3d E 2C3 3C′
2 i 2S6 3σd

A1g 1 1 1 1 1 1

A2g 1 1 -1 1 1 -1

Eg 2 -1 0 2 -1 0

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1

Eu 2 -1 0 -2 1 0

D3 E 2C3 3C′
2

A1 1 1 1

A2 1 1 -1

E 2 -1 0

The sixteen 4×4 matrices which operate in the layer and
±K valley space can be grouped based on their transfor-
mation properties under these group operations. We find

that

A1g+ : 14

A2g− : τ3σ3

Eg+ : (1σ1, τ3σ2)

A1u− : τ31

A2u+ : 1σ3

Eu− : (τ3σ1,−1σ2)

A1K+ : τ1σ1; τ2σ1

A2K− : τ1σ2; τ2σ2

EK+ : (τ11,−τ2σ3;−τ21,−τ1σ3).

The ± next to the name of the representation denotes
whether the particular operator is even or odd under time
reversal symmetry. An equivalent classification can be
found in Reference 17, though the notation is different.

C. Interaction Hamiltonian

As shown previously, assuming the microscopic lattice
interactions are falling off faster than 1/r2, there are
9 marginal interaction couplings at the Gaussian fixed
point when T = 0 and v3 = 0. The interaction term in
the Hamiltonian is therefore

Hint =
1

L2

∑

S

gS
2

∑

k,k′,q

∑

σ,σ′

ψ†
kσSψk+q,σψ

†
k′σ′Sψk′−q,σ′

(12)

The sum over S includes the 16 matrices belonging
to the 9 representations. Since the couplings for the
squares of the operators belonging to the same repre-
sentation must be the same, we have 9 independent
couplings. So for example, for the Eg representa-
tion, the corresponding interaction term is schematically
1
2gEg

(

(

ψ†
σ1σ1ψσ

)2
+
(

ψ†
στ3σ2ψσ

)2
)

.

We may think of gEK
as representing back scattering,

gA1g + gA2u as representing intralayer scattering, and
gA1g − gA2u as representing interlayer scattering, as is

demonstrated in our previous work15. If we introduce
a density-density interaction V (r) into the microscopic
tight-binding Hamiltonian, then the forms of these cou-
plings are given by Equations (119)-(121) in Ref. 15,
where they are denoted by gA1 , gC1, and gβ, respectively.
As we will see shortly, if we start with these three cou-

plings, then the other six will be generated under RG.
All nine couplings may also be thought of as interactions
between local fluctuations of different order parameters.

III. FINITE TEMPERATURE

RENORMALIZATION GROUP

We are interested in introducing the temperature T
and the trigonal warping velocity v3 explicitly into our
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renormalization group transformations. To proceed, we
rewrite the partition function as a coherent-state Grass-
man path integral

Z =

∫

D(ψ∗, ψ)e−S0−Sint , (13)

where

S0 =
1

β

∞
∑

n=−∞

∑

|k|<Λ

∑

σ=↑,↓
ψ†
kσ(ωn) (−iωn +Hk)ψkσ(ωn),

n is an integer, and the Matsubara frequency is ωn =
(2n+ 1)πT . The interaction term is

Sint =
1

2

∫ β

0

dτ

∫

d2r
∑

S

gS

(

∑

σ

ψ†
σ(r, τ)Sψσ(r, τ)

)2

(14)

and

ψσ(r, τ) =
1

β

∞
∑

n=−∞

1

L

∑

|k|<Λ

e−iωnτeik·rψkσ(ωn). (15)

Equivalently, we may write the interaction term as

Sint =
1

2

∫ β

0

dτ

∫

d2r

9
∑

j=1

gj

mj
∑

m=1

(

ψ†(r, τ)Γ(m)
j ψ(r, τ)

)2

.

(16)

Note the absence of explicit spin subscripts on the (eight-

component) ψ = (ψ↑, ψ↓)T fields. The Γ
(m)
j matrices are

defined in Eqs. (C7)-(C15), and mj is the multiplicity of
the jth representation.
Our renormalization group procedure consists of split-

ting the ψ fields into fast and slow modes and progres-
sively integrating out the fast modes with momenta re-
stricted to the small shell Λ(1 −∆ℓ) < |k| < Λ with no
restriction on the Matsubara frequencies ωn. After each
such mode elimination, we choose to rescale the momenta
in the effective action for the slow modes such that the
new cutoff is again Λ and that the H

(2)
k term is left in-

variant. If we also wish to keep the iωn term invariant,
and take ∆ℓ to be infinitesimal, we find that the temper-
ature and the trigonal warping velocity flow under RG
as

dT

dℓ
= 2T ⇒ T (ℓ) = e2ℓT, (17)

dv3
dℓ

= v3 ⇒ v3(ℓ) = eℓv3. (18)

In general, these flow equations will be corrected once
interactions are taken into account, but for the couplings
of choice here, the corrections appear only at two-loop
order.

To one-loop order, the RG flows of the coupling con-
stants have the form

dgi
dℓ

=

9
∑

j=1

9
∑

k=1

gjgk

4
∑

a=1

A
(a)
ijkΦa (ν3(ℓ), t(ℓ)) , (19)

where i, like j and k, extends over the aforementioned 9
irreducible representations of the groups of the wavevec-

tor Γ and ±K; A
(a)
ijk are listed in Appendix C. The di-

mensionless parameters which enter as the arguments of
the Φ functions are

ν3(ℓ) =
v3(ℓ)

Λ/2m∗ , (20)

t(ℓ) =
T (ℓ)

Λ2/2m∗ . (21)

The Φ functions are determined by the integrals in Eqs.
(A4)-(A12).
As shown in the appendix, these integrals can be eval-

uated explicitly when ν3 = 0 in terms of elementary func-
tions or when t = 0 in terms of complete elliptic integrals.
In the discussion that follows, we will make use of the

asymptotic behavior in the limit of ℓ→ ∞:

Φa (ν3(ℓ), t(ℓ)) =
e−2ℓ

2t
+ . . . for a = 1, 2, (22)

Φa (ν3(ℓ), t(ℓ)) =
e−6ℓ

12t3
+ . . . for a = 3, 4, (23)

where t = t(0) is the initial dimensionless temperature
and “. . .” represent terms that are smaller than the lead-
ing terms.

A. General analysis of the RG flows

In general, the flow equations (19) describe two com-
peting tendencies. The term proportional to gjgk tends
to cause an increase of the absolute value of the coupling
constants as ℓ increases, while the Φ functions tend to
zero as ℓ increases due to the increase of their arguments
ν3(ℓ) and t(ℓ). Numerical analysis of the flow equations
reveals that, for fixed values of the initial couplings and
for a sufficiently large value of the initial temperature t,
there is a certain value of ℓ where the flow becomes stag-
nant and the coupling constants g tend to finite values as
ℓ→ ∞. Therefore, if the initial couplings are small, they
remain small as long as the initial temperature is suffi-
ciently large even as all the modes are integrated out. In
this regime weak-coupling RG is entirely justified. Low-
ering the initial temperature, while keeping the initial
couplings fixed, causes an increase of the value of the RG
parameter ℓ where the coupling constants stop flowing
and an increase in the limiting value of the coupling con-
stants. At a critical initial temperature tc, the coupling
constants g diverge as ℓ→ ∞. For an initial temperature
t < tc, the coupling constants diverge at finite ℓ.
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The role of trigonal warping is to cause additional sup-
pression of the increase of the absolute value of the cou-
pling constants. Thus, for fixed initial values of the cou-
pling constants and for sufficiently large initial v3, the g’s
do not diverge even at t = 0.
Therefore, as stated previously11, for fixed initial v3, a

critical value of the initial coupling(s) must be exceeded
for a runaway flow of the coupling constant(s), which we
associate with a phase transition, to occur.
In order to understand the nature of the possible or-

dering tendencies, we first analyze the asymptotic behav-
ior of the equations (19) when t = tc > 0 and ℓ → ∞.
Provided that at least one coupling gr diverges, we have
managed to enumerate all possible solutions for the stable
“rays” along which ratios with the other couplings gj/gr
tend to constants. The detailed analysis of these solu-
tions is given in Section IIIG. Along such a stable ray,
all 9 differential equations “collapse” onto one, namely

dgr
dℓ

= A(r)g
2
r

e−2ℓ

2tc
+ . . . , as ℓ→ ∞. (24)

Here, and in the remainder of the paper, if an index is in
parentheses (e.g. (r)), then there is no automatic summa-
tion over r unless explicitly stated. The coefficient A(r)

depends on the stable ray along which the couplings di-
verge and “. . .” denotes terms which vanish faster than
e−2ℓ. Combining the asymptotic behavior of the Φ func-
tions as ℓ → ∞, given by Eqs. (22) and (23), and Eq.
(19), the coefficient may be expressed as

A(r) = 2

9
∑

j=1

9
∑

k=1

2
∑

a=1

A
(a)
rjkρ

(r)
j ρ

(r)
k , (25)

where the ρ
(r)
j = gj/gr is the ratio of two couplings along

the stable ray. The solution of differential equation (24)
is

gr(ℓ) =
4tc
A(r)

e2ℓ + . . . , as ℓ→ ∞, (26)

where “. . .” denotes terms which are smaller than e2ℓ as
ℓ→ ∞.

B. Susceptibilities and the nature of the symmetry

breaking

To find out what symmetry-breaking tendencies dom-
inate, we start by introducing source terms into our ac-
tion:

∆S =
32
∑

i=1

∆ph
i

1

β

∞
∑

n=−∞

∑

k

ψ†
k(ωn)O

(i)ψk(ωn) +

1
2

16
∑

i=1

∆pp
i

1

β

∞
∑

n=−∞

∑

k

ψ†
k(ωn)Õ

(i)ψ∗
−k(−ωn) + c.c.

(27)

We may think of these terms as “forces” that couple
to various observables, which acquire non-zero averages
whenever the system enters the appropriate phase. Note
that only 18 of the 32 particle-hole source terms intro-
duced are symmetry-inequivalent. Similarly, only 9 of the
16 particle-particle source terms are inequivalent. The
transformation properties of the former under the vari-
ous symmetry group operations are summarized in Table
I. Again, note the absence of explicit spin subscripts on
the (eight-component) ψ = (ψ↑, ψ↓)T fields. Terms such

as ψ†Õψ∗ should be understood as matrix multiplication,
i.e.,

∑8
α,β=1 ψ

∗
αÕαβψ

∗
β . We will see later that only two of

the particle-particle, or superconducting, orders can ap-
pear, namely the A1g and A2u orders. These correspond
to s++- and s+−-wave superconducting orders, respec-
tively. Both are s-wave, but the s++ order parameter
has the same sign on both layers, while the s+− order
has opposite signs on each layer. To one-loop order, we
find

d ln∆ph
i

dℓ
= 2 +

9
∑

j=1

4
∑

a=1

B
(a)
ij gj(ℓ)Φa (ν3(ℓ), t(ℓ)) ,(28)

d ln∆pp
i

dℓ
= 2 +

9
∑

j=1

4
∑

a=1

B̃
(a)
ij gj(ℓ)Φa (ν3(ℓ), t(ℓ)) ,(29)

where the (32 × 9) matrix B
(a)
ij and the (16 × 9) matrix

B̃
(a)
ij are defined by Eqs. (C29)-(C33) and (C35)-(C36).

Note that Eqs. (28) and (29) can be readily integrated,
and we find that

∆
ph/pp
i (ℓ) = ∆

ph/pp
i (0)e2ℓ exp[Ω

ph/pp
i (ℓ)], (30)

where

Ωph
i (ℓ) =

9
∑

j=1

4
∑

a=1

B
(a)
ij

∫ ℓ

0

dℓ′ gj(ℓ
′)Φa (ν3(ℓ

′), t(ℓ′)) ,

(31)

Ωpp
i (ℓ) =

9
∑

j=1

4
∑

a=1

B̃
(a)
ij

∫ ℓ

0

dℓ′ gj(ℓ
′)Φa (ν3(ℓ

′), t(ℓ′)) .

(32)

At t = tc > 0, as ℓ→ ∞ the e2ℓ increase of a divergent
coupling gr exactly balances the e−2ℓ decrease of the Φ
functions and the right hand sides of the above equations
tend to constants,

d ln∆ph
i

dℓ
= 2 +

2Bph
i(r)

A(r)
as ℓ→ ∞,

d ln∆pp
i

dℓ
= 2 +

2Bpp
i(r)

A(r)
as ℓ→ ∞. (33)

In other words, the engineering dimensions of the source
terms, which are equal to 2, are corrected by the anoma-
lous dimensions

η
ph/pp
i =

2Bph/pp
i(r)

A(r)
(34)
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Group rep. Matrices Trans. TRS Inv. Mirror refl. (σd)

A1g charge 14 ⊗ 1 + + e e Charge instability

A2g charge τ3σ3 ⊗ 1 + − e o Anomalous quantum Hall37,43

Eg charge (1σ1, τ3σ2)⊗ 1 + + e e/o Nematic11,16

A1u charge τ31⊗ 1 + − o o Loop current44

A2u charge 1σ3 ⊗ 1 + + o e Layer-polarized34,36

Eu charge (τ3σ1,−1σ2)⊗ 1 + − o o/e Loop current II (ME2)

A1K (A1g/A1u) charge τ1σ1 ⊗ 1; τ2σ1 ⊗ 1 − + e/o e/o Kekulé45

A2K (A2u/A2g) charge τ1σ2 ⊗ 1; τ2σ2 ⊗ 1 − − o/e e/o Kekulé current

EK (Eg/Eu) charge (τ11,−τ2σ3)⊗ 1; (−τ21,−τ1σ3)⊗ 1 − + e/o (e/o)/(o/e) Charge density wave

A1g spin 14 ⊗ ~σ + − e e Ferromagnetic

A2g spin τ3σ3 ⊗ ~σ + + e o Quantum spin Hall15,17,46

Eg spin (1σ1, τ3σ2)⊗ ~σ + − e e/o Spin nematic

A1u spin τ31⊗ ~σ + + o o Staggered spin current

A2u spin 1σ3 ⊗ ~σ + − o e Layer AF3,12,47

Eu spin (τ3σ1,−1σ2)⊗ ~σ + + o o/e Loop spin current II

A1K (A1g/A1u) spin τ1σ1 ⊗ ~σ; τ2σ1 ⊗ ~σ − − e/o e/o Spin Kekulé

A2K (A2u/A2g) spin τ1σ2 ⊗ ~σ; τ2σ2 ⊗ ~σ − + o/e e/o Spin Kekulé current

EK (Eg/Eu) spin (τ11,−τ2σ3)⊗ ~σ; (−τ21,−τ1σ3)⊗ ~σ − − e/o (e/o)/(o/e) Spin density wave

TABLE I: Table of all particle-hole phases considered, listed according to what representation of the D3d point group they
transform. The Kekulé and density waves have a wave vector of K.

due to the electron-electron interactions. Again, in the
above equation, there is no summation over r, which cor-
responds to the divergent coupling gr that we divided by.
The values of the B’s are

Bph
i(r) = 2

9
∑

k=1

(B
(1)
ik +B

(2)
ik )ρ

(r)
k , (35)

Bpp
i(r) = 2

9
∑

k=1

(B̃
(1)
ik + B̃

(2)
ik )ρ

(r)
k , (36)

where B(1/2) is given by the sum of Eqs. (C30) and (C32)

and B̃(1/2) is given by (C35). Note that the expressions

for A(r) and Bph/pp
(r) depend on the choice of gr, but the

η
ph/pp
i ’s do not.
In order to calculate the physical susceptibility towards

various ordering tendencies, we calculate the correction
to the free energy due to the presence of the symmetry
breaking source terms48. We find that

δf(∆) = (37)

−m∗

16π

32
∑

i=1

∫ ∞

0

dℓ e−4ℓ[∆ph
i (ℓ)]2

4
∑

a=1

αph
a,iΦa(ν3(ℓ), t(ℓ))

−m∗

16π

16
∑

i=1

∫ ∞

0

dℓ e−4ℓ|∆pp
i (ℓ)|2

4
∑

a=1

αpp
a,iΦa(ν3(ℓ), t(ℓ)),

The α coefficients are given in the Appendix by Eqs.
(D1)-(D4).
The susceptibilities are then simply given by second

derivatives of the free energy with respect to the bare

values of the appropriate source terms,

χph
i = − ∂2f

∂[∆ph
i (ℓ = 0)]2

, (38)

χpp
i = − ∂2f

∂[Re∆pp
i (ℓ = 0)]2

= − ∂2f

∂[Im∆pp
i (ℓ = 0)]2

.

(39)

Using Eqs. (30) and (37), we find that the susceptibilities
given above may be written as

χ
ph/pp
i =

m∗

8π

4
∑

a=1

α
ph/pp
a,i

∫ ∞

0

dℓ e2Ω
ph/pp
i (ℓ)Φa(ν3(ℓ), t(ℓ)).

(40)

Note that the source terms, ∆
ph/pp
i (ℓ = 0), being auxil-

iary fields, do not appear.
Any divergence in the susceptibilities has to come from

the regions of large ℓ in Eq. (37) where the asymptotic
expressions derived earlier hold. Therefore, since, for t =
tc > 0, the asymptotic behavior of the Φ functions is
e−2ℓ, the condition for the divergence of a susceptibility
in a particle-hole or particle-particle channel i is

η
ph/pp
i > 1. (41)

Next, we will relate the anomalous dimensions of

the source terms η
ph/pp
i to the susceptibility exponents

γ
ph/pp
i .
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C. Susceptibility exponents

For t > tc, sufficiently close to tc the asymptotic be-
havior of the coupling constants is still approximately
described by (24). If we integrate it from ℓ0 to ℓ, both
of which are asymptotically large (and temperature in-
dependent), but not infinite, then we find

1

gr(ℓ, t)
=

1

gr(ℓ0, t)
− A(r)

4t

(

e−2ℓ0 − e−2ℓ
)

. (42)

At tc we have 1/gr(ℓ0, tc) = A(r)e
−2ℓ0/4tc and we can

write the above equation as

1

gr(ℓ, t)
=

(

1

gr(ℓ0, t)
− 1

gr(ℓ0, tc)

)

(43)

−
(

1

t
− 1

tc

)(A(r)

4
e−2ℓ0

)

+
A(r)

4t
e−2ℓ.

Since ℓ0 is finite, gr(ℓ0, t) is analytic in t at tc and can be
expanded as

gr(ℓ0, t) ≈ gr(ℓ0, tc) + (t− tc)
∂

∂t
gr(ℓ0, t)

∣

∣

∣

∣

tc

+ . . . , (44)

where “. . .” represents terms of order (t−tc)2 and higher.
Therefore

gr(ℓ, t) ≈
1

cr(t− tc) +
A(r)

4t e
−2ℓ

, as ℓ→ ∞, t→ t+c (45)

where

cr =
∂

∂t

1

gr(ℓ0, t)

∣

∣

∣

∣

tc

+
A(r)

4t2c
e−2ℓ0 . (46)

Note that crA(r) > 0 since gr(ℓ0, t) increases in magni-

tude as t→ t+c .
The flow of the source terms at large ℓ at t > tc is de-

termined by substituting the above result into the Eqs.
(28) - (29) and taking the asymptotic limit of the Φ func-
tions at large ℓ:

d ln∆ph
i

dℓ
= 2 +

Bph
i(r)

2t

e−2ℓ

cr(t− tc) +
A(r)

4t e
−2ℓ

(47)

d ln∆pp
i

dℓ
= 2 +

Bpp
i(r)

2t

e−2ℓ

cr(t− tc) +
A(r)

4t e
−2ℓ

. (48)

Integrating from ℓ0 to ℓ and substituting to Eq.(37), we
find that the singular contribution to the susceptibility
for the symmetry breaking source term ∆i is

χ
ph/pp
i ≈ (t− tc)

−γ
ph/pp
i (49)

where

γ
ph/pp
i = η

ph/pp
i − 1. (50)

Clearly, the susceptibility for a particular order diverges
if the condition (41) is satisfied. Note that only if

η
ph/pp
i = 2 do the susceptibility exponents acquire their
mean-field values. This is in general not the case here,
as will be elaborated on in the next section.
It is also important to stress that these exponents

are obtained within the one-loop approximation of the

fermionic theory and are therefore not expected to be
accurate. They are also not expected to be equal to
the one-loop exponents obtained within an ǫ-expansion
of the corresponding bosonic theory, with the Landau
functional for the ordering field. The ultimate critical
behavior is determined by the universality class of such
a bosonic theory. As an example, the finite tempera-
ture phase transition into the nematic state belongs to
the two dimensional 3-state Potts model11 universality
class for which the exponent γ = 13/9 (Ref. 49). How-
ever, within our one-loop fermionic RG treatment, γ does
not exceed 2/3. Nevertheless, the exponents calculated
within the present approximation give us important in-
formation about the physical character of the dominant
ordering tendency, without any a priori bias towards any
given order.
Next, we will explicitly calculate the RG flows us-

ing numerical integration of the RG equations for the
couplings, the symmetry-breaking vertex terms and the
physical susceptibilities. We do so for any interaction
which can be written as

∑

q

∑

i,j Vij(q)ni(q)nj(−q),

where Vij(q) is finite for any q; i and j run over sub-
lattice and layer indices. To leading order in small V ,
q is either near 0 or near ±2K. Such a microscopic lat-
tice interaction will initially lead to only three of the
nine four-fermion coupling constants in the low-energy
effective field theory being finite15, i.e., gA1g

∣

∣

ℓ=0
6= 0,

gA2u

∣

∣

ℓ=0
6= 0, gEK

∣

∣

ℓ=0
6= 0.

D. Forward scattering limit: Nematic

For Vij(±2K) = 0 and equal inter- and intralayer in-
teractions, the only non-zero bare interaction is gA1g .
Without scattering between the K and K′ valleys at the
microscopic level, no new scattering between them can
be generated in the RG flow, Eq. (19). In other words,
gA1K , gA2K , and gEK

remain zero. The only couplings
that appear in this case are those in the g and u rep-
resentations. We studied the problem numerically and
present the main results in Figs. 2 and 3.
For any fixed initial v3, we find that there is a critical

value of gA1g below which the weak-coupling RG con-
verges and no phase transition occurs, even at T = 0, as
shown in Fig. 2a. In this phase, where no symmetry is
broken, there are four Dirac points in the vicinity of each
K point, three of which are anisotropic and one, centered
at K or K′, which is isotropic.
Above the critical value of gA1g , the only susceptibility

which diverges as t→ t+c > 0 is towards an electronic ne-
matic, i.e., towards a spin-singlet order parameter which
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a)

b)

FIG. 2: Phase boundaries for bilayer graphene with forward
scattering only. (a) At finite trigonal warping ν3 = 2m∗v3/Λ
and T = 0, the bare gA1g must exceed a critical value, given
by the red line, in order for the system to enter a broken
symmetry phase. Along the dashed line ν3 = 0.178 which
is the value used to fit the experimental data in Ref. 6. (b)
The transition temperature as a function of the initial value
of gA1g at ν3 = 0.178. At any finite tc the only susceptibility
that diverges corresponds to the nematic order parameter (Eg

charge), as shown in Fig. 4.

transforms according to the Eg representation (see Table
I). We therefore conclude that, immediately below this
temperature, the system enters this symmetry-breaking
phase. In Ref. 6 the experimental data is fitted using a
value of the trigonal warping velocity corresponding to
our dimensionless parameter ν3 = 0.178. Here, and in
the remainder of the paper, we use this value. The phase
boundary for that particular choice of ν3 is shown in Fig.
2b. In Fig. 4 we show the susceptibilities as a function
of temperature for various order parameters. This plot
corresponds to the vertical arrow in Fig. 2b where only
the nematic susceptibility diverges. We find that the sus-
ceptibility towards the nematic order parameter, despite
being smaller than the others at large T , outgrows all
competing susceptibilities as the temperature is lowered
towards Tc, and is the only susceptibility to diverge at

Tc.

No Broken

Symmetry

Nematic

0.0
0.1

0.2
0.3

0.4

Ν30.0

0.1

0.2
0.3

0.4

gA1 g

4 Π �m*

0.00

0.05

0.10

tc

FIG. 3: The phase diagram for different values of the for-
ward scattering coupling, gA1g , trigonal warping velocity,

ν3 = 2m∗v3/Λ, and temperature t = 2m∗T/Λ2. At any fi-
nite tc and at any value of ν3 the nematic susceptibility is the
only one that diverges. The lighter cyan line, also shown in
Fig. 2b, corresponds to ν3 = 0.178, which is the value used
throughout the paper.

While our analysis of the susceptibilities reveals that
at tc > 0 only the nematic susceptibility diverges for any
fixed ν3, this susceptibility does not diverge when ap-
proaching the critical gA1g from below exactly at t = 0.
Instead, we find that the susceptibilities for the layer an-
tiferromagnet (AF) and quantum spin Hall (QSH) order
parameters diverge with equal exponents. This suggests
that, at 0 < t < tc, the system orders into a nematic
state, while at t = 0 there may be a coexistence of this
state with AF and/or QSH50.
The complete phase diagram for different values of

gA1g , ν3, and tc is shown in Fig. 3. For the entire range
of ν3’s shown, we always find the nematic as the leading
instability at finite temperature.
In order to facilitate the comparison with the previous

work, which also deals with the forward scattering limit
at T = v3 = 0, we first note that the three couplings g1,
g2 and g3 in Ref. 11 correspond to gA1g , gA2g and gEg ,
respectively. Because v3 = 0, none of the other 9 four
fermion couplings are generated under RG. The “suscep-
tibilities” calculated therein correspond to the logarith-
mic prefactors on the right hand sides of Eqs. (15) and
(16) in Ref. 11, and are analogous to the more general
expressions in Eqs. (28)-(29) of this publication. The
physical susceptibilites, considered in this paper, can be
straightforwardly obtained from such expressions by sub-
stituting the flow of the source terms into the formula
(37). At T = 0, the divergences appear at finite ℓ = ℓ∗,
which can be set as the upper limit on the integrals
in (37). The coupling constant ratio11 gA1g/gEg → 0
as ℓ → ℓ∗. The ratio gA2g/gEg can approach either
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m1 ≈ −0.525 or m3 ≈ 13.98, i.e., the minimal or the
maximal root of the cubic equation (x− 14)x2 + 4 = 0.
The analysis of the physical susceptibilities for the con-

ditions stated in Ref. 11 reveals that, as ℓ→ ℓ∗, the only

physical susceptibility that diverges when gA2g/gEg →
m1 is towards the nematic; the others remain finite at
ℓ∗. Similarly, the only susceptibility that diverges when
gA2g/gEg → m3 is towards the quantum anomalous Hall
state (QAH). Very recently, Fan Zhang et al. posted a
preprint51 in which they recovered the T = v3 = 0 flow
equations for the 3 couplings in Ref. 11. Under equivalent
conditions to those in Ref. 11, they claim to have calcu-
lated susceptibilities and that the “strongest divergence
occurs for the flavor spin channel broken inversion sym-
metry”. These results are at odds with our findings. We
believe the discrepancy to originate from their Eq. (24),
which does not properly account for renormalization of
composite operators (see Refs. 52,53).

2 4 6 8

1.5

2.0

2.5

3.0

3.5

4.0

LP

Kekulé current

AF

Spin Kekulé current

QSH

A1u triplet SC

(S + A1u) singlet PDW

s++ singlet SC

Nematic

T
Tc
− 1

log10

(

χ
m∗/4π

)

FIG. 4: Various susceptibilities calculated from the free en-
ergy given by Eq. (37) with forward scattering only. Although
the nematic susceptibility is lower than the others at higher
temperatures, it is the only susceptibility that diverges as the
temperature is lowered towards tc > 0. Here, ν3 = 0.178, the
bare couplings are gA1g = 0.161×4π/m∗, and all others zero.
In this case, tc = 0.01.

E. General density-density interaction

In the previous section we have shown how a sys-
tem with forward scattering only at the bare level or-
ders into the nematic state at any finite temperature. In
general, however, other four-fermion coupling constants
may be non-zero as well. In a previous work on this
subject15, two of us showed how to find the bare interac-
tion strengths corresponding to a screened interaction in
the weak coupling limit. In addition to gA1g , two other
couplings, gA2u and gEK

, appear at ℓ = 0. Due to the
presence of these couplings, all β functions are non-zero
and all 9 couplings allowed by symmetry are generated
in the RG flow.

Instead of seeking a critical temperature for a given
set of initial couplings, we invert the procedure by fixing
the transition temperature to tc = 0.01. This value is in
accordance with the experimentally observed symmetry-
breaking energy scale of ∼ 2 meV. We then determine
what values of the initial couplings would make the RG
flow divergent at this temperature. This set of points de-
fines a two-dimensional surface in the three-dimensional
space of initial (gA1g , gA2u , gEK

). For each point on this
surface, we find the list of phases for which the suscep-
tibility divergence criterion, Eq. (41), is satisfied. For
certain initial conditions it happens that two or more sus-
ceptibilities diverge at tc. In such situations we list all
the phases with diverging susceptibilities (e.g., “N+AF”
represents the region of initial couplings where both χN

and χAF diverge, although not necessarily with the same
exponent). Because our formalism is valid only for t ≥ tc,
the resulting state may be either one of the listed phases
or a coexistence of several of these phases. In order to
decide which phase(s) is present, one needs to construct
a theory valid below tc, such as a Landau theory with
multiple order parameters. This is beyond the scope of
the present paper.

The phase diagram we find is presented in Fig. 5.
One should understand the axes on this plot as fol-
lows. When the microscopic interaction has a long range,
the bare values of gA2u and gEK

are negligible rela-
tive to gA1g . They become larger for interactions with

shorter range15. For monotonically-decreasing repulsive
interaction potentials, these two couplings do not ex-
ceed gA1g and gA1g/2, respectively. gA2u and gEK

reach
these values in the Hubbard limit, where the only micro-
scopic interaction term is on-site. We therefore restrict
our phase diagram to positive initial values of gA1g , to
|gEK

|/gA1g ≤ 1/2, and to |gA2u |/gA1g ≤ 1.

In the given range of initial couplings, we find a rich
phase diagram with the following phases:

a) Nematic (N): This phase is stable for
predominantly forward scattering, i.e., when both
gA2u and gEK

are small at the bare level. If one of
these couplings remains small and the other
becomes comparable to gA1g the nematic
susceptibility is still divergent, although other
susceptibilities will diverge at these initial values
as well. The nematic state is gapless, but it
reconstructs the low-energy spectrum such that
two out of four Dirac cones in each valley become
gapped.

b) Layer antiferromagnet (AF): This phase occurs
when all three bare couplings are repulsive and
comparable, corresponding to a short-range
repulsive interaction. In this state the
magnetization on each undimerized site is finite,
with the magnetization within one layer pointing
in one direction, and that in the other layer in the
opposite direction.
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FIG. 5: The phase diagram of bilayer graphene with trigonal
warping. The transition temperature is fixed to tc = 0.01 and
ν3 = 0.178. Predominantly forward scattering favors the ne-
matic (N) phase. When backscattering and/or the difference
between inter- and intralayer scattering is considerable at the
bare level we find other phases: the layer antiferromagnet
(AF), the layer-polarized state (LP), the quantum spin Hall
state (QSH), the s++ superconducting state (s++ SC), and
the Kekulé current state (KC). In regions where two or more
susceptibilities diverge at the same tc we use “+” to denote a
“coexistence” of multiple possible phases. Whether the listed
phases truly coexist or one of them is preferred must be de-
termined from the full Landau function. Such an analysis is
beyond the scope of this paper.

c) Layer-polarized state (LP): This phase is
preferred when the interlayer repulsion is stronger
than the intralayer repulsion (gA2u(ℓ = 0) . 0),
and the backscattering is either repulsive or
weakly attractive (gEK

(ℓ = 0) & gA2u(ℓ = 0)). In
this phase, which is gapped, there is an imbalance
of the electron occupation number between the
two layers. One layer is more occupied and the
opposite layer is equally less occupied with respect
to the symmetric, high-temperature, state.

d) Quantum spin Hall state (QSH): This state is
preferred when the backscattering is attractive
(gEK

(ℓ = 0) . 0), but if gA2u is attractive as well,
it must be weaker (gEK

(ℓ = 0) . gA2u(ℓ = 0)). In
this state, which is gapped, there is a spin current
around each plaquette circulating in the same
direction in both layers.

e) s++ superconductor (s++ SC): The conditions
for this phase are similar to the previous one in
that the backscattering must be attractive, but it

must also be roughly stronger than (attractive or
repulsive) |gA2u | at ℓ = 0. This state opens a
superconducting gap in both layers with the same
sign on each layer.

f) Kekulé current phase (KC): This phase appears
in a thin sliver of initial couplings for which
backscattering is repulsive and comparable to
gA1g , while the inter- and intralayer couplings are
roughly the same (gA2u(ℓ = 0) ≈ 0). It breaks
lattice translational symmetry and time-reversal
symmetry. In this phase a supercell, consisting of
three regular unit cells, is formed. Within the
supercell, two plaquettes carry a circulating
current, both in the same direction. This phase is
gapped.

For a graphical illustration of some of these phases, see
Fig. 2 in Ref. 17.
In the entire plot the values of the bare dimensionless

couplings m∗gi/4π for which the system orders at the
preset tc = 0.01 and ν3 = 0.178 are always smaller than
0.15, which justifies our weak-coupling approach.
The situation does not change qualitatively with varia-

tions in temperature or in the absence of trigonal warping
— we explored a range of temperatures 0.005 ≤ tc ≤ 0.02
with and without trigonal warping and found that the
general structure of the phase diagram in Fig. 5 does not
change appreciably. This is not a coincidence and, later
in the paper, we will map the phases that we may obtain
by analyzing the behavior of the flow equations in the
large ℓ limit, where trigonal warping is irrelevant.

F. The Hubbard model — “hidden” symmetry

As an important check, we apply our RG procedure to
a special case, namely the Hubbard model, about which
we already know certain exact properties. At half filling,
this model has a dynamical SO(4) symmetry28 on a bi-
partite lattice. This symmetry is present regardless of the
sign of U and the dimensionality. When U is negative,
this symmetry is particularly useful because the electrons
have a tendency towards pairing. One good variational
ground state for the negative U Hubbard model on a
square lattice is a charge density wave, where one sub-
lattice has a higher occupation number than the other.
Another ground state that exhibits pairing is the s-wave
superconductor. The pseudospin symmetry rotates be-
tween these states. At half filling the tendency towards
the charge density wave order must therefore be the same
as the tendency towards the s-wave superconducting or-
der.
In the case of bilayer graphene the nomenclature is

slightly different. A difference in the number of elec-
trons in one sublattice compared to the other corresponds
to a layer-polarized state and not to a CDW because
the layer-polarized state does not break the translational
symmetry of the lattice. Among a plethora of super-
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conducting orders in bilayer graphene, the one that is
obtained by pseudospin rotation from the layer-polarized
state is the s++ superconductor. Following the argument
in the previous paragraph, we conclude that the tenden-
cies towards the layer-polarized and s++ superconducting
orders are exactly the same in bilayer graphene at half
filling with an attractive Hubbard interaction.

2 4 6 8

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Nematic
Spontaneous current
LP
Kekulé current
QSH
A1u triplet SC
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FIG. 6: Susceptibilities for the repulsive Hubbard model on
the honeycomb bilayer. The AF susceptibility is the most
dominant at all temperatures. The dominance of the AF
susceptibility over the others is a sign of growing AF cor-
relations. Here, ν3 = 0.178, the bare couplings are gA1g =
gA2u = gEK

= 0.0560 × 4π/m∗, and all others zero. In this
case, tc = 0.01.

In addition, a repulsive Hubbard model is related to
its attractive counter part with an equally strong inter-
action. The mapping between the two is given by29

c↑(R) → c̃↑(R), (51)

c↓(R) → (−1)Rc̃†↓(R). (52)

It is easy to demonstrate that, under these transforma-
tions, the kinetic term of a Hubbard model on a bipartite
lattice at half filling remains the same, while the interac-
tion term changes sign.
The pseudospin symmetry, as well as the mapping of

the repulsive Hubbard model to its attractive counter-
part, are also present in the honeycomb bilayer lattice.
The question is then whether any of these properties sur-
vive in the low-energy effective field theory, in which the
only degrees of freedom considered are those around K
and K′. In the β functions, Eq. (19), the pseudospin
symmetry is not apparent. Moreover, once we start from
a set of bare interactions corresponding to the Hubbard
interaction, all nine couplings are generated. However, as
we will now demonstrate, both the pseudospin symmetry
and the connection between the attractive and repulsive
Hubbard models are present in the RG flow. These man-
ifest themselves through certain linear combinations of
the couplings that are invariant when the bare interac-
tions correspond to the Hubbard model.
We start by rewriting the mapping given by Eqs. (51)

and (52) for our low-energy effective theory. Fields with

spin up transform as

ψ
(b1/b2)
±K↑ (q) → ψ̃

(b1/b2)
±K↑ (q), (53)

while those with spin down transform according to

ψ
(b1)
±K↓(q) → ψ̃

(b1)∗
∓K↓ (−q), (54)

ψ
(b2)
±K↓(q) → −ψ̃(b2)∗

∓K↓ (−q). (55)

This mapping leaves the kinetic term, Eq. (5), invariant,
as it should, but it changes the interaction term, Eq. (12),

1

2

∑

S

gS
(

ψ†Sψ
)2 → 1

2

∑

S

g̃S

(

ψ̃†Sψ̃
)2

, (56)

where each coupling constant g̃S is a linear combination
of the coupling constants gS before the transformation.
We find that four of the nine coupling constants, gA2g ,
gEg , gA1u , and gA1K , do not change sign, i.e., gi → g̃i,
under this mapping. We call these coupling constants
“even”. In addition, there are two linear combinations,

ga = gA1g + gA2u +
1

2
gEK

, (57)

gb = gA1g − gA2u + gEu + gA2K , (58)

which change sign under the mapping, i.e., ga/b → −g̃a/b.
We will refer to these as “odd”. Finally, there are three
remaining linearly independent combinations of the cou-
pling constants,

δg1 = gA1g − gA2u − 2gEu, (59)

δg2 = gA1g − gA2u − 2gA2K , (60)

δg3 = gA1g + gA2u − 4gEK
, (61)

which are neither “even” nor “odd”, as they generate
terms proportional to themselves as well as terms pro-
portional to “even” and “odd” coupling constants in the
RG flow. Clearly, a non-zero value of any δgi would spoil
the connection between the two models.
In the Hubbard limit, we notice that all three δgi’s

are zero at ℓ = 0. We also see that, initially, all other
couplings are exactly zero except for ga ∼ 9U/4 6= 0.
Therefore, Eqs. (53) - (55), when applied to a repulsive
Hubbard model with interaction strength U , changes the
sign of the only non-zero coupling g̃a = −ga and leaves
all the other couplings zero. This is precisely the bare
interaction of an attractive Hubbard model with the same
interaction strength.
So far we have shown that the low-energy effective field

theories for the repulsive and attractive Hubbard models
in bilayer graphene map onto each other, but only at the
bare level. To show the equivalence at any ℓ, we look
at the flow of the coupling constants, i.e., their linear
combinations, Eqs. (57) - (61). For the three couplings,
Eqs. (59) - (61), we find that

dδgi
dℓ

= βδgi(δg1, δg2, δg3)
δgj→0−→ 0. (62)
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The last arrow means that all three β functions vanish
when all three δgi’s are simultaneously zero. Since this
is true at ℓ = 0 in the Hubbard limit, it follows that no
δgi’s can be generated in the RG flow.
On the other hand, the “even” and “odd” coupling

constants do flow under RG, but there is a special struc-
ture to their β functions. The four “even” couplings flow
according to

dg
(e)
i

dℓ
=

4
∑

a=1

[ 4
∑

j,k=1

g
(e)
j g

(e)
k Ā

(e/e)(a)
ijk + (63)

2
∑

j,k=1

g
(o)
j g

(o)
k Ā

(o/o)(a)
ijk

]

Φa.

The flows of the two “odd” couplings are given by

dg
(o)
i

dℓ
= 2

4
∑

a=1

2
∑

j=1

4
∑

k=1

g
(o)
j g

(e)
k Ā

(o/e)(a)
ijk Φa. (64)

The fact that all δgi’s are zero for any ℓ has already been
incorporated, and thus there are only six independent
couplings. The structure of Eqs. (63) and (64) makes
them manifestly invariant under the transformation, (53)
- (55). Therefore, an RG flow obtained within the con-
tinuum low-energy effective field theory corresponding to
an attractive Hubbard model is described by the same
set of differential equations as its repulsive counterpart.
The flows of the “even” couplings are identical for the
two cases, while those for the “odd” couplings differ only
by a sign. The three couplings δgi are all zero at any ℓ
for both cases. Had the flow started from a point where
at least one of the δgi’s were finite, this correspondence
would have been spoiled because additional terms appear
in Eqs. (63) and (64).
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FIG. 7: Susceptibilities towards the layer-polarized and s++

superconducting orders in the attractive Hubbard model. In
this case, both susceptibilities are equal. The bare coupling
constants used here are gA1g = gA2u = 2gEK

= −0.0560 ×

4π/m∗, with all others zero. The transition temperature in
this case is tc = 0.01.

An immediate consequence of the mapping described
here is that physical quantities obtained in our one-loop

RG method for a repulsive Hubbard model are related to
those obtained from its attractive counterpart. For exam-
ple, the “critical temperatures” tc for the two models are
the same. Of course, the layer antiferromagnetic phase
for the repulsive Hubbard model and the layer-polarized
and s++ superconducting phase for the attractive Hub-
bard model both have the zero transition temperature
because a continuous O(3) symmetry cannot be broken
at any finite temperature in two dimensions. The finite
tc that we obtain within this approximate technique cor-
responds to a gap scale which must be the same for both
models.
Having demonstrated these special properties of the

RG flow in the Hubbard limit, we now compare the sus-
ceptibilities for the layer-polarized and s++ supercon-
ducting states. The α coefficients for the correspond-
ing source terms in the free energy, Eq. (37), are equal.
Therefore, it is sufficient to look at the difference of the
right hand sides of Eqs. (28) and (29),

d log∆LP

dℓ
−

d log∆SC
s++

dℓ
(65)

= 2
(

gA1g − 3gA2u − 2gEu − 2gA2K + 4gEK

)

(Φ1 +Φ4)

= 2 (δg1 + δg2 − δg3) (Φ1 +Φ4)
δgj→0−→ 0.

Since none of the δgi’s are generated in the RG flow in the
Hubbard limit, the source terms for the layer-polarized
and s++ superconducting states flow in exactly the same
way, their susceptibilities must diverge with the same
exponent. This proves that our one-loop RG treatment
respects the pseudospin symmetry of the Hubbard model
at half filling. This argument remains valid for any value
of the trigonal warping, which does not break particle-
hole symmetry, since no assumptions were made about
Φ functions.
Notice that the Hubbard limit is not the only case in

which the mapping and consequent pseudospin symmetry
are realized. Any model in which the bare values of all
three δgi’s are simultaneously zero will exhibit the above
correspondence as well. However, if we restrict ourselves
to microscopic density-density interaction Hamiltonians,
in which case only three of the four-fermion coupling con-
stants are initially non-zero, the pseudospin symmetry is
present only if gA1g = gA2u = 2gEK

.
At the end of this section we present numerically ob-

tained susceptibilities for various orders in the case when
gA1g = gA2u = 2gEK

. In Fig. 6, susceptibilities to vari-
ous orders in the repulsive Hubbard model are shown as
functions of temperature. The AF susceptibility domi-
nates and is the only one to diverge at Tc. Reiterating
what was stated before, this divergence is an artifact of
our one-loop RG approximation. Nevertheless, one-loop
RG correctly singles out the state that is known to be
the ground state at T = 0. The tc that we find should
be thought of as a gap scale for the AF order. Figs.
7 and 8 compare the layer-polarized and s++ supercon-
ducting susceptibilities. In Fig. 7, an attractive Hubbard
model is studied. In Fig. 8, we consider the same model
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FIG. 8: Comparison of the susceptibilities for the layer-polarized and s++ superconducting orders in the attractive Hubbard
model with an additional small b1-b2 interaction. In this case, gA2u = 1−ǫ

1+ǫ
gA1g , where ǫ = V/U and V is the microscopic b1-b2

interaction strength. In both cases, the bare gA1g = 2gEK
= −0.0560 × 4π/m∗. (Left panel) When a small b1-b2 repulsion

is added, the layer-polarized state is preferred. Its susceptibility diverges at tc, while that of the superconducting state, as
well as all other order parameters considered, reaches a finite value. Here, we take ǫ = 0.1, in which case tc = 5.18 × 10−3.
(Right panel) In the case of a small b1-b2 attraction, the opposite is true — the susceptibility for the s++ superconducting state
diverges, while that for the layer-polarized state remains finite at tc. Here, ǫ = −0.1, in which case tc = 0.0288.

with an additional small b1-b2 repulsion (left panel) or
attraction (right panel). This additional term violates
the pseudospin symmetry of the Hubbard Hamiltonian.
In this case, the coupling constants are the same as in
the Hubbard model, except that now gA2u = 1−ǫ

1+ǫgA1g ,

where ǫ = V/U and V is the microscopic b1-b2 interaction
strength. When this interaction is repulsive, the system
favors the layer-polarized state over the superconducting
state analogous to, for example, the findings of Ref. 33.
Conversely, when this interaction is attractive, it favors
delocalization of the electron pairs and the concomitant
superconducting ground state. Our numerical results are
in the agreement this.

G. Fixed ratios and broken symmetry phases

The list of phases found numerically in the previous
section shows ordering trends for bilayer graphene only
for a certain kind of microscopic interaction that we be-
lieve is relevant in a realistic system. The question is
whether there are other possible ordered states in bilayer
graphene when all 9 symmetry-allowed couplings are in-
cluded at ℓ = 0. One way to answer this question is
to numerically explore the entire 9-dimensional space of
bare couplings for various trigonal warping parameters.
Such an approach, although straightforward, would re-
quire immense computational power and might even miss
certain phases that are realized only for specific bare in-
teractions. Fortunately, there is another approach to the
problem that we discuss in this section. Instead of con-
centrating on the bare interactions, we look at what hap-
pens to the couplings and susceptibilities at large ℓ. This
allows us to enumerate all the possible phases regardless
of the initial interactions.

Previously, we discussed the asymptotic behaviour of
the RG equations at t = tc > 0. We know that at least
one coupling will diverge as gr(ℓ) ∼ e2ℓ. We divide all
the other couplings by that particular coupling and find

the β functions for the ratios, ρ
(r)
j = gj/gr, to be

dρ
(r)
j

dℓ
=

ġjgr − ġrgj
g2r

= gr(ℓ)
∑

k,l

ρ
(r)
k ρ

(r)
l × (66)

4
∑

a=1

(

A
(a)
jkl −A

(a)
rklρ

(r)
j

)

Φa(ν3(ℓ), t(ℓ)).

Here, a dot over a coupling constant represents a deriva-
tive with respect to ℓ. In the large ℓ limit, these equations
become

ρ̇
(r)
j =

8tc
A(r)

∑

k,l

ρ
(r)
k ρ

(r)
l

2
∑

a=1

(

A
(a)
jkl −A

(a)
rklρj

)

. (67)

We now ask if these equations have any fixed points, or,
in our terminology, “fixed rays”. These are obtained by
demanding that the right hand sides of all 8 equations
(67) are simultaneously equal to zero. After finding the
fixed rays, we need to determine whether each ray is sta-
ble, unstable, or mixed by analyzing eigenvalues of the

stability matrix Sjk = ∂ρ̇
(r)
j /∂ρ

(r)
k . Since A(r) is already

defined in Eq. (25) in terms of the ratios, the entire sta-
bility matrix has well-defined eigenvalues for each “fixed
ray” solution. In addition, the sign of A(r) determines
the sign of the diverging coupling that we divide the oth-
ers by; see Eq. (24).
If we find that a ray is stable, then, if we start with

the coupling constants sufficiently close to the fixed ray,
then the ratios of the couplings approach the given set
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FIG. 9: A plot of all of the phases found in the fixed plane described by Equations (70)-(72). We find nematic (N, Eg charge),
Kekulé (K, A1K charge), spontaneous current, or magnetoelectric (ME2, Eu charge), layer-polarized (LP, A2u charge), Kekulé
current (KC, A2K charge), staggered spin current (SSC, A1u spin), antiferromagnetic (AF, A2u spin), quantum spin Hall (QSH,
A2g spin), s++ superconductor (s++ SC, A1g singlet), and s+− superconductor (s+− SC, A2u singlet) states. In addition to
this fixed plane, we also find four isolated fixed points, which are described in the text.

of values as ℓ → ∞. Such a flow leads to a divergent
susceptibility in at least one channel. If a ray is mixed or
unstable, then, in the absence of fine-tuning, the RG flow
cannot take the couplings toward such a ratio; even if the
flow starts in such a direction for small ℓ, it will be redi-
rected toward some other ray that is stable. We therefore
conclude that all the solutions that have even one pos-
itive eigenvalue in their stability matrix are physically
irrelevant. It is possible that some rays are marginal in
certain directions, meaning that some of the eigenvalues
of the stability matrix are zero, and stable in others. We

do, in fact, find such physically relevant solutions.

Following the procedure described above for all pos-
sible choices of the divergent coupling, we find that the
stable solutions of the RG flow are situated either on a
manifold that we call the “target plane” or on one of
four isolated fixed rays. The “target plane” represents a
set of stable rays that are marginal in two directions and
stable in six others. The target plane and the phases cor-
responding to each point within are shown in Fig. 9. We
parameterize the plane in the following way. We choose
as our parameters the following two coupling constant



16

ratios:

x = lim
ℓ→∞

gEu

gEg

∣

∣

∣

∣

t=tc

(68)

y = lim
ℓ→∞

gEK

gEg

∣

∣

∣

∣

t=tc

. (69)

Since, for certain fixed rays, gEu and/or gEK
diverge,

while gEg does not, these parameters take values in the
interval (−∞,∞), including infinite values. With the
chosen parameterization, we express each coupling at
large ℓ as

gA1g

G(ℓ)

∣

∣

∣

∣

t=tc

= 0, gA2g

∣

∣

∣

∣

t=tc

=
(1 + x+ 2y)2

C(x, y)
G(ℓ), gEg

∣

∣

∣

∣

t=tc

=
−2(1 + x+ 2y)

C(x, y)
G(ℓ), (70)

gA1u

∣

∣

∣

∣

t=tc

=
4y2

C(x, y)
G(ℓ), gA2u

∣

∣

∣

∣

t=tc

=
4x

C(x, y)
G(ℓ), gEu

∣

∣

∣

∣

t=tc

=
−2x(1 + x+ 2y)

C(x, y)
G(ℓ), (71)

gA1K

∣

∣

∣

∣

t=tc

=
4xy

C(x, y)
G(ℓ), gA2K

∣

∣

∣

∣

t=tc

=
4y

C(x, y)
G(ℓ), gEK

∣

∣

∣

∣

t=tc

=
−2y(1 + x+ 2y)

C(x, y)
G(ℓ), (72)

where C(x, y) is a square root of a quartic polynomial

and the “overall” coupling G(ℓ) =
[

∑9
j=1 g

2
j

]1/2

is a pos-

itive definite function of ℓ that diverges as ℓ → ∞. The
expression for C(x, y) can be readily obtained from the
definition of G(ℓ), but is unwieldly, and thus we do not
include it here. The ratios of any two couplings at large ℓ
depend only on x and y, although sometimes these ratios
may be infinite.
In the special situation in which the parameters x and

y are infinite, but their ratio is finite, we may reparam-
eterize x and y as x = R cos η and y = R sin η and take
the limit as R → ∞. The only diverging couplings in this
case are gA2g , gA1u , gEu , gA1K , gEK

. Note that, for each
η, we obtain the same stable ray at η + π. Due to the
fact that any two opposite points at infinity on the tar-
get plane are identical, we conclude that the target plane
is homeomorphic to a projective plane RP 2. In Fig. 9,
some of the phases, such as QSH, have hyperbolic phase
boundaries and appear to exist in two disconnected parts
of the phase diagram. However, due to the fact that the
opposite points in the target plane are identical, these
may be regarded as single and simply connected regions.

The values of ρ
(r)
j = gj/gr are readily obtained from

(70)-(72). Without loss of generality we now set gr = gEg

in Eq. (26). We obtain

A(Eg) = −6
3 + 2x+ 3x2 + 4y + 4xy + 8y2

1 + x+ 2y

m∗

4π
. (73)

We may obtain Bi,(Eg) from Eqs. (35) and (36). We
can now determine the anomalous dimensions of the
symmetry-breaking source terms defined in Eq. (34). Re-
markably, we see that the anomalous dimensions are con-
tinuous functions of the two parameters x and y. For
each point in the target plane, we determine the phases
for which ηi > 1, i.e., the inequality Eq. (41) holds. If
more than one phase satisfies this inequality, then we list
all such phases regardless of the value of ηi. As discussed

before, whenever two or more susceptibilities diverge, we
cannot decide within our RG framework if the system
chooses only one of these phases or if there is a coexis-
tence. The resulting list of phases is shown in Figure 9. In
addition to the phases we found earlier in Section III E,
namely the nematic (N), layer antiferromagnetic (AF),
quantum spin Hall (QSH), layer-polarized (LP), Kekulé
current (KC), and s++ superconducting (s++ SC) states,
a few other phases are predicted as possible outcomes of
the RG flow if it ends on the target plane. These are:

a) Magnetoelectric phase (ME2): The order pa-
rameter for this phase transforms according to the
Eu charge representation. In this phase, currents
forming a bow-tie pattern within a plaquette ap-
pear. Like the nematic phase, this phase is gapless,
but it reconstructs the low lying spectrum by lifting
two of the four Dirac cones.

b) Kekulé state (K): In this phase, a supercell made
of three unit cells is formed, much like the Kekulé
current phase. The difference is that, in this phase,
there are no currents. Instead, there is a modifica-
tion of the hopping integrals such that the hoppings
in one unit cell are unchanged, while, in the two
other unit cells, the hoppings on alternating bonds
are changed45. The phase is gapped.

c) Staggered spin current state (SSC): This phase
is characterized by circulating spin currents in each
plaquette flowing in opposite directions in each
layer. This phase is not gapped, corresponds to a
compensated semimetal, and the order parameter
belongs to the A1u spin representation.

d) s+− superconducting state (s+− SC): Since a
particle-particle susceptibility diverges in this case,
a superconducting gap opens on both layers. The
gaps are, however, not independent; they have
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opposite signs. The order parameter of this phase
is a (charge 2) A2u spin singlet.

Strictly speaking, when either x or y becomes infinite
or they satisfy 1+x+2y = 0, we are not allowed to divide
by gEg as this coupling is not divergent. It shows up in
Eq. (73) as a divergent A(Eg). Instead, these cases are
explored by dividing by some other coupling. We follow
the same procedure as described above in the case where
we divided by gEg . Interestingly, since both A(Eg) and
Bi,(Eg) diverge in the same way, the ηi’s are independent
of the choice of the coupling that we divide by.
In addition to the target plane, we also find the follow-

ing four isolated stable fixed points.

R1:

lim
ℓ→∞

gA1g

gEg

∣

∣

∣

∣

t=tc

= 3,

lim
ℓ→∞

gj
gEg

∣

∣

∣

∣

t=tc

= 1 ∀ j 6= A1g, (74)

with gEg(ℓ → ∞) > 0. In this case, only the ferro-
magnetic (A1g spin) susceptibility diverges.

R2:

lim
ℓ→∞

gj
gA2g

∣

∣

∣

∣

t=tc

= 0 ∀ j 6= A2g, (75)

and gA2g (ℓ → ∞) < 0. The only divergent sus-
ceptibility in this case is towards the anomalous
quantum Hall state43 (A2g charge). Here, charge
currents circulate in each layer37, and in the same
direction in both layers.

R3:

lim
ℓ→∞

gj
gA1u

∣

∣

∣

∣

t=tc

= 0 ∀ j 6= A1u, (76)

and gA1u(ℓ → ∞) < 0. This yields a loop current
order44, or “orbital antiferromagnet” (A1u charge).
Like the above phase, there are charge currents
circulating in each layer, but in opposite direc-
tions. Note that the order parameter, τ31, can
be thought of as a chemical potential shift with
opposite signs in each valley. Therefore, at weak
coupling, this phase corresponds to a compensated
semimetal with electron and hole pockets.

R4:

lim
ℓ→∞

gj
gA1g

∣

∣

∣

∣

t=tc

= 0 ∀ j 6= A1g, (77)

with gA1g (ℓ → ∞) < 0. Although we would intu-
itively expect this fixed point to favor a supercon-
ducting state, we find no particle-particle suscepti-
bilites diverging. Only the A1g charge susceptibil-
ity, or equivalently the electronic compressibility,
diverges. Therefore, we conclude that the system
enters a phase segregated state.

We can now make a connection between the results
obtained in previous sections and the analytic results ob-
tained here. For the set of initial couplings and parame-
ters analyzed in Sections IIID, III E, and III F, the flow
at tc always converges to the target plane, and never to
any of the isolated points Rj . In the case of forward
scattering only at ℓ = 0, and in the absence of trigonal
warping, none of the couplings from the u and K rep-
resentations are generated. The flow always ends at the
point, (x, y) = (0, 0), in the target plane, which corre-
sponds to a pure nematic state. With trigonal warping
included, u representation couplings are generated, even
when we start with forward scattering only. However,
we still do not generate any of the K representation cou-
plings. This means that the end point of the flow at tc is
restricted to the y = 0 line in the target plane. Decreas-
ing the initial coupling strength gA1g , while holding the
bare v3 fixed, causes tc to decrease. At the same time,
x increases. We always find that x < 1. As seen from
Fig. 9, these points correspond to a pure nematic order.
However, as tc is lowered, the point in the target plane
moves closer to x = 1, which is the intersection of the
AF and QSH regions in the target plane. Upon reaching
tc = 0 exactly, we find that the nematic order parameter
is absent while the AF and QSH susceptibilities become
divergent. This is illustrated in Fig. 2b. Note that there
is no point at which the only two diverging susceptibili-
ties are AF and QSH, either in the target plane or as one
of the four isolated points. This is because the asymp-
totic behavior of the Φ functions is different at t = 0 and
our analysis, in which we assumed that tc > 0, does not
apply there.
When the RG flow begins with a finite backscattering,

i.e., gEK
6= 0, all 9 couplings are generated. We find that

our numerical results correspond to points in the target
plane where y 6= 0. With the physical constraints we
impose on the initial couplings, |gA2u | ≤ gA1g , |gEK

| ≤
gA1g/2 and gA1g positive, only the central region of the
target plane is approached. With these constraints, we
do not find any set of initial couplings for which K, SSC,
or ME2 phases appear.
In the previous sections, the flows never reach any of

the isolated points Rj . However, one can expect that
the flow will tend to one of these points if one starts
with bare couplings sufficiently close to the associated
ray and with a large initial value of ℓ. To confirm this,
we analyzed the flow equations with no trigonal warping
and gA1g(ℓ = 0) < 0. For sufficiently large initial values

of the interaction m∗

4π gA1g(ℓ = 0) < m∗

4π g
c
A1g

≈ −0.13,

the flow takes the couplings towards the R4 fixed ray. As
stated before, this represents a compressibility instability.
However, when gA1g(ℓ = 0) > gcA1g

the couplings diverge

toward the nematic fixed ratio, i.e., our flows end up on
the target plane.
The symmetry properties of the Hubbard limit have

consequences for the asymptotic behavior of the RG flows
studied in this section. When all three couplings, δgi,
Eqs. (59)-(61) are absent at the bare level, we have shown
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FIG. 10: Plot of the critical temperature Tc as a function
of the layer energy difference V⊥, under such conditions that
Tc(0) = 0.01Λ2/2m∗. The critical temperature becomes zero
when V⊥ = V⊥,c = 4.93× 10−3Λ2/2m∗, which corresponds to
an applied electric field of ∼ 16 mV/nm.

that they remain zero throughout the entire flow. As ar-
gued above, the ratios of couplings at tc must lie either
on the target plane or at one of the four isolated points
Rj . In the target plane, the condition, δgi = 0, is sat-
isfied only when x = −2y. This defines a line of fixed
points (strictly speaking a circle, since two points at in-
finity are equivalent). As shown in Section III F, because
δgi = 0, the susceptibilities towards the layer-polarized
and s++ superconducting states are identical. There-
fore, this holds along the entire line x = −2y. For the
repulsive Hubbard model, a wide range of initial condi-
tions, 10−8 < tc < 1, maps onto the segment of this
fixed line that lies within the AF-only region. These re-
sults were also used in studying the attractive Hubbard
model due to the U → −U correspondence presented in
Section III F. The only difference is that both x and
y change their sign under this mapping. The resulting
fixed points are therefore situated in the region where the
layer-polarized and s++ superconducting orders overlap.
In addition to the fixed line that is part of the target

plane, the condition that all three δgi’s are zero is sat-
isfied at the isolated fixed point R1. However, we never
find a flow toward that point for any set of bare couplings
studied here.

IV. EFFECT OF A PERPENDICULAR

ELECTRIC FIELD ON THE PHASE

BOUNDARIES

We now consider the effect that applying a perpen-
dicular electric field has on the phase boundaries of our
system. This field creates an energy difference between
the two layers of the sample, thus introducing a new term
into the Hamiltonian,

HE⊥
= V⊥

∑

|k|<Λ

∑

σ=↑,↓
ψ†
kσ1σ3ψkσ. (78)

We state the effects that this has on the Green’s function
and on the associated identities that we use in the Ap-
pendix B, and simply quote the main results here. The
RG flow equations for the coupling constants become

dgi
dℓ

=
∑

j,k

gjgk

6
∑

a=1

A
(a)
ijkΦa(ν3(ℓ), v(ℓ), t(ℓ)), (79)

where, in addition to the dimensionless parameters for
the Φ functions that were defined before, we have one
new parameter,

v(ℓ) =
V⊥(ℓ)

Λ2/2m∗ . (80)

The Φ functions are given by Eqs. (B3)-(B15).
In addition, the energy difference V⊥ has a nontrivial

behavior under rescaling; it obeys the flow equation,

dv

dℓ
= 2v

[

1 + F (ν3, v, t)
∑

i

bigi

]

, (81)

where the coefficients bi are given in Appendix C, and
the function F is given by Eq. (B17).
We studied the behavior of the critical temperature

as a function of v in a case where we know that the
system enters the nematic phase when v = 0, namely
when all coupling constants are zero except for gA1g > 0.

We assume that the energy scale Λ2

2m∗ = 200 meV, and
that the critical temperature at zero field is Tc = 2 meV;
i.e. tc = 0.01. To determine tc for a given initial gA1g ,
we start with a high value of t and integrate our RG
flow equations numerically up to a large value of ℓ, say
10. If we do not encounter any divergences in the flows,
we lower t and integrate again. We continue until we
find the highest temperature at which we encounter a
divergence. Under the stated conditions, the behavior of
tc as a function of v is as shown in Figure 10.
We find that, at v = 4.93×10−3, tc becomes zero. Con-

verting this into an electric field using the stated energy
scale and the formula relating the applied electric field
to the size of the gap in the spectrum, ∆ = dE

k , where
d is the distance between the two graphene layers and
k ≈ 3 is a factor accounting for imperfect screening4,5,
we find that the electric field required to drive tc to zero
is ∼ 16 mV/nm.
We have also determined which phase the system en-

ters at all points on the curve in Fig. 10 at which Tc 6= 0.
We did this by deriving the RG flow equations for the
source terms and the formula for the free energy per unit
area using the same procedures as before, but with prop-
erly modified Green’s functions, whose forms are given in
Appendix B. We then numerically integrate the RG flow
equations, and, from these solutions, determine the sus-
ceptibilities to the phases corresponding to each source
term just above the critical temperature; the phase with
the highest susceptibility is considered to be the phase
that is present. Using this procedure, we determined
that, for all V⊥ < V⊥,c, the system enters the nematic
phase.
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V. DISCUSSION

The key result of this work is the identification of
the conditions on the electron-electron interactions un-
der which various electronic ordering tendencies, if any,
dominate in half-filled bilayer graphene. Our results for
the ordered states are summarized in Figs. 5 and 9. Aside
from our use of one-loop RG, no further approximations
are made. Therefore, our results can be stated rigor-
ously at the level of mathematical theorems. While a
large number of phases is, in principle, possible in the
entire 9-dimensional space of couplings, as one can see
from Fig. 9, our assertion is that the electronic nematic
appears to be the unique dominant instability when for-
ward scattering dominates. Similarly, the layer antiferro-
magnet appears upon inclusion of sufficiently strong back
and layer imbalance scattering.
A similar approach in one spatial dimension22 results

in divergences in the scattering amplitudes at finite tem-
perature, naively suggesting a finite temperature phase
transition, which we know cannot happen. Nevertheless,
among many possibilities, the method does identify the
correct channels for which long, but finite, correlation
lengths develop. For example, the low-energy effective
field theory for the course-grained half-filled Hubbard
model does correctly determine that the dominant corre-
lations appear in either the pairing (attractive U) or AF
(repulsive U) channel54. Away from any special filling, a
metallic state is also correctly predicted21.
We view our RG results for the half-filled Hubbard

model similarly. While the method correctly determines
the dominant ordering tendency, there can be no finite
temperature phase transition in 2D to either the AF state
or the SC/LP state. A continuous spin SU(2) symmetry
in the former case, or a continuous pseudospin symme-
try in the latter case, would have to be broken at finite
temperature, which we know cannot happen. Therefore,
if the RG procedure had been performed exactly, none of
these susceptibilities would have diverged as long as the
temperature was finite. Interestingly, in this regard, the

nematic state is different. This is because, when trigo-
nal warping is included, as it is in our model, the broken
rotational symmetry is discrete and thus it is possible
to have a finite-temperature transition into this phase
in 2D. As argued previously11, this transition is contin-
uous and belongs to the 3-state Potts model universal-
ity class49. Nevertheless, the non mean-field exponents
determined approximately from our fermionic model at
one-loop should not be expected to be accurate. It would
be very interesting to see whether going to higher order
either improves the accuracy of the exponents in the case
of the nematic state or eliminates the finite-temperature
phase transition altogether for the case of O(3) order pa-
rameters. The effects of (weak) disorder have not been
addressed here either. These considerations may be im-
portant in fully understanding the current experimental
results4–10.
Even if the RG method used here is not without its

limitations, it is unbiased and capable of systematically
treating the leading instabilities in both particle-hole and
pairing channels. In fact, for a large range of tempera-
tures above the transition temperature, the couplings sat-
urate to small finite values as all modes are eliminated,
giving full justification to our method. In the special case
in which our continuum field theory corresponds to the
weak-coupling honeycomb bilayer Hubbard model, we re-
cover some of its non-trivial, exactly known, properties.
This gives further support for the validity of our results.
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Appendix A: Asymptotic behavior of the Φ functions

The finite temperature Green’s function which is used to calculate the RG flows for infinitesimal symmetry breaking
source terms is

Gk(iωn) =

(

−iωn18 +
1

2m∗ (k
2
x − k2y)1σ11 + v3kxτ3σ11 +

1

m∗ kxkyτ3σ21− v3ky1σ21

)−1

(A1)

=
1

2

∑

s=±
(1 + sτ3)

iωn1 + ( 1
2m∗k

2 cos 2θk + sv3k cos θk)σ1 + (s 1
2m∗ k

2 sin 2θk − v3k sin θk)σ2

ω2
n + 1

4m∗2 k4 + v23k
2 + s 1

m∗ v3k3 cos 3θk
1. (A2)

Throughout the Appendix, we will use the notation, τiσjsk, for the (8 × 8) matrices that appear in our expressions;
the Pauli matrices operate in valley, layer, and spin space, respectively. We find the following identity useful when
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calculating the flow equations:

∫ Λ

Λ(1−dℓ)

dkk

2π

1

β

∞
∑

n=−∞

∫ π

−π

dθk
2π

Gk(iωn)⊗G±k(±iωn) =

dℓ
m∗

8π

[

∓18 ⊗ 18 [Φ1 (ν3, t) + Φ2 (ν3, t)] +
1

2
(1σ11⊗ 1σ11 + τ3σ21⊗ τ3σ21) [Φ3 (ν3, t) + Φ4 (ν3, t)]

]

+ dℓ
m∗

8π

[

−τ314 ⊗ τ314 [Φ1 (ν3, t)− Φ2 (ν3, t)]±
1

2
(τ3σ11⊗ τ3σ11 + 1σ21⊗ 1σ21) [Φ4 (ν3, t)− Φ3 (ν3, t)]

]

. (A3)

The Φ functions are defined as

Φ1(ν3, t) =
1

2π

1

t

∫ 1

−1

dx√
1− x2

Υ1(x, ν3, t), (A4)

Φ2(ν3, t) =
1

π

1

ν3

∫ 1

0

dx√
1− x2

1

x
Υ2(x, ν3, t), (A5)

Φ3(ν3, t) =
1

π

1− ν23
ν3

∫ 1

0

dx√
1− x2

1

x
Υ3(x, ν3, t), (A6)

Φ4(ν3, t) =
1

2π

1

t

∫ 1

−1

dx√
1− x2

Υ4(x, ν3, t), (A7)

where

Υ1(x, ν3, t) =
1

cosh2
(

Q+

2t

) +
2t

Q+
tanh

(

Q+

2t

)

, (A8)

Υ2(x, ν3, t) =
∑

λ=±
λQλ tanh

(

Qλ

2t

)

, (A9)

Υ3(x, ν3, t) = −
∑

λ=±

λ

Qλ
tanh

(

Qλ

2t

)

, (A10)

Υ4(x, ν3, t) =
−1

cosh2
(

Q+

2t

) +
2t

Q+
tanh

(

Q+

2t

)

, (A11)

and

Q± =
√

1 + ν23 ± 2xν3. (A12)

In the limit of v3 = 0 we have

Φ1(0, t) = Φ2(0, t) = tanh
1

2t
+

1

2t

1

cosh2 1
2t

(A13)

Φ3(0, t) = Φ4(0, t) = tanh
1

2t
− 1

2t

1

cosh2 1
2t

. (A14)

In the limit of T = 0 we have

Φ1(ν3, 0) = Φ4(ν3, 0) =
2

π

1

1 + ν3
K

(

4ν3
(1 + ν3)2

)

(A15)

Φ2(ν3, 0) =
2

π

1

ν3

(1 − ν3)
2

1 + ν3

(

Π

(

2ν3
1 + ν23

,
4ν3

(1 + ν3)2

)

−K

(

4ν3
(1 + ν3)2

))

(A16)

Φ3(ν3, 0) =
2

π

1− ν3
ν3

(

K

(

4ν3
(1 + ν3)2

)

− (1− ν3)
2

1 + ν23
Π

(

2ν3
1 + ν23

,
4ν3

(1 + ν3)2

))

. (A17)



21

Here, the complete elliptic integrals of the first, K(x), and the third, Π(x, y), kind are defined as

K(x) =

∫ π
2

0

dφ
√

1− x sin2 φ
(A18)

Π(x, y) =

∫ π
2

0

dφ

(1− x sin2 φ)
√

1− y sin2 φ
. (A19)

Physically, the logarithmic singularity associated with K(x) has its origin in the logarithmic divergence of the density
of states at the van Hove point, where the lines of constant energy near each K point change from single to four closed
contours. These log singularities appear only at t = 0, for t > 0 they are smeared out. Because the divergences are
integrable, they aren’t the cause of divergence of g′is in (19). Instead, the coupling constants receive a “boost” at ℓ
where ν3(ℓ) = 1.

Appendix B: Green’s functions in the presence of an applied perpendicular electric field

In the presence of an applied electric field, the Green’s function becomes

Gk(iωn) = (−iωn18 + dxk1σ11 + v3kxτ3σ11 + dykτ3σ21− v3ky1σ21 + V⊥1σ31)
−1

=
1

2

∑

s=±
(1 + sτ3)

iωn1 + ( 1
2m∗k

2 cos 2θ + sv3k cos θ)σ1 + (s 1
2m∗ k

2 sin 2θ − v3k sin θ)σ2 + V⊥1σ3

ω2
n + 1

4m∗2 k4 + v23k
2 + s 1

m∗ v3k3 cos 3θ + V 2
⊥

1. (B1)

The generalization of Equation (A3) for this case is

∫ Λ

Λ(1−dℓ)

k dk

2π

1

β

∞
∑

n=−∞

∫ 2π

0

dθk
2π

Gk(iωn)⊗G±k(±iωn) =

m∗

8π
dℓ[(∓18 ⊗ 18 − τ314 ⊗ τ314)Φ1(ν3, v, t) + (∓18 ⊗ 18 + τ314 ⊗ τ314)Φ2(ν3, v, t)

+ 1
2 (1σ11⊗ 1σ11∓ τ3σ11⊗ τ3σ11∓ 1σ21⊗ 1σ21 + τ3σ21⊗ τ3σ21)Φ3(ν3, v, t)

+ 1
2 (1σ11⊗ 1σ11± τ3σ11⊗ τ3σ11± 1σ21⊗ 1σ21 + τ3σ21⊗ τ3σ21)Φ4(ν3, v, t)

+(1σ31⊗ 1σ31 + τ3σ31⊗ τ3σ31)Φ5(ν3, v, t)
+(1σ31⊗ 1σ31− τ3σ31⊗ τ3σ31)Φ6(ν3, v, t)], (B2)

where the Φ functions are

Φ1(ν3, v, t) =
1

2π

1

t

∫ 1

−1

dx√
1− x2

Υ1(x, ν3, v, t), (B3)

Φ2(ν3, v, t) =
1

π

1

ν3

∫ 1

0

dx√
1− x2

1

x
Υ2(x, ν3, v, t), (B4)

Φ3(ν3, v, t) =
1

π

1− ν23
ν3

∫ 1

0

dx√
1− x2

1

x
Υ3(x, ν3, v, t),

(B5)

Φ4(ν3, v, t) =
1

2π

1

t

∫ 1

−1

dx√
1− x2

Υ4(x, ν3, v, t), (B6)

Φ5(ν3, v, t) =
1

2π

v2

t

∫ 1

−1

dx√
1− x2

Υ5(x, ν3, v, t), (B7)

Φ6(ν3, v, t) =
v2

1− ν23
Φ3(ν3, v, t). (B8)
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The Υ functions are

Υ1(x, ν3, v, t) =
2t

Q+
tanh

(

Q+

2t

)

+
1

cosh2
(

Q+

2t

) , (B9)

Υ2(x, ν3, v, t) =
∑

λ=±
λQλ tanh

(

Qλ

2t

)

, (B10)

Υ3(x, ν3, v, t) = −
∑

λ=±

λ

Qλ
tanh

(

Qλ

2t

)

, (B11)

Υ4(x, ν3, v, t) =

(

Q
(0)
+

Q+

)2




2t

Q+
tanh

(

Q+

2t

)

− 1

cosh2
(

Q+

2t

)



 ,

(B12)

Υ5(x, ν3, v, t) =
1

(Q
(0)
+ )2

Υ4(x, ν3, v, t), (B13)

where

Q± =
√

1 + ν23 + v2 ± 2xν3, (B14)

Q
(0)
± =

√

1 + ν23 ± 2xν3. (B15)

One other identity that we will find useful is

∫ Λ

Λ(1−dℓ)

k dk

2π

1

β

∞
∑

n=−∞

∫ 2π

0

dθk
2π

Gk(iωn) =
m∗V⊥
2π

1σ31F (ν3, v, t) dℓ, (B16)

where F (ν3, v, t) is

F (ν3, v, t) =
1

π

∫ 1

−1

dx√
1− x2

1

Q+
tanh

(

Q+

2t

)

. (B17)

In arriving at this result, we will, in the intermediate steps, also find a term proportional to τ3σ31. However, we
can use the periodicity of the integrand to show that this term will be zero at the end. We can also see that this
must happen due to the symmetries of our system. Imagine that we tried calculating the expectation value of an
observable, which would be represented by a matrix τiσjsk. This expectation value will only be non-zero if the matrix
is proportional to one of the matrices appearing in the above identity, since said expectation value involves a trace
of the product of the Green’s function with the associated matrix. If a term proportional to τ3σ31 were present,
then this means that we can have a finite expectation value of the associated observable, which would, in this case,
correspond to the gap opened by an anomalous quantum Hall order parameter. This order parameter breaks time
reversal symmetry. However, we should not be able to develop a finite expectation value of this observable because
our Hamiltonian is time reversal invariant.

Appendix C: Determination of RG flow equations

We now show how to derive the flow equations for the
four-fermion coupling constants g and the source term
constants ∆. We start by performing a cumulant ex-
pansion of the partition function to second order in the
“perturbation” Sint +∆S.

Z ≈ exp
[

−〈Sint +∆S〉0 + 1
2 〈(Sint +∆S)2〉0,C

]

, (C1)

where, in the subscripts on the averages 〈·〉, “0” means
to average with respect to the bare action S0, and “C”

means that the average is “connected”; that is, it can be
represented with connected Feynman diagrams. We now
integrate out modes in thin shells; by doing so, we gen-
erate terms that renormalize different constants in our
theory. We will first discuss the terms that renormal-
ize the four-fermion coupling constants, since the general
procedure is the same. There are five different types of
terms that appear; these are represented by the diagrams
shown in Figure 11.
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FIG. 11: Diagrams representing contributions to the renor-
malization of the four-fermion coupling constants gi. The
dashed lines represent 8 × 8 matrices, the black lines repre-
sent slow modes, and the red lines represent fast modes.
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FIG. 12: (a) Diagrams representing contributions to the renormalization of the particle-hole source terms. All lines are as in
Figure 11. In addition, the wavy lines represent the source terms. (b) Diagram representing contributions to the renormalization
of the particle-particle source terms.

The first diagram gives the following correction:

δS1 = 1
2

∑

S,U

gSgU

∫

1,2,3,4

{∫

k>,ω

Tr[S1Gk(iω)U1Gk(iω)]

}

∑

σ,σ′

ψ†
σ(1)Sψσ(2)ψ

†
σ′ (3)Uψσ′(4), (C2)

where the numbers 1 − 4 are shorthand for the momentum and frequency dependences of the Grassman fields, and
∫

1,2,3,4
represents the integrals and sums over these variables along with the proper momentum- and frequency-

conserving delta functions, and similarly for
∫

k>,ω
. We may evaluate the integral and sum over k and ω, respectively,

using Equation (A3) in the absence of an external electric field or Equation (B2) when said field is present. In both
cases, this term is only nonzero if S = U , so that we generate a correction to gS that is proportional to g2S . The
nonzero contributions to the coefficients,

A
(a)
ijk = A

(a)
ijk(1) +A

(a)
ijk(2 + 3) +A

(a)
ijk(4) +A

(a)
ijk(5), (C3)

in Equation (19) are

A
(1/2)
iii (1) = − 1

2{8± Tr[(Γ
(1)
i τ314)

2]}m
∗

4π
, (C4)

A
(3/4)
iii (1) = 1

4{Tr[(Γ
(1)
i 1σ11)

2]∓ Tr[(Γ
(1)
i τ3σ11)

2]∓ Tr[(Γ
(1)
i 1σ21)

2] + Tr[(Γ
(1)
i τ3σ21)

2]}m
∗

4π
, (C5)

A
(5/6)
iii (1) = 1

2{Tr[(Γ
(1)
i 1σ31)

2]± Tr[(Γ
(1)
i τ3σ31)

2]}m
∗

4π
. (C6)

In these expressions, the top signs correspond to the first number in the superscript on the left-hand side, while the

bottom corresponds to the second. The A
(5/6)
ijk coefficients only enter into our analysis when a finite electric field is
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present. The 8× 8 matrices Γ
(m)
i are defined as follows:

Γ
(1)
1 = 18 (C7)

Γ
(1)
2 = τ3σ31 (C8)

Γ
(1)
3 = 1σ11, Γ

(2)
3 = τ3σ21 (C9)

Γ
(1)
4 = τ314 (C10)

Γ
(1)
5 = 1σ31 (C11)

Γ
(1)
6 = τ3σ11, Γ

(2)
6 = −1σ21 (C12)

Γ
(1)
7 = τ1σ11, Γ

(2)
7 = τ2σ11 (C13)

Γ
(1)
8 = τ1σ21, Γ

(2)
8 = τ2σ21 (C14)

Γ
(1)
9 = τ114, Γ

(2)
9 = −τ2σ31, Γ(3)

9 = −τ214, Γ(4)
9 = −τ1σ31. (C15)

The superscripts (m) refer to the multiplicity of a given representation. Here, and throughout this appendix, A
(a)
ijk(n)

represents the contribution to A
(a)
ijk from the nth diagram in Figure 11.

The second and third diagrams together give the following correction:

δS2+3 = −
∑

S,U

gSgU

∫

1,2,3,4

ψ†
σ(1)Sψσ(2)ψ

†(3)

[∫

k>,ω

U1Gk(iω)S1Gk(iω)U1

]

ψ(4). (C16)

Note that the first two ψ fields carry an explicit spin index. The second two do not; for notational simplicity, these two
are extended to be eight-component spinors in valley, layer, and spin space. In both cases that we consider, the second
matrix U1Gk(iω)S1Gk(iω)U1 appearing in this expression is proportional to S1. Therefore, this term also represents
a correction to gS , but now it generates terms involving the products, gSgU . We may extract the contributions to

the A
(a)
ijk coefficients by noting that, since the second matrix is proportional to S1. Using Tr(Γ

(m)
i Γ

(n)
j ) = 8δijδmn, we

find that the nonzero contributions to the A
(a)
ijk coefficients are

A
(1/2)
iij (2 + 3) = 1

8

mj
∑

m=1

{Tr[(Γ(1)
i Γ

(m)
j )2]± Tr(Γ

(1)
i Γ

(m)
j τ314Γ

(1)
i τ314Γ

(m)
j )}m

∗

4π
, (C17)

A
(3/4)
iij (2 + 3) = − 1

16

mj
∑

m=1

[Tr(Γ
(1)
i Γ

(m)
j 1σ11Γ

(1)
i 1σ11Γ

(m)
j )∓ Tr(Γ

(1)
i Γ

(m)
j τ3σ11Γ

(1)
i τ3σ11Γ

(m)
j )

∓ Tr(Γ
(1)
i Γ

(m)
j 1σ21Γ

(1)
i 1σ21Γ

(m)
j ) + Tr(Γ

(1)
i Γ

(m)
j τ3σ21Γ

(1)
i τ3σ21Γ

(m)
j )]

m∗

4π
, (C18)

A
(5/6)
iij (2 + 3) = − 1

8

mj
∑

m=1

[Tr(Γ
(1)
i Γ

(m)
j 1σ31Γ

(1)
i 1σ31Γ

(m)
j )± Tr(Γ

(1)
i Γ

(m)
j τ3σ31Γ

(1)
i τ3σ31Γ

(m)
j )]

m∗

4π
. (C19)

Here, the sum on m is taken over the multiplicity of the jth representation, and the “2+3” in the “arguments” means
that the given contribution is the total contribution from the second and third diagrams.
Finally, the fourth and fifth diagrams give the following:

δS4 = − 1
2

∑

S,U

gSgU

∫

1,2,3,4

∫

k>,ω

ψ†(1)SGk(iω)Uψ(2)ψ
†(3)UGk(iω)Sψ(4) (C20)

δS5 = − 1
2

∑

S,U

gSgU

∫

1,2,3,4

∫

k>,ω

ψ†(1)SGk(iω)Uψ(2)ψ
†(3)SG−k(−iω)Uψ(4) (C21)

Both matrices occurring in each expression are proportional to each other, but will in general not be proportional to
either S or U . These terms therefore represent corrections to a coupling gV that are proportional to gSgU . Using the

same observation as before, we can find the contributions to the A
(a)
ijk coefficients. Denoting V = Γk, these are

A
(1/2)
kij (4) = 1

128

mi
∑

m=1

mj
∑

n=1

[Tr(Γ
(1)
k Γ

(m)
i Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j Γ

(m)
i )± Tr(Γ

(1)
k Γ

(m)
i τ314Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j τ314Γ

(m)
i )]

m∗

4π
, (C22)

A
(3/4)
kij (4) = − 1

256

mi
∑

m=1

mj
∑

n=1

[Tr(Γ
(1)
k Γ

(m)
i 1σ11Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j 1σ11Γ

(m)
i )∓ Tr(Γ

(1)
k Γ

(m)
i τ3σ11Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j τ3σ11Γ

(m)
i )
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∓ Tr(Γ
(1)
k Γ

(m)
i 1σ21Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j 1σ21Γ

(m)
i ) + Tr(Γ

(1)
k Γ

(m)
i τ3σ21Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j τ3σ21Γ

(m)
i )]

m∗

4π
, (C23)

A
(5/6)
kij (4) = −1

128

mi
∑

m=1

mj
∑

n=1

[Tr(Γ
(1)
k Γ

(m)
i 1σ31Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j 1σ31Γ

(m)
i )± Tr(Γ

(1)
k Γ

(m)
i τ3σ31Γ

(n)
j )Tr(Γ

(1)
k Γ

(n)
j τ3σ31Γ

(m)
i )]

m∗

4π
,

(C24)

and

A
(1/2)
kij (5) = − 1

128

mi
∑

m=1

mj
∑

n=1

{[Tr(Γ(1)
k Γ

(m)
i Γ

(n)
j )]2 ∓ [Tr(Γ

(1)
k Γ

(m)
i τ314Γ

(n)
j )]2}m

∗

4π
, (C25)

A
(3/4)
kij (5) = − 1

256

mi
∑

m=1

mj
∑

n=1

{[Tr(Γ(1)
k Γ

(m)
i 1σ11Γ

(n)
j )]2 ± [Tr(Γ

(1)
k Γ

(m)
i τ3σ11Γ

(n)
j )]2

± [Tr(Γ
(1)
k Γ

(m)
i 1σ21Γ

(n)
j )]2 + [Tr(Γ

(1)
k Γ

(m)
i τ3σ21Γ

(n)
j )]2}m

∗

4π
, (C26)

A
(5/6)
kij (5) = − 1

128

mi
∑

m=1

mj
∑

n=1

{[Tr(Γ(1)
k Γ

(m)
i 1σ31Γ

(n)
j )]2 ± [Tr(Γ

(1)
k Γ

(m)
i τ3σ31Γ

(n)
j )]2}m

∗

4π
. (C27)

We now turn our attention to the symmetry-breaking source terms. In this case, we have different procedures for
the case without an applied electric field and the case with one. We will consider the former case first. The corrections
to the particle-hole and particle-particle source terms are represented by the diagrams in Figure 12.
The particle-hole source term corrections give us

δSph =
∑

i

∑

S

∆ph
i gS

∫

k′
<,ω′

∫

k>,ω

Tr[Gk(iω)O
(i)Gk(iω)S1]ψ

†
k′(ω

′)S1ψk′(ω′)

−
∑

i

∑

S

∆ph
i gS

∫

k′

<,ω′

∫

k>,ω

ψ†
k′(ω

′)S1Gk(iω)O
(i)Gk(iω)S1ψk′(ω′). (C28)

In the first term, the trace will only be nonzero if S1 = O(i), and, in the second term, the matrix appearing in the
expression is proportional to O(i). Therefore, we see that different source terms are not mixed to this order. Note
that the first term is only nonzero if O(i) represents a charge order, and vanishes for spin orders. The contributions
to the coefficients

B
(a)
ij = B

(a)
ij (1) +B

(a)
ij (2) (C29)

in Equation (28) are

B
(1/2)
ij (1) = − 1

2

mj
∑

n=1

[Tr(O(i)Γ
(n)
j )± Tr(τ314O

(i)τ314Γ
(n)
j )]

m∗

4π
, (C30)

B
(3/4)
ij (1) = 1

4

mj
∑

n=1

[Tr(1σ11O
(i)1σ11Γ

(n)
j )∓ Tr(τ3σ11O

(i)τ3σ11Γ
(n)
j )

∓ Tr(1σ21O
(i)1σ21Γ

(n)
j ) + Tr(τ3σ21O

(i)τ3σ21Γ
(n)
j )]

m∗

4π
, (C31)

B
(1/2)
ij (2) = 1

16

mj
∑

n=1

{Tr[(O(i)Γ
(n)
j )2]± Tr(O(i)Γ

(n)
j τ314O

(i)τ314Γ
(n)
j )}m

∗

4π
, (C32)

B
(3/4)
ij (2) = − 1

32

mj
∑

n=1

[Tr(O(i)Γ
(n)
j 1σ11O

(i)1σ11Γ
(n)
j )∓ Tr(O(i)Γ

(n)
j τ3σ11O

(i)τ3σ11Γ
(n)
j )

∓ Tr(O(i)Γ
(n)
j 1σ21O

(i)1σ21Γ
(n)
j ) + Tr(O(i)Γ

(n)
j τ3σ21O

(i)τ3σ21Γ
(n)
j )]

m∗

4π
. (C33)

Here, the “arguments” have the same meaning as before, but with respect to Figure 12.
The correction to the particle-particle source term is

δSpp = −1

2

16
∑

i=1

∑

S

∆pp
i gS

∫

k′

<,ω′

∫

k>,ω

ψ†
k′(ω

′)S1Gk(iω)Õ
(i)[G−k(−iω)]T (S1)Tψ∗

−k′(−ω′) + c.c. (C34)
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For similar reasons as above, the product of five matrices appearing in this expression is proportional to Õ(i), and
therefore different source terms are not mixed to this order. Also note that the 8× 8 matrix Õ(i) must be completely

antisymmetric. The values of the coefficients B̃
(a)
ij in Equation (29) are therefore

B̃
(1/2)
ij = − 1

16

mj
∑

n=1

{Tr[Õ(i)Γ
(n)
j Õ(i)(Γ

(n)
j )T ]∓ Tr[Õ(i)Γ

(n)
j τ314Õ

(i)τ314(Γ
(n)
j )T ]}m

∗

4π
, (C35)

B̃
(3/4)
ij = − 1

32

mj
∑

n=1

{Tr[Õ(i)Γ
(n)
j 1σ11Õ

(i)1σ11(Γ
(n)
j )T ]± Tr[Õ(i)Γ

(n)
j τ3σ11Õ

(i)τ3σ11(Γ
(n)
j )T ]

∓ Tr[Õ(i)Γ
(n)
j 1σ21Õ

(i)1σ21(Γ
(n)
j )T ]− Tr[Õ(i)Γ

(n)
j τ3σ21Õ

(i)τ3σ21(Γ
(n)
j )T ]}m

∗

4π
. (C36)

Now we consider corrections to the finite applied elec-
tric field; see Eq. (81). In this case, we find that the
lowest-order corrections come from the first-order term
in the cumulant expansion; these first-order corrections
would be zero in the absence of the electric field. They
are represented by “tadpole” and “sunrise” diagrams, as
shown in Figure 13. The contribution from the “tadpole”

S

S

FIG. 13: Diagrams representing contributions to the renor-
malization of the applied electric field term. All lines are as
in Figure 12.

diagrams is

δSt = −
∑

S

gS

∫

k′

<,ω′

∫

k>,ω

Tr[S1Gk(iω)]ψ
†
k′(ω

′)S1ψk′(ω′).

(C37)
The integral over k and sum over ω can be evaluated
using Equation (B16). The trace occurring in this ex-
pression is only nonzero if S = 1σ3. Therefore, we only
generate a correction to the applied electric field. Since

1σ31 = Γ
(1)
5 , we see that the only non-zero contribution

from this term to the coefficients bi in Eq. (81) is to b5,

and this contribution is b5(tadpole) = 8× m∗

4π .
The “sunrise” diagrams give us

δSs =
∑

S

gS

∫

k′
<,ω′

∫

k>,ω

ψ†
k′(ω

′)S1Gk(iω)S1ψk′(ω′).

(C38)
The matrix occurring in this expression is proportional to
1σ31, and thus we, once again, only generate corrections
to the applied electric field. This will contribute to all of
the bi. These contributions are given by

bi(sunrise) =
1
8

∑

m

Tr(1σ31Γ
(m)
i 1σ31Γ

(m)
i )

m∗

4π
. (C39)

The total value of bi is simply the sum of the above two
contributions, i.e., bi = bi(tadpole) + bi(sunrise).

Appendix D: Coefficients in the free energy

The coefficients αph
a,i appearing in the free energy, Eq.

(37), are

αph
1/2,i = 8± Tr[(O(i)τ314)

2], (D1)

αph
3/4,i = − 1

2{Tr[(O
(i)1σ11)

2]∓ Tr[(O(i)τ3σ11)
2]

∓ Tr[(O(i)1σ21)
2] + Tr[(O(i)τ3σ21)

2]}. (D2)

The αpp
a,i coefficients are

αpp
1/2,i = 8∓ Tr[(Õ(i)τ314)

2], (D3)

αpp
3/4,i = 1

2{Tr[(Õ
(i)1σ11)

2]± Tr[(Õ(i)τ3σ11)
2]

∓ Tr[(Õ(i)1σ21)
2]− Tr[(Õ(i)τ3σ21)

2]}. (D4)

Appendix E: Analytic determination of the phase

boundaries in the fixed ratio plane

We will now describe how we determined the phase
boundaries in the target plane. These boundaries are
defined by the sign of the susceptibility exponent γi, as
given by Equation (50), for a given phase; whenever it
is positive, we say that the associated phase is present.
The value of A(Eg) is given by Equation (73). We may
obtain Bi,(Eg) from Eqs. (35) and (36) and from the

coupling constant ratios ρ
(Eg)
i given in Equations (70)-

(72). Because of this, all of the γi will have the form,

γi =
Qi(x, y)

3 + 2x+ 3x2 + 4y + 4xy + 8y2
, (E1)

where Qi(x, y) is an inhomogeneous quadratic function of
x and y. The denominator of this expression is positive
definite, so that the sign of the exponent is determined
entirely by Qi(x, y). Our condition that γi be positive
thus requires that Qi(x, y) > 0. We therefore see that
the phase boundaries, given by Qi(x, y) = 0, are all conic
sections.
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2 E. McCann, V. I. Falḱo, Phys. Rev. Lett. 96, 086805
(2006).

3 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

4 R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and
A. Yacoby, Science 330, 812 (2010).

5 J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and
A. Yacoby, Phys. Rev. Lett. 105, 256806 (2010).

6 A. S. Mayorov, D. C. Elias, M. Mucha-Kruczyński, R. V.
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