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Within the framework of boundary conformal field theory, we evaluate the conductance of stable
fixed points of junctions of two and three quantum wires with different Luttinger parameters. For two
wires, the physical properties are governed by a single effective Luttinger parameters for each of the
charge and spin sectors. We present numerical density-matrix-renormalization-group calculations of
the conductance of a junction of two chains of interacting spinless fermions with different interaction
strengths, obtained using a recently developed method [Phys. Rev. Lett. 105, 226803 (2010)]. The
numerical results show very good agreement with the analytical predictions. For three spinless wires,
i.e., a Y junction, we analytically determine the full phase diagram, and compute all fixed-point
conductances as a function of the three Luttinger parameters.

I. INTRODUCTION

Conducting quantum wires, at low energies, generically
form a Tomonaga-Luttinger liquid (TLL), characterized
by a Luttinger parameter g which encodes the effects of
electron-electron interactions.1–4 Due to the prominent
role of interactions in low dimensions, the nature of these
one-dimensional electronic systems is dramatically differ-
ent from their higher-dimensional counterparts described
by Landau’s Fermi-liquid theory.5 The TLL state of mat-
ter in one-dimensional quantum wires has been realized
in numerous experiments over the last few years.6–13

Transport properties of such quantum wires are of con-
siderable interest: From a fundamental point of view, a
plethora of interesting phenomena have been predicted
and observed. For instance, at low temperature and low
bias voltage, a TLL with repulsive interactions (g < 1) is
totally disconnected in the presence of an impurity, while
one with attractive interactions (g > 1) conducts as in
the absence of the impurity.14–19 From a practical view-
point, junctions of TLL wires serve as important building
blocks of quantum circuits,20,21 and are thus of techno-
logical significance. Junctions of three quantum wires,
known as Y junctions, also have highly nontrivial trans-
port properties.21,22 Due to their rich transport behavior,
junctions of quantum wires and their networks have thus
attracted much attention. 23–37

Most of the previous works on the transport properties
of junctions of TLL wires focus on wires with the same

Luttinger parameter. However, experimentally, there is
no reason for all the TLLs emanating from a junction
to be identical. Moreover, a single TLL can have in-
homogeneities: e.g., a contact between an interacting
TLL and a Fermi-liquid lead, a key ingredient of most
transport measurements, is often studied as an inhomo-
geneous TLL wire smoothly interpolating between inter-
acting (TLL) and noninteracting (Fermi-liquid) regions
or as a two-wire junction with the Luttinger parame-
ter abruptly changing at the junction.38–56 A junction

FIG. 1. Junctions of two and three TLLs with different Lut-
tinger parameters.

of three quantum wires with different Luttinger parame-
ters has been studied in the weak coupling regime.21,57–59

The experimental importance of junctions of TLL wires
with generally unequal Luttinger parameters motivates
an in-depth study of their properties, which is the main
objective of the present paper.

Here, we focus on junctions of two and three nonchiral
Luttinger liquids schematically depicted in Fig. 1. For
two wires, it is known that the transport properties of
the junction are fully controlled by one effective Luttinger
parameter ge = 2/(g−1

1 + g−1
2 ) as found in Ref. 39. In

the context of fractional Hall edge states60, the similar
result have been found for tunneling between two chiral-
TLL edge states.43. For two nonchiral wires, one can
reach the same conclusion through an almost identical
argument. In this work, however, we obtain this result
within the framework of boundary conformal field the-
ory (BCFT), using the delayed evaluation of boundary
conditions (DEBC) method,61–64 which, as we will see,
has the advantage that it can be readily generalized to
junctions of more quantum wires.

Such generalization to a junction of three nonidentical
quantum wires is a key result of this paper. We find the
stability regions of the previously identified (in Ref. 27
for three equal Luttinger parameters) fixed points of such
a Y junction in the (g1, g2, g3) space, and compute their
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corresponding conductances as a function of these three
Luttinger parameters. Moreover, we obtain new asym-
metric fixed points, which are only stable for noniden-
tical TLLs, thereby providing a more complete classifi-
cation of the conformally invariant BCs for three TLLs.
Such asymmetric fixed points have been identified using
perturbative renormalization-group analysis in the weak
coupling regime.21,57,58

Another important result of this paper is a direct nu-
merical verification, through DMRG computations,65 of
the analytical predictions for the conductance of a junc-
tion of two nonidentical wires. Using a recently devel-
oped method,66,67 which allows us to extract the conduc-
tance from a ground-state calculation in a finite system,
we compute, in a microscopic lattice model, the conduc-
tance of a junction of two chains of interacting spinless
electrons with different interaction strengths. Our nu-
merical results show excellent agreement with the DEBC
predictions.
The outline of this paper is as follows. In Sec. II, we set

up the notation and present the model in the bosoniza-
tion framework. In Sec. III, we present the DEBC anal-
ysis of a junction of two spinless wires and show that the
scaling behavior of such junctions is governed by a single
effective Luttinger parameter ge = 2/(g−1

1 + g−1
2 ). For

wires with spin-1/2 electrons, we obtains two effective
Luttinger parameters gc,se = 2/(1/gc,s1 + 1/gc,s2 ), corre-
sponding to charge and spin sectors. Sec. IV contains
the numerical DMRG calculations of the conductance
of a junction of two spinless chains with different inter-
action strengths. In Sec. V, we summarize our results
on the Y junction with the detailed DEBC analysis pre-
sented in Appendix A. In Sec. VI, we present the anal-
ysis of the conductance renormalization when the wires
are contacted to Fermi-liquid leads. Finally, we conclude
in Sec. VII.

II. GENERAL SETUP

In this section, we present the model in the bosoniza-
tion framework and set up the notation. In the low-
energy limit, the wires are described by TLLs with the
Euclidean action:14,15

S =
∑

i

vigi
4π

∫

dτ

∫ ∞

0

dx

[

(∂xϕi)
2 +

(∂τϕi)
2

v2i

]

=
∑

i

vi
4πgi

∫

dτ

∫ ∞

0

dx

[

(∂xθi)
2 +

(∂τθi)
2

v2i

]

,

(2.1)

where gi and vi are respectively the Luttinger parame-
ter and the plasmon velocity of wire i. Different wires
can have different electron-electron interactions and con-
sequently different Luttinger parameters gi. The boson
fields, ϕi and θi, have the following equal-time commu-
tation relation:

[ϕi(x), θj(x
′)] = iπδijsgn(x

′ − x), (2.2)

so the conjugate momenta of θi fields are given by Πθi =
(∂xϕi)/2π. Let us also define left- and right-moving bo-
son fields as

ϕi = φLi + φRi ; θi = φLi − φRi . (2.3)

The fermions ψi(x) = eikFxψR
i (x)+e

−ikF xψL
i (x), with

ψL
i (x) and ψR

i (x) the linearized left- and right-moving
fermionic fields, can be written in terms of the above
bosons through:

ψL,R
i =

ηi√
2π
ei

√
2φL,R

i =
ηi√
2π
ei(ϕi±θi)/

√
2, (2.4)

where ηi are anticommuting Klein factors, which ensure
the correct fermionic statistics. The Klein factors play no
role in our analysis and are hence neglected throughout
the paper. It is convenient to define complex variables
z = τ + ix and z̄ = τ − ix such that the left- and right-
moving bosons, corresponding to current flowing toward
and away from the junction, are, respectively, functions
of z and z̄ only. The chiral current operators can then
be written as

JR
i =

i√
2π
∂z̄θi; JL

i =
−i√
2π
∂zθi, (2.5)

where ∂z = (∂τ −i∂x)/2 and ∂z̄ = (∂τ +i∂x)/2. The total
current is proportional to the difference between the right
and the left currents: Ji = vi(J

R
i − JL

i ).
To analyze the junctions of quantum wires with un-

equal Luttinger parameters, it is convenient to introduce
rescaled bosonic fields

θ̃i ≡ θi/
√
gi; ϕ̃i ≡

√
giϕi, (2.6)

which effectively have a noninteracting action, i.e., g = 1
in Eq. (2.1). Note that these rescaled fields satisfy the
original commutation relations. Similarly, we define the
following rescaled left- and right-moving bosonic fields:

ϕ̃i = φ̃Li + φ̃Ri ; θ̃i = φ̃Li − φ̃Ri , (2.7)

in terms of which the left- and right-moving fermions
become

ψL,R
i = exp

[

i√
2
(
ϕ̃i√
gi

±√
giθ̃i)

]

. (2.8)

In the absence of a junction (boundary), the correlation
functions of the rescaled fields are given by:

〈ϕ̃i(z, z̄)ϕ̃j(w, w̄)〉 =− δij
2

ln [(z − w)(z̄ − w̄)] ,

〈θ̃i(z, z̄)θ̃j(w, w̄)〉 =− δij
2

ln [(z − w)(z̄ − w̄)] ,

〈ϕ̃i(z, z̄)θ̃j(w, w̄)〉 =0.

(2.9)

Imaginary time ordering is implied for all correlation
functions here and throughout the paper. Different
bosonic fields above are of course uncorrelated. How-
ever, as we will show below, the presence of a junction
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mixes these fields and effectively reduces the independent
bosonic degrees of freedom by half.
At the end of wires, x = 0, fermions can hop between

different wires. this process is described by a single par-
ticle hopping Hamiltonian

HB = −
∑

i,j

[

tije
iαijψ†

i (0)ψj(0) + h.c.
]

, (2.10)

where tij and αij are the strength and the phase of the
hopping amplitude between wires i and j. Without loss
of generality22,27 (at least for junctions of two or three
wires), we only consider the symmetric case tij = t in this
paper. The phases encode the distribution of magnetic
fluxes at the junction, which for a junction of three or
more wires can play a crucial role in the properties of
some RG fixed points.22,27

III. JUNCTION OF TWO WIRES: DEBC
ANALYSIS

In this section, we analyze the stability of RG fixed
points, and compute their corresponding conductances
for a junction of two TLL quantum wires with unequal
Luttinger parameters. By using the DEBC method of
Ref. 27, we show that the properties of such junctions
only depend on an effective Luttinger parameter

g−1
e = (g−1

1 + g−1
2 )/2. (3.1)

In a nutshell, the junction of two wires is totally decou-
pled for ge < 1, and has a conductance ge(e

2/h) for
ge > 1. This result is consistent with what found in
Ref. 43, where the tunneling between fractional quan-
tum Hall edge states with different filling fractions was
discussed. The DEBC method used in this paper, how-
ever, has the advantage that it can be straightforwardly
generalized to junctions of more than two wires. (See
Sec.V and Appendix A)

A. DEBC method

For one-dimensional quantum impurity problems, one
often invokes the conformal symmetry of the bulk system
(Luttinger liquids in our case) and assumes that the effect
of an impurity (junction), at low energies, is imposing a
conformally invariant boundary condition (BC), which
describes the renormalization-group (RG) fixed point.
This methodology of relating the BC and RG fixed points
of the system is called boundary conformal field theory
(BCFT), and has proved greatly successful in the study
of quantum impurity problems.63,64

A useful technique within the framework of BCFT is
the DEBC method, which hugely simplifies the evalua-
tion of the scaling dimensions, ∆OB

, of boundary opera-
tors, OB , with a given BC.27 The scaling dimension, in
turn, determines the leading scaling behavior of a given

operator under the RG flow, and thus govern the stabil-
ity of the RG fixed points: In general, an RG fixed point
(boundary condition) is stable if all boundary operators
are either equivalent to identity or irrelevant ∆OB

> 1.
Moreover, the conductance associated with the given
fixed point can be readily computed from the BC. For
a complete description of the DEBC method, we refer
the reader to Refs. 27 and 29. Here, we simply apply
this method to a junction of two quantum wires with un-
equal Luttinger parameters, commenting only on some
key ingredients.

B. Junctions of two quantum wires

The first step of the DEBC method is to write an
ansatz for the conformally invariant BCs describing the
RG fixed points. The next step is to list all the bound-
ary operators, which can possibly become relevant and
make the fixed point unstable, and compute their scal-
ing dimensions with such ansatz for every point in the
parameter space, g1 and g2. If for a given ansatz, none
of these boundary operators have a scaling dimension
smaller than one (in some region of the parameter space
known as the stability region), we have found a stable
RG fixed point. In case of a junction, a natural ansatz
can be expressed in terms of a rotation matrix R that
relates outgoing to incoming bosonic fields:

φ̃R = Rφ̃L, (3.2)

where φ̃L,R ≡ (φ̃L,R
1 , . . . , φ̃L,R

i )T are i-component vector
fields.
The most important boundary operators, in case of a

junction of two wires, correspond to the following pro-
cesses: tunneling of chiral fermions between the two
wires, and backscattering within the individual wires.
It is useful to introduce a compact notation for bound-
ary operators describing the single-particle tunneling pro-
cesses:

T ba
ji ≡ ψb

j

†
ψa
i |x=0, (3.3)

where a, b = R,L. We can then list these six fundamental
boundary operators in terms of the rescaled boson fields
as follows:

TRL
21(12) ∼e

± i√
2
(

ϕ̃1√
g1

− ϕ̃2√
g2

)
e

i√
2
(
√
g1 θ̃1+

√
g2θ̃2),

TRL
11(22) ∼ei

√
2
√
g1θ̃1(2) ,

T
LL(RR)
21 ∼e

i√
2
(

ϕ̃1√
g1

− ϕ̃2√
g2

)
e
± i√

2
(
√
g1 θ̃1−

√
g2 θ̃2).

(3.4)

The boundary operators corresponding to multi-particle
processes are not forbidden and can be generated as
higher order perturbation processes even they are not
presence in the bare Hamiltonian. In general, they can be
constructed from these fundamental boundary operators
and have larger scaling dimensions and are less relevant
than the single-particle processes.



4

All the above boundary operators have the generic

form OB ∼ eia·ϕ̃+ib·θ̃, where a, b are vectors that contain
the prefactors of the ϕ̃i and θ̃i fields. By eliminating the
redundant degrees of freedom with Eq. (3.2), and using
Eq. (2.9), the scaling dimension of the generic OB above
can then be written in terms of R as

∆R
OB

=
1

4
|RT (a − b) + (a+ b)|2, (3.5)

where the superscript T represents matrix transpose.
To find all the R matrices which correspond to stable

fixed points, it is convenient to express ϕ̃i fields in terms
of the following ±-fields:

ϕ+ =

√
g1ϕ̃1 +

√
g2ϕ̃2√

g1 + g2
; ϕ− =

√
g2ϕ̃1 −

√
g1ϕ̃2√

g1 + g2
. (3.6)

Corresponding θ± are defined in a similar manner. The
six fundamental boundary operators can then be written
as

TRL
21(12) ∼e

±i
ϕ−√
ge ,

TRL
11(22) ∼e±i

√
geθ− ,

T
LL(RR)
21 ∼ei

ϕ−√
ge e±i

√
geθ− .

(3.7)

Here, we have dropped all eiθ+ terms as they are effec-
tively an identity at the boundary: Charge conservation
requires

∑

i J
R
i −JL

i = 0, which using Eqs. (2.5) and (2.6)
gives ∂τθ+ = 0, i.e., Dirichlet BC on θ+, and makes eiθ+

an effective identity.27 The simplified boundary opera-
tors in Eq. (3.7) then only depend the effective Luttinger
liquid parameter ge.
In terms of the left- and right-moving ±-fields defined

in a similar manner to Eq. (2.7), the Dirichlet BC on θ+
gives

φR+ = φL+
∣

∣

x=0
, (3.8)

Now we only need to specify the BC relating the φL,R
−

fields as:

φR− = R−φ
L
−
∣

∣

x=0
. (3.9)

Because there is single pair of RL fields, only the
Neumann-BC (N-BC) and the Dirichlet-BC (D-BC),

RN,D
− = ±1, are allowed. By using Eq. (3.5) on bound-

ary operators listed in Eq. (3.7), we obtain the scaling
dimension of each operator with the N-BC and D-BC:

OB ∆N
OB

(N-BC) ∆D
OB

(D-BC)

TRL
21 , TRL

12 1/ge 0

TRL
11 , TRL

22 0 ge

TLL
21 , TRR

21 1/ge ge

Here, the scaling dimension 0 indicates that OB is equiv-
alent to identity operator 11 for the given boundary con-
dition.

From the table above, we conclude that the N-BC is
stable when ge < 1 and D-BC is stable when ge > 1.
As shown below, the N-BC corresponds to a fixed point
where two wires are disconnected and the D-BC corre-
sponds to a fixed point where two wires are maximally
connected with conductance GD = ge(e

2/h). Let us re-
call the well-known results of the Kane and Fisher prob-
lem, namely, a single impurity in a spinless TLL wire,
which is equivalent to a junction of two wires with the
same Luttinger parameter, g.14 There, two RG fixed
points are identified, totally disconnected fixed point for
g < 1 and maximally connected fixed point for g > 1 with
GD = g(e2/h). As ge → g when g1 = g2 = g, the fixed
points, which we identified, generalize Kane and Fisher’s
results to the case of two quantum wires with different
Luttinger parameters.
A similar DEBC analysis can also be applied to junc-

tion of two quantum wires with spin-1/2 electrons.29

In that case, we obtain two effective Luttinger param-
eters gc,se = 2/(1/gc,s1 + 1/gc,s2 ), corresponding to charge
and spin sectors, which govern the scaling behavior of
boundary operators near the fixed points.68 As a conse-
quence, the stable fixed points of such system are con-
nected to those of equal Luttinger parameters but with
gc,s → gc,se .15,16,18

C. Conductance for each fixed point

Here, we will compute the conductance associated with
N-BC and D-BC. The conductance tensor is defined
through the following current-voltage relation:

Ii =
∑

j

GijVj , (3.10)

where current is defined as positive when flowing toward
junction. In the linear-response regime, the conductance
above can be evaluated via the Kubo formula:27

Gij = lim
ω→0+

− e2

~

1

ωL

∫ ∞

−∞
dτeiωτ

∫ L

0

dx〈Ji(y, τ)Jj(x, 0)〉. (3.11)

The current correlation function can be rewritten as a
sum of chiral-current correlation functions as

〈Ji(y, τ)Jj(x, 0)〉 =
〈JR

i (y, τ)JR
j (x, 0)〉+ 〈JL

i (y, τ)J
L
j (x, 0)〉

− 〈JR
i (y, τ)JL

j (x, 0)〉 − 〈JL
i (y, τ)J

R
j (x, 0)〉, (3.12)

where the left and right currents are defined in Eq. (2.5).
By using Eq. (2.6), we can write the chiral currents in
terms of rescaled boson fields as follows:

JR
i =+ i

√
gi√
2π
∂z̄ θ̃i = −i

√
gi√
2π
∂z̄φ̃

R
i ≡ √

giJ̃
R
i ,

JL
i =− i

√
gi√
2π
∂z θ̃i = −i

√
gi√
2π
∂zφ̃

L
i ≡ √

giJ̃
L
i ,

(3.13)
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where we have defined left and right currents associated
with the rescaled fields.
To evaluate the above correlation functions given a BC,

it is convenient to first express the boundary conditions

R directly in the rescale boson field, φ̃L,R
i , basis. From

Eq. (3.8) and Eq. (3.9), we can derive the rotation matrix:

RN = 11; RD =

(

g1−g2
g1+g2

2
√
g1g2

g1+g2
2
√
g1g2

g1+g2

g2−g1
g1+g2

)

, (3.14)

for the N-BC and D-BC, respectively. From Eq. (3.13),
the left and right currents are constrained by the
J̃R
i (0, τ) = Rij J̃

L
j (0, τ) BC at the origin, which, upon

unfolding the current, implies

J̃R
i (x, τ) = Rij J̃

L
j (−x, τ), (3.15)

for x > 0. Therefore, all the right-moving currents can
be interpreted as left-moving on the x < 0 domain.
Now, the chiral current correlation functions can be

evaluated:

〈JR
i (z̄i)J

R
j (z̄j)〉 =

δij
4π2

gi
(z̄i − z̄j)2

,

〈JL
i (zi)J

L
j (zj)〉 =

δij
4π2

gi
(zi − zj)2

,

〈JR
i (z̄i)J

L
j (zj)〉 =

Rij

4π2

√
gigj

(z̄i − zj)2
,

〈JL
i (zi)J

R
j (z̄j)〉 =

Rji

4π2

√
gigj

(zi − z̄j)2
.

(3.16)

By inserting these correlation functions into the Kubo
formula Eq. (3.11), and after some algebra, we obtain
a concise relation between conductances and boundary
conditions27

Gij =
e2

h

√
gigj(δij −Rij). (3.17)

With the N-BC and D-BC represented by the rotation
matrices of Eq. (3.14), we immediately conclude that

GN = 0; GD = ge
e2

h

(

1 −1

−1 1

)

. (3.18)

As advertised, the N-BC corresponds to a fixed point
with decoupled wires and D-BC corresponds to a fixed
point with conductance ge(e

2/h).
Here, we shall emphasize that the correlation functions

listed in Eq. (3.16) include only the universal part for a
given boundary condition. There are also nonuniversal
contributions to the correlation functions, which, in gen-
eral, decay faster and become irrelevant at long distance.
However, when the universal part vanishes, which is the
case for correlations between different wires with the N-
BC, the higher order contributions dominate and could
lead to nonlinear conductance. In the next section, we
will perform the DMRG calculations and confirm that
Eq. (3.16) indeed represents the universal part of chiral-
current correlation functions.

FIG. 2. a) The junction of two semi-infinite Luttinger-liquid
wires with interaction strength V1 and V2. Hopping amplitude
is set to unity in the bulk of the the two wires, and is equal
to t at the junction. b) The corresponding finite system used
for DMRG calculations according to the method of Refs.66,67.

IV. JUNCTION OF TWO WIRES: DMRG
CALCULATIONS

In this section, we perform numerical computations of
the conductance of a junction of two Luttinger liquids
with different Luttinger parameters g1 and g2. A micro-
scopic lattice model with the Luttinger-liquid physics,
which is suitable for numerical calculations, is the one-
dimensional tight-binding model of interacting spinless
electrons:

Hi =
∑

m

c†i,mci,m+1 + h.c.+ Vi(ni,m − 1

2
)(ni,m+1 −

1

2
),

(4.1)
for wire i, where the hopping amplitude is set to unity.
A junction of two wires can be described by

H = H1 +H2 − tc†1,0c2,0 − tc†2,0c1,0. (4.2)

The parameters gi and vi of the Luttinger liquid Hamil-
tonian (2.1) are related to the interaction strength V
through the Bethe ansatz. (see, e.g., Refs. 66 and 69.)
We use the method of Refs. 66 and 67 to compute the
conductance. This method allows us to extract the con-
ductance from a ground-state static calculation in a finite
system as explained below. The semi-infinite junction of
Hamiltonian (4.2) is depicted in Fig. 2 (a), while the cor-
responding finite system used in the numerics is shown
in Fig. 2 (b).
We extract the conductance Gij from the following

asymptotic (large x) relationship in the finite system
shown in Fig. 2b:

〈J i
R(x)J

j
L(x)〉 ≃

h

e2
Gij

[

4 ℓ sin
(π

ℓ
x
)]−2

, (4.3)

where 〈J i
R(x)J

j
L(x)〉 is the ground-state correlation func-

tion of chiral currents in wires i and j in Fig. 2b. In
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terms of total charge N and current J operators, which
can be modeled on the lattice, we generically have67

〈J i
R(x)J

j
L(x)〉 = − 1

2vivj
〈J i(x)Jj(x)〉− 1

2vj
〈N i(x)Jj(x)〉.

(4.4)
Note that in the time-reversal symmetric case considered
here, the second term in the expression above vanishes,
and we only need to compute a static current-current
correlation function 〈J i(x)Jj(x)〉. In terms of the lattice
creation and annihilation operators appearing in Hamil-
tonian (4.1), we have

J i(m+
1

2
) = i(c†i,m+1ci,m − c†i,mci,m+1).

All we need to do now is to numerically compute
〈J1(x)J2(x)〉 for the above current operator, and divide
it by 2v1v2 to obtain 〈J1

R(x)J
2
L(x)〉. The numerical cal-

culations are done for system of 180 sites in each of the
two wires. The truncated number of states in our DMRG
computations is 1100.

A. Repulsive effective interaction ge < 1

For ge < 1, we have G12 = 0, which implies that
the leading term [Eq. (4.3)] in the 〈J1

R(x)J
2
L(x)〉 corre-

lation function vanishes. If, as a function of ℓ
π sin

(

π
ℓ x
)

,

the computed 〈J1
R(x)J

2
L(x)〉 decays faster than a power

law with exponent −2, we have a signature of a vanish-
ing G12. Our numerical results indeed confirm this: for
any combination of g1 and g2 with ge < 1, we find that

〈J1
R(x)J

2
L(x)〉 decays as ℓ

π sin
(

π
ℓ x
)−α(ge)

with α(ge) > 2.
The exponent α only depends on ge, and is independent
of individual gi and the hopping amplitude t. The pref-
actor of the correlation function depends on the hopping
amplitude t since universality is a property of the leading
term, and the coefficient of the subleading term observed
here can depend on microscopic details such as t.
Note that the correlation functions for different com-

binations of g1 and g2, which have the same ge, collapse
not only in the large x limit but also close to the mi-
croscopic length scales. This strongly suggests that the
single parameter ge determines all the subleading cor-
rections to the correlation function. This behavior can
be understood by noting that all the boundary opera-
tors in Eq. (3.7) depend on ge (as opposed to individual

g1 and g2) after dropping the ϕ̃+ and θ̃+ fields due to
current conservation. Hence, the measured correlation
functions should also be determined only by the effective
Luttinger parameter ge and the hopping strength t. In-
terestingly, the exponent α is indeed close to the scaling
dimension of the leading irrelevant operator, i.e., 2/ge,
but we are not able to make a definitive statement due
to finite size effects and limited numerical precision. It
is worth mentioning that we have also considered combi-
nations of g1 and g2 where one wire has attractive inter-

0 1 2 3 4
−20

−16

−12

1 2 3 4

−18

−14

−10

FIG. 3. The correlation function 〈J1
R(x)J

2
L(x)〉 for different

combinations of g1 and g2 corresponding to two values of
ge < 1. The data exhibits very good collapse, and indicates a
vanishing conductance.

actions (g1 > 1), but this does not affect the behavior of
the junction as long as ge < 1.
The results are summarized in Fig. 3. We have consid-

ered two values of ge = 0.871, 0.83 and four combinations
of g1 and g2 for each ge as shown below:

V1 V2 g1 g2 ge

0.463 0.463 0.871 0.871 0.871

0 0.9 1 0.771 0.871

0.347 0.576 0.9 0.843 0.871

−0.285 1.145 1.1 0.720 0.871

0.632 0.632 0.830 0.830 0.830

0 1.2 1 0.709 0.830

0.347 0.904 0.9 0.770 0.830

−0.285 1.415 1.1 0.666 0.830

Here, we have considered two different values of hopping
amplitude, t = 0.5, 0.7.

B. Attractive effective interaction ge > 1

In this case, we expect any tunneling amplitude t 6= 1
at the junction to heal, and result in a universal conduc-
tance gee

2/h. In our numerics, we have used two values
of tunneling amplitude, t = 0.7, 0.9. Similarly to the re-
pulsive case, we consider two values of ge = 1.175, 1.258;
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FIG. 4. The correlation function 〈J1
R(x)J

2
L(x)〉 for different

combinations of g1 and g2 corresponding to two values of
ge > 1. The data exhibits very good collapse, and indicates a
conductance of gee

2/h because of the asymptotic agreement
with the exact theoretical prediction shown by a sold black
line.

for each ge, we consider four combinations of g1 and g2
shown below:

V1 V2 g1 g2 ge

−0.4625 −0.4625 1.175 1.175 1.175

0 −0.9 1 1.423 1.175

0.347 −1.196 0.9 1.690 1.175

−0.285 −0.637 1.1 1.260 1.175

−0.632 −0.632 1.258 1.258 1.258

0 −1.2 1 1.690 1.258

0.347 −1.460 0.9 2.087 1.258

−0.285 −0.960 1.1 1.468 1.258

Again, we obtain very good agreement with the analyt-
ical predictions. The results are summarized in Fig. 4.
With fixed ge, the data points collapse for different com-
binations of g1 and g2 and different values of hopping
t. The numerical results approach the analytical predic-
tion for a conductance of gee

2/h (solid black line) in the
asymptotic limit.

V. JUNCTION OF THREE WIRES

A junction of three quantum wires with equal Lut-
tinger parameters has three distinct types of fixed points

described by a rotation matrix ansatz: decoupled fixed
point, chiral-χ± fixed points, and Dirichlet fixed points,
which are respectively stable for g < 1, 1 < g < 3 and
g > 3. (There is an additional less understood time-
reversal-invariant M fixed point for 1 < g < 3, which we
do not consider in this work.)22,27,66,67 Thus, it is reason-
able to expect that these fixed points remain stable if we
slightly change the Luttinger parameters and make them
unequal. Here, we first determine this region of stability
around the g1 = g2 = g3 line. In addition, we identify
three asymmetric fixed points, only realized for unequal
Luttinger parameters, in which one of wires is decoupled
from the junction and the other two wires are fully con-
nected. These asymmetric fixed points have important
consequences for the stability of N, D and χ ones: there
are regions of the parameter space near the transition
points gi = 1, 3 on the g1 = g2 = g3 line where small
perturbations normal to the equal-g line would drive the
system into one of the asymmetric fixed points.
In Table I, we first summarize the scaling dimensions

of the leading boundary operators as well as their cor-
responding conductances as a function of the three Lut-
tinger parameters for each boundary condition. These
scaling dimensions determine the stability of the fixed
point: when all them are larger than one in certain pa-
rameter region, the given fixed point is stable. From
Table I, we observe that the three scaling dimensions of
the leading irrelevant operators for the asymmetric fixed
points are each the inverse of those of the decoupled,
Dirichlet and chiral fixed points. Hence, in any given
point of the (g1, g2, g3) parameter space, there exists at
least one stable fixed point. In other words, the decou-
pled, Dirichlet, chiral and asymmetric fixed points fully
cover the phase diagram of a Y junction of spinless TLL
wires.
In this paper, the DMRG analysis is not applied to the

junction of three quantum wires with unequal Luttinger
parameters. Such analysis with equal Luttinger param-
eters was performed in Ref. 67, but is beyond the scope
of the present paper. We discuss the physical properties
of each of these stable fixed points in the remainder of
this section. The detailed analysis, based on the DEBC
method, can be found in Appendix A. As the conduc-
tances of fixed points can be evaluated in the similar way
as in Sec. III C, we simply write down the results in the
following discussion.

a. Decoupled fixed point

The decoupled fixed point corresponds to the Neu-
mann BC for all the bosonic fields ϕ̃. From Table I, we
see that the scaling dimensions of the leading irrelevant
operators are equal to 1/gi,je for gi,je = 2gigj/(gi + gj),
which is the same as Eq. (3.1) for a pair of wires. Hence,
the decoupled fixed point (N-BC) is then stable when
the N fixed point is stable for all three possible pairs of
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Fixed point Scaling dimensions ∆ Conductance Gjk [e2/h]

Decoupled (N-BC) (gi + gj)/2gigj 0

Dirichlet (D-BC) gi(gj + gk)/2(g1 + g2 + g3) 2[gjδjk − gjgk/(g1 + g2 + g3)]

Chiral (χ±-BC) 2gi(gj + gk)/(g1g2g3 + g1 + g2 + g3) 2
gj (g1+g2+g3)δjk+gjgk(∓gmǫjk−1)

g1g2g3+g1+g2+g3

(g1 + g2 + g3 + g1g2g3)/2gi(gi+1 + gi−1)

Asymmetric (Ai-BC) 2gi+1gi−1/(gi+1 + gi−1)
2gi+1gi−1

gi+1+gi−1
(−1 + δij + δik + 2δjk − 3δijδik)

2(g1 + g2 + g3)/gi(gi+1 + gi−1)

TABLE I. The scaling dimensions of leading irrelevant boundary operators and the conductance tensor for each stable fixed point
of a Y junction. The detailed analysis for obtaining these scaling dimensions is given in Appendix A with the corresponding
operators listed in Table II. The asymmetric fixed point Ai represents a boundary condition where the wire i, for i = 1, 2, 3, is
decoupled from the junction. Here, the scaling dimensions of all leading irrelevant operators run over the indices for all possible
combinations of i 6= j 6= k. We have also introduced following notations: the cyclic identification g0 ≡ g3 and g4 ≡ g1; the two
indices antisymmetric tensor ǫj,j±1 = ±1 and 0 otherwise; and the index m satisfies m 6= j 6= k. The conductance tensors are
given units of e2/h and are defined through Ij =

∑
k
GjkVk.

wires. One can simply check that these scaling dimen-
sions reduce to 1/g when the Luttinger parameters are
all equal. In Fig. 5, the stability region of the decoupled
fixed point, ∆N

OB
> 1, is painted in red. As expected, the

conductance of the decoupled fixed points is simply

GN
ij = 0. (5.1)

b. Dirichlet fixed point

As discussed in Appendix A, one can construct three
independent linear combinations of the bosonic field ϕ̃
such that, akin to ϕ̃+ field for junctions of two wires, one
of them, known as the center of mass field, always sat-
isfies the Neumann BC due to charge conservation. The
Dirichlet fixed point corresponds to imposing the D-BC
on the other two combinations. None of single particle
processes becomes identity with such boundary condi-
tion. Instead, some of two- or more-particle processes re-
duce to identity, which suggests that the Dirichlet fixed
point is associated with a certain type of “Andreev” re-
flection that enhances the conductance.
From Table I, the scaling dimensions of all leading ir-

relevant operators, ∆D
OB

= gi(gj + gk)/2(g1 + g2 + g3)
∀ i 6= j 6= k, reduce to g/3 when g1 = g2 = g3 = g.
Hence, the D-BC becomes stable at g > 3, consistent
with Ref. 27. By requiring ∆D

OB
> 1, we obtain the sta-

bility region, painted in green in Fig. 5, of the Dirichlet
fixed point for unequal Luttinger parameters.
The conductance of the Dirichlet fixed point is given

by

GD
jk = 2

e2

h

[

gjδjk − gjgk
g1 + g2 + g3

]

, (5.2)

where we have made a cyclic identification g0 ≡ g3 and
g4 ≡ g1. When all the Luttinger parameters are equal,
we have GD

jk = g(e2/h)(2δjk−2/3), which reproduces the
result in Ref. 27.

c. Chiral-χ± fixed points

The chiral-χ± fixed points have a particular transport
feature: the realization of χ+ or χ− fixed points, with
the incoming current respectively flowing clockwise or
counterclockwise into one of the adjacent wires, depends
on the direction of the threaded magnetic field into the
ring.27 (This point will become more apparent in the next
section when discussing Fermi-liquid leads) When g1 =
g2 = g3 = g, the scaling dimensions listed in Table I for
both χ± fixed points reduce to 4g

3+g , and hence χ± fixed

point is stable for 1 < g < 3, which is consistent with
what found in Ref. 27. Again, we obtain the stability
region of the chiral fixed points through ∆

χ±
OB

> 1. In
Fig. 5, such region is painted in orange.
The conductances for chiral-χ± fixed points are, in

turn, give by

G
χ±
jk = 2

e2

h

gj(g1 + g2 + g3)δjk + gjgk(∓gmǫjk − 1)

g1g2g3 + g1 + g2 + g3
(5.3)

where ǫj,j±1 = ±1 while ǫjk = 0 for j = k, and gm 6=
gj, gk.

d. Asymmetric fixed points

The Asymmetric-Ai fixed points have the property
that wire i is decoupled from the junction. Such fixed
points are a new feature of a system with unequal Lut-
tinger parameters. As shown in Table I and mentioned
earlier, the scaling dimensions of the leading irrelevant
operators of Ai fixed points are inverse to those of the
decoupled, Dirichlet and chiral fixed points. Hence, the
stability regions of Ai fixed points are complimentary to
those of the other fixed points, and the entire parameter
space is covered by at least one of the stable fixed point
presented in this work. In Fig. 5, the stability regions of
A1,2,3 fixed point are painted in yellow, grey and blue,
respectively. The regions where two asymmetric fixed
points overlap are shown in white.
The conductances of the asymmetric fixed points Ai

are give by

GAi

jk = gi+1,i−1
e

e2

h
(−1+ δij + δik +2δjk − 3δijδik), (5.4)
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where gm,n
e is the effective Luttinger parameter for the

pair of wires m and n. To give an idea of the properties
of Asymmetric fixed points, we hereby write the conduc-
tance tensor explicitly for A1:

GA1 =
2g2g3
g2 + g3

e2

h







0 0 0

0 1 −1

0 −1 1






. (5.5)

The stability of the different fixed points in the g1,2,3
parameter space is inferred from the scaling dimensions
of Table I, and shown in Fig. 5. Since each stable fixed
point implies a phase of the junction, we shall also refer
the graph defining the regions of stability as phase dia-
gram. It is convenient to illustrate this three-dimensional
phase diagram by some cross sections. As all the scaling
dimensions of leading irrelevant operators have a cyclic
symmetry on wire indices, the stability regions show a
3-fold rotation symmetry around the g1 = g2 = g3 axis.
Thus, a natural choice for these cross sections is given by
planes normal to the equal-g axis: (g1 + g2 + g3)/3 = ḡ,
where the parameter ḡ, the average of the three Luttinger
parameters, labels each cross section. Excluding negative
gi, these cross sections are equilateral triangles shown in
Fig. 5.
We first notice that the decoupled fixed point becomes

predominant when ḡ < 2/3, in which none of other fixed
points are stable. One can also show that chiral fixed
points appear when ḡ > 1 and the Dirichlet fixed point
only appears when ḡ > 3. From Fig. 5 (b), (d) and (f),
we observe that the decoupled, chiral and Dirichlet fixed
points are realized around the equal-g axis for ḡ < 1,
1 < ḡ < 3 and ḡ > 3, respectively. These results are
consistent with a junction of three identical TLL wires
(indicated as black points at the center of triangles), and
show how far the Luttinger parameters can deviate from
equal-g axis before these phases break down. We find
that, in most regions, these phases are stable under a
small perturbation away from the equal-g line. This is
relevant for the realization of these phases experimen-
tally, as the TLL wires attached to a junction are likely
nonidentical.
As shown in Fig. 5 (c) and (e), the Asymmetric fixed

points become important around two marginal points
g1,2,3 = 1, 3. As a small deviation of Luttinger parame-
ters from these two points easily realizes and switches be-
tween asymmetric fixed points, the resultant fixed points
are thus highly sensitive to all the three Luttinger pa-
rameters, and not just the averaged Luttinger parameter
ḡ. Therefore, precise control over the TLL wires become
essential around these points. Note that it may be pos-
sible to alter between different Asymmetric fixed points,
and form a nano-switch if one can tune the Luttinger
parameters. We mention in passing that the Luttinger
parameters of wires can, in principle, be modified by an
external gate capacitively coupled to the wire.44

Finally, it is worthwhile to compare our findings with
those of Aristov and Wölfle,58,59 where two identical

FIG. 5. We plot the stability regions of the different fixed
points in the triangular cross sections, shown in upper panel,
of fixed ḡ = (g1+g2+g3)/3 in Luttinger parameters space, g1
and g2, and g3. In all panels, the decoupled, chiral and Dirich-
let fixed points are painted, respectively, in red, orange and
green, and, the asymmetric fixed points A1,2,3 are pained in
yellow, grey and blue, respectively. The white areas represent
an overlap of two Asymmetric fixed points and the equal-g
points are indicated by a black dot at the center of triangle.
(a) For ḡ < 2/3, only the decoupled fixed point is realized.
(b) The χ± and Dirichlet fixed points are not stable when
ḡ < 1. (c) The point g1,2,3 = 1 is an exactly marginal point
surrounded by asymmetric fixed points. (d) The χ± fixed
points appear at the center of cross section for 1 < ḡ < 3,
surrounded by asymmetric fixed points. The stability region
for the N-BC are pushed to the corners where two of the three
Luttinger parameters become much less than one. (e) The
point g1,2,3 = 3 is another exactly marginal point, again sur-
rounded by asymmetric fixed points. The chiral fixed points
have extremely small stability regions (difficult to see in the
figure) located between any two asymmetric fixed points. (f)
The Dirichlet fixed point appears at the center of triangle for
ḡ > 3. Note that the figure is not a schematic, and represents
the exact domain boundaries for the shown ḡ.
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FIG. 6. The voltages for the incoming and outgoing chiral
currents in the Fermi-liquid and connected TLL wire.

wires are connected to a wire with unequal Luttinger
parameter, by setting g1 = g2 = g. In the repulsive
and weak attractive interaction regime, g ≈ g3 < 3, in
which the N, χ± and Ai fixed points predominate, our
results show excellent agreement with their findings. In
the strong attractive interaction regime, g ≈ g3 > 3,
the D fixed point identified in the present work and in
Ref. 27 (by nonperturbative boundary-conformal-field-
theory methods), however, was not found by the pertur-
bative renormalization-group approach of Refs. 58 and
59.

VI. CONDUCTANCE RENORMALIZATION
FOR WIRES CONTACTED TO FERMI-LIQUID

LEADS

The linear conductances of different fixed points were
calculated in Secs. III C and V. Here, we discuss the ef-
fect of attaching the wires to Fermi-liquid leads. Remark-
ably, we find that the conductance of each fixed point, in
the presence of Fermi-liquid leads, renormalizes to val-
ues that are independent of the Luttinger parameters.
This generalizes the following interesting effect for the
TLL quantum wire with Luttinger parameter g: When
attached to leads, the measured conductance is quantized
at e2/h, which is different from ge2/h. This discrepancy
has been resolved by Maslov and Stone and by Safi and
Schulz in Refs. 38 and 39. There, they studied an inho-
mogeneous Luttinger liquid and concluded that the con-
ductance of a TLL wire will only depend on the Luttinger
parameter at the contact. As a Fermi-liquid (metal) con-
tact can be thought of as a TLL with Luttinger parameter
g = 1, the measured conductance becomes simply e2/h.
An alternative way to understand this renormalization

of conductance due to a Fermi-liquid contact is to in-
troduce a contact resistance, 1/Gc = (g − 1)(2g)(h/e2),
at both contacts in series with the theoretical predicted
resistance 1/g(h/e2). This would gives the total conduc-
tance exactly at e2/h. Here, the contact conductance
causes a voltage drop when matching with the wire and
gives rise to a current/voltage relation

Ii = Gc
i (V̄i − Vi), (6.1)

where Vi is the potential of the carriers injected into wire

i and V̄i is the applied voltage at the contact connected
to the wire i. We can understand this result by think-
ing in terms of the right- and left-moving currents inside
the wire and the Femi-liquid lead as seen in Fig. 6. The
incoming electrons from the Fermi-liquid side are at the
voltage V̄i of the reservoir. The outgoing current may be
at a different potential V̄ out

i at the contact point, even
though the electrons are expected to relax to the equi-
librium voltage as they propagate in the lead. Similarly,
the right- and left-moving currents in the TLL wire are
respectively at voltage Vi and V in

i . The junction of the
Fermi-liquid lead and the TLL has an effective conduc-
tance gee

2/h with

1/ge = (1 + 1/g) /2.

The current is then related to the difference in the volt-
ages of the two incoming currents as

Ii = ge(V̄i − V in
i ).

For the TLL wire, we can similarly write

Ii = g(Vi − V in
i ).

Combining the above two equations leads to Eq. (6.1).
Generally, it is useful to define a contact conductance
tensor Gc = δij(e

2/h)(2gi)/(gi−1) for a junction of three
wires.
As the measured conductance is based on the applied

voltage at contact, one can define a renormalized con-
ductance tensor, Ḡij , as Ii =

∑

j Ḡij V̄j . To connect this
conductance with one we found in the previous subsec-
tion, we invoke current conservation:

Ii =
∑

j

GijVj =
∑

j

Ḡij V̄j . (6.2)

Together with Eq. (6.1), one can show that27

Ḡ = (1+GG−1
c )−1G, (6.3)

or equivalently

Ḡ−1 = G−1 +G−1
c , (6.4)

which has a simple interpretation of resistances con-
nected in series.
Besides the decoupled fixed point that has obvious van-

ishing conductance ḠN = 0, we shall now apply Eq. (6.3)
and obtain the measured conductances of the other fixed
points. For Dirichlet fixed point, we have the renormal-
ized conductance

ḠD
ij =

2

3

e2

h
(3δij − 1). (6.5)

As the largest conductance one can obtain from single-
particle unitary scattering is GU

jk = −(4/9)(e2/h) for j 6=
k,20 the enhanced conductance above demonstrates the
role of multi-particle scattering processes.
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Upon attaching the wire to external Fermi-liquid leads,
the measured conductances of chiral fixed points become

Ḡ
χ±
jk =

1

2

e2

h
[(3δjk − 1)∓ ǫjk] , (6.6)

i.e., the currents flow only from lead 1 to 2, 2 to 3 and
3 to 1 for the χ+ fixed point and in reversed order for
χ− fixed point. Finally, the measured conductance of
asymmetric Ai fixed points reads

ḠAi

ij =
e2

h
(−1 + δij + δik + 2δjk − 3δijδik), (6.7)

which simply indicates a decoupled wire i with the rest
of two wires fully conducting.
We note that all renormalized conductance ḠD, Ḡχ±

and ḠAi , are the same as the unrenormalized conduc-
tance G with all gi = 1. This result highlights that the
dc conductance of a junction of TLL wires depends only
on the asymptotic value of the Luttinger parameters of
the wires, and in the case when Fermi liquid leads are
attached, this asymptotic value is gi = 1. Thus, when
in contact to Fermi liquid leads, the conductance ten-
sor of the junction will take on the universal values listed
above for the different fixed points. Notice, however, that
which fixed point is selected still depends on the gi’s of
the interacting wire segments.

VII. CONCLUSION

In summary, we applied the DEBC method to a two-
wire and a Y junction of TLL wires with generally un-
equal Luttinger parameters. For two spinless wires, we
successfully reproduced the prediction that all properties
of the junction are determined by a single effective Lut-
tinger parameter ge. We verified this prediction by direct
numerical calculations on the lattice with the method of
Refs. 66 and 67: We observed numerically that as long
as ge < 1, even if one of the wires has attractive inter-
actions gi > 1, any impurity leads to a vanishing linear
conductance. Moreover, we found that the nonuniversal
corrections to the correlations across the junction, which
come from perturbations with irrelevant boundary oper-
ators to the decoupled fixed point, are independent of the
individual Luttinger parameters and only depend on ge
and the local microscopic structure of the junction. For
ge > 1, we explicitly found a universal conductance of
gee

2/h regardless of the individual Luttinger parameters
and the microscopic details.
For a Y junction of nonidentical TTLs, we found that

the N-BC, χ-BC and the D-BC are stable within regions
of the (g1, g2, g3) parameter space, which we explicitly
determined. By identifying three more asymmetric fixed
points, corresponding to only one decoupled wire, and de-
termining the region of stability of each fixed point, we
determined the full phase diagram of the Y junction. We
also obtained explicit formulas for the conductance of all

fixed points. The findings of this work have direct exper-
imental relevance. In particular, our results shed light on
the issue of connecting interacting TLLs to Fermi-liquid
leads for the measurement of transport properties. Our
work also provides an important theoretical extension of
the well-known results on transport through junctions of
two and three identical TLL wires.
As an outlook, we finally discuss how to generalize the

current method to a junction of N > 3 wires. The key
to such generalization is to identify the possible fixed
points via the rotation matrix R. These rotation ma-
trices are constrained by charge conservation and can,
in general, be expressed as SO(N − 1) matrices after
eliminating the total-charge (center-of-mass) mode, c.f.,
Appendix A. Then, one has to identify the correspond-
ing N-BC, D-BC, chiral-like BC, and asymmetric BC
and analyze their stability. One useful trick for iden-
tifying the possible stable fixed points is to utilize the
fact that a stable BC would make certain boundary op-
erators effectively equal to identity, c.f. the discussion
in Appendix A.c. Of course, with the number of wires
increasing, the number of possible fixed points also in-
creases and the analysis becomes more complicated.
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Appendix A: Junction of three wires with unequal
Luttinger parameters: DEBC analysis

In this Appendix, we present the details of the DEBC
analysis of the stability of the following fixed points for
a junction of three quantum wires: decoupled, chiral-χ±,
Dirichlet, and Asymmetric-Ai fixed points. The system
is described by the action (2.1) with i = 1, 2, 3 and the
hopping Hamiltonian (2.10) with αij = γ/3, where γ is
the magnetic flux through the ring at the junction.
To simplify the notation, we drop the overhead tilde, ,̃

symbol for the rescaled fields throughout this appendix.
(All the bosonic fields are rescaled.) To employ the
DEBC method, it is convenient to choose a proper basis
for the rescaled boson fields. In the first step, we identify
the following center-of-mass field, which always satisfies
the N-BC due to charge conservation:

Φ0 =
1√

g1 + g2 + g3
(
√
g1ϕ1 +

√
g2ϕ2 +

√
g3ϕ3). (A1)
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(A) ± cycle

TRL
21(12) ∼ e±iK3·Φe

i
√

g1g2g3√
g1+g2+g3

(ẑ×K3)·Θ

TRL
32(23) ∼ e±iK1·Φe

i
√

g1g2g3√
g1+g2+g3

(ẑ×K1)·Θ

TRL
13(31) ∼ e±iK2·Φe

i
√

g1g2g3√
g1+g2+g3

(ẑ×K2)·Θ

(B) Backscattering

TRL
11 ∼ e

−i
2
√

g1g2g3√
g1+g2+g3

(ẑ×K1)·Θ

TRL
22 ∼ e

−i
2
√

g1g2g3√
g1+g2+g3

(ẑ×K2)·Θ

TRL
33 ∼ e

−i
2
√

g1g2g3√
g1+g2+g3

(ẑ×K3)·Θ

(C) LL-RR processes

T
LL(RR)
21 ∼ eiK3·Φe

±i(

√
2g1g2Θ1√
g1+g2

+
√

g3(g1−g2)Θ2√
2(g1+g2)(g1+g2+g3)

)

T
LL(RR)
32 ∼ eiK1·Φe

∓i(
√

g1g2Θ1√
2(g1+g2)

−
√

g3(g1+2g2)Θ2√
2(g1+g2)(g1+g2+g3)

)

T
LL(RR)
13 ∼ eiK2·Φe

∓i(
√

g1g2Θ1√
2(g1+g2)

+
√

g3(2g1+g2)Θ2√
2(g1+g2)(g1+g2+g3)

)

TABLE II. The boundary operators corresponding to single-
particle processes at the Y junction.

The dual field to Φ0, i.e.,

Θ0 =
1√

g1 + g2 + g3
(
√
g1θ1 +

√
g2θ2 +

√
g3θ3) (A2)

then becomes a constant and can be simply neglected.
We then define another two orthonormal boson fields:

Φ1 =

√
g2ϕ1 −

√
g1ϕ2√

g1 + g2
,

Φ2 =
[
√
g1g3ϕ1 +

√
g2g3ϕ2 − (g1 + g2)ϕ3]√

g1 + g2 + g3
√
g1 + g2

,

(A3)

as well as their dual fields, Θ1,2. Note that the choice of
basis above is arbitrary but, as will become apparent, is
a convenient one. We will organize the fields above into a
vectorΦ = (Φ1,Φ2)

T and its dual vectorΘ = (Θ1,Θ2)
T .

It is useful to define the following vectors:

K1 =(−
√
g1

√

2g2(g1 + g2)
,

√
g1 + g2 + g3

√

2g3(g1 + g2)
),

K2 =(−
√
g2

√

2g1(g1 + g2)
,−

√
g1 + g2 + g3

√

2g3(g1 + g2)
),

K3 =(

√
g1 + g2√
2g1g1

, 0),

(A4)

which will further simplify the notation. Notice that
these three Ki vectors add up to 0 for any gi.
By using the notation in Eq. (3.3) and neglecting Θ0

(due to the N-BC on Φ0), the boundary operators for
single-particle processes are categorized in four classes,
and listed in Table II. As in the two-wire case, the higher-
order processes can be constructed from these single-
particle boundary operators.

Using the ansatz (3.2), we then write a rotation matrix:

Rξ =

(

cos ξ sin ξ

− sin ξ cos ξ

)

, (A5)

where ξ is a rotation angle. The rotation matrix above
relates φL = (Φ+Θ)/2 to φR = (Φ−Θ)/2. In terms of
Rξ, the scaling dimension of boundary operators is given
by Eq. (3.5). We now proceed to the stability analysis of
the four Y-junction fixed points.

a. Decoupled fixed point

The decoupled fixed point corresponds to the N-BC for
Φ field, and makes the Θ field a pure number. There-
fore, all backscattering processes are effectively identity.
The rotation matrix is simply equal to RN

ξ=0 = 11. From

Eq. (3.5), the scaling dimension of an arbitrary operator
with the N-BC becomes ∆N

OB
= |a|2. The explicit scaling

dimensions for the operators in Table II are listed below:

OB ∆N
OB

(N-BC)

TRL
21 , TRL

12 , TLL
21 , TRR

21 |K3|2 = (g1 + g2)/(2g1g2)

TRL
32 , TRL

23 , TLL
32 , TRR

32 |K1|2 = (g2 + g3)/(2g2g3)

TRL
13 , TRL

31 , TLL
13 , TRR

13 |K2|2 = (g3 + g1)/(2g3g1)

Note that condition ∆N
OB

> 1 determines the stability
region of the N-BC, shown in red in Fig. 5.

b. Dirichlet fixed point

The Dirichlet fixed point corresponds the D-BC on the
Φ field, i.e., Φ is effectively a constant at boundary. The
rotation matrix of D-BC simply readsRD

ξ=π = −11. From

Eq. (3.5), the scaling dimension of an arbitrary opera-
tor with D-BC becomes ∆N

OB
= |b|2. Unlike the N-BC,

none of single particle processes becomes identity with
D-BC. However, some of two- or more-particle processes

do become identity under D-BC, for instance: TRL
21 TRL

12
†
,

TRL
32 TRL

23
†
and TRL

13 TRL
31

†
. This indicates that the Dirich-

let fixed point is associated with the Andreev reflection.
Hereby, we only list the scaling dimensions for the ±

cycle as they are the leading irrelevant operators:

OB ∆D
OB

(D-BC)

TRL
21 , TRL

12 g3(g1 + g2)/2(g1 + g2 + g3)

TRL
32 , TRL

23 g1(g2 + g3)/2(g1 + g2 + g3)

TRL
13 , TRL

31 g2(g3 + g1)/2(g1 + g2 + g3)

Now, the Dirichlet fixed point is stable only when all
these scaling dimensions ∆D

OB
> 1. In Fig. 5, the stability

region of Dirichlet fixed point (D-BC) is painted in green.

c. Chiral-χ± fixed points

The chiral-χ± fixed points are defined as follows: the
BC corresponding to the χ+ (χ−) fixed point would effec-
tively make all operators in + (−) cycle equal to identity
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for all Luttinger parameters. With this in mind, we could
derive the following relationship for the rotation angles
of the corresponding rotation matrices:

tan ξ± = ±
√

g1 + g2 + g3
g1g2g3

, (A6)

where ξ± are the rotation angles of χ±-BC, respectively.
The rotation matrices are obtained by plugging in the
respective rotation angles into Eq. (A5). Here, we do not
show them explicitly.
Let us first focus on the χ+ fixed points. The scaling

dimensions of the single particle processes (excluding +
cycle) are:

OB ∆
χ+

OB

TRL
11 , TRL

23 , TLL
13 , TRR

21
2g1(g2+g3)

g1g2g3+g1+g2+g3

TRL
22 , TRL

31 , TLL
21 , TRR

32
2g2(g1+g3)

g1g2g3+g1+g2+g3

TRL
33 , TRL

12 , TLL
31 , TRR

13
2g3(g1+g2)

g1g2g3+g1+g2+g3

Notice that these scaling dimensions are cyclic in three
indices and hence all operators are important for deter-
mining the stability of the χ+ fixed point.
As for χ− fixed point, one can show that all the leading

order operators have exactly the same scaling dimensions
listed in the table above. Thus, both χ± fixed points
share exactly the same stability. In Fig. 5, the stability
region of chiral-χ± fixed point is painted in orange.

d. Asymmetric fixed points

Although the use of rotation matrices Rξ is useful for
other fixed points, it is most convenient to identify rota-

tion matrices directly in the rescaled boson field, φ̃L,R
i ,

basis. Because the decoupled wire effectively has the N-
BC for itself and the connected wires should follow mu-
tual D-BC, by using Eq. (3.14), the rotation matrix of
asymmetric fixed point, A1, has the form

RA1 =







1 0 0

0 g2−g3
g2+g3

2
√
g2g3

g2+g3

0
2
√
g2g3

g2+g3

g3−g2
g2+g3






, (A7)

while those of A2,3 can be constructed by permuting the
indices in the corresponding matrix elements.
By using this rotation matrix (A7), it is straightfor-

ward to show that the following single-particle tunnel-
ing processes are equal to identity: TRL

32 , TRL
23 and TRL

11 .
In addition, the scaling dimensions of the leading rele-
vant/irrelevant operators read

OB ∆A1

OB
(A1-BC)

TRL
21 , TRL

12 , TLL
21 , TRR

21

TRL
13 , TRL

31 , TLL
13 , TRR

13
g1+g2+g3+g1g2g3

2g1(g2+g3)

TRL
22 , TRL

33 , TLL
32 , TRR

32
2g2g3
g2+g3

TRL
21 TRL

12
†
, TRL

13 TRL
31

†
2( 1

g1
+ 1

g2+g3
)

Here, we notice that some leading order operators are
two particle processes. To obtain the scaling behaviors
of operators near the A2,3 fixed points, one can simply
permute the indices of the Luttinger parameters with the
corresponding operators. In Fig. 5, the stability regions
ofA1,2,3 fixed points are painted in yellow, grey, and blue,
respectively.
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