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Magnetothermal Transport in Spin-Ladder Systems

Ofer Shlagman and Efrat Shimshoni
Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel

We study a theoretical model for the magnetothermal conductivity of a spin- 1
2

ladder with low
exchange coupling (J � ΘD) subject to a strong magnetic field B. Our theory for the thermal
transport accounts for the contribution of spinons coupled to lattice phonon modes in the one-
dimensional lattice. We employ a mapping of the ladder Hamiltonian onto an XXZ spin-chain in
a weaker effective field Beff = B − B0, where B0 = Bc1+Bc2

2
corresponds to half-filling of the

spinon band. This provides a low-energy theory for the spinon excitations and their coupling to
the phonons. The coupling of acoustic longitudinal phonons to spinons gives rise to hybridization
of spinons and phonons, and provides an enhanced B-dependant scattering of phonons on spinons.
Using a memory matrix approach, we show that the interplay between several scattering mechanisms,
namely: umklapp, disorder and phonon-spinon collisions, dominates the relaxation of heat current.
This yields magnetothermal effects that are qualitatively consistent with the thermal conductivity
measurements in the spin- 1

2
ladder compound Br4(C5H12N)2 (BPCB).

PACS numbers: 75.47.-m,66.70.-f,75.10.Pq,75.40.Gb

I. INTRODUCTION AND PRINCIPAL
RESULTS

Quasi one dimensional (1D) magnetic systems are present
in a variety of new compounds with magnetic elements,
and provide interesting manifestations of strongly correlated
physics in electronic systems1. These systems are realized in
crystals with a chain-like structure of the magnetic atoms,
where intrachain exchange interactions are much stronger
than interchain interactions. Their low dimensionality leads
to the enhancement of quantum fluctuations, and the forma-
tion of exotic phases at low temperatures.

In particular, spin- 1
2

chain systems (most commonly re-

alized in Cu-based compounds)2 are typically insulators in
which the charge degree of freedom is frozen, and the dynam-
ics is restricted to the spin sector. The elementary excitations
are spin flips propagating along the chains direction. These
can be described in terms of interacting Fermionic degrees
of freedom, called spinons, which carry spin but no charge3.
These systems therefore provide one of the simplest realiza-
tions of Luttinger liquids (LL). This spinon LL is, in fact,
the most abundant form of the so-called ”spin-liquid” state,
characterized by a magnetically disordered ground-state and
power law spin-spin correlations4.

The most elementary model for 1D spin systems is the XXZ
Hamiltonian5, describing a spin- 1

2
chain with nearest neighbor

interactions,

HXXZ =
∑
i

Jxy(Sxi+1S
x
i +Syi+1S

y
i )+Jz

∑
i

Szi+1S
z
i−B

∑
i

Szi .

(1)
Here Jα > 0 corresponds to antiferromagnetic exchange in-
teraction, and B is an external magnetic field (note that here
and throughout this paper we adopt units where gµB = kB =
~ = 1). The isotropic case Jxy = Jz yields the 1D Heisen-
berg model. On each site the spin operator is represented by
Si = σi

2
where σα are the pauli matrices. The spin chain can

be mapped into interacting spinless Fermions on a lattice1,2,
where the magnetic field B serves as a chemical potential. At
zero field the Fermions are at half filling, and upon raising
the magnetic field they gradually polarize until saturation at
B = Bc which corresponds to a depletion of the spinon band.

More complicated variants of the XXZ and Heisenberg
model can describe quasi 1D systems with additional in-
teractions such as zig-zag chains, spin-Peierls chains, and
ladders1,6,7. These systems support a richer phase diagram
including, e.g, gapped dimer crystal phases. Upon tuning
the magnetic field the system may undergo a phase transition
from a gapped phase into a spin-liquid8. In particular, in a
ladder subject to a strong field Bc1 < B < Bc2, a LL phase
of gapless spinons is recovered9.

One of the prominent manifestations of a spin-liquid state
is the contribution of gapless spinons to transport. Since there
is no straightforward way to measure the spin current through
an antiferromagnetic chain, investigation of the spinons prop-
erties can be done by measuring the thermal conductivity κ.
Experimental evidence for a substantial enhancement of ther-
mal conductivity along the chains direction (κ‖), has indeed

been found in CuO based chain compounds10–12. However,
interpretation of the data is complicated by the dominant
contribution of crystal phonons, and in particular their cou-
pling to the spinons13,14. In principle, an obvious means of
disentangling the spin degrees of freedom is the application
of an external magnetic field B, which allows the tuning of
system parameters in the spin sector only. The resulting mag-
netothermal effects – namely, variations of κ as a function of
B – can serve as a valuable probe of the spin system. At
low temperatures both spinons and phonons contribute to the
heat transport. The total heat conductivity can be split into
a pure phononic contribution, κph(T ), and a magnetic part,
κmag(B, T ). Then, we can extract the magnetothermal con-
ductivity:

∆κ(B, T ) = κ(B, T )− κ(0, T ) = κmag(B, T )− κmag(0, T ) .
(2)

Magnetothermal effects as mentioned above are practically
inaccessible in the typical CuO compounds, where the large
exchange coupling (J of order 2000 K) dictates an enormous
scale of the desired external field. In contrast, a field–tuned
manipulation is easily accessible in organic based magnetic
compounds, where J is typically of order 10K. An experiment
in the organic spin-chain material Cu(C4H4N2)(NO3)2

15 mea-
sured the magnetothermal conductivity. It indicated a non-
monotonic B-dependence of κ‖, and in particular - a pro-
nounced dip feature with a minimum at a field scale Bmin ∼



2

T . A subsequent theoretical study16 has shown that such fea-
ture arises due to the interplay between disorder and umklapp
scattering of the spinons: the latter process is sensitive to the
field-induced tuning of the spinon Fermi-level away from the
middle of the band. It thus reflects the Fermionic character
of the spinons.

As opposed to the spin-chain compounds mentioned above,
in spin-ladder compounds, magnetothermal effects are ex-
pected to dominate at high B where the spin-gap closes up.
A recent experiment17 measured the magnetothermal conduc-
tivity in the spin-ladder compound Br4(C5H12N)2 (BPCB).
An experimental study9 of thermodynamic properties of this
compound confirmed that it is described very well by the spin-
ladder model with J‖ = 3.6K (the exchange along the legs of
the ladder) and J⊥ ∼ 13K (the exchange along the rungs),
and its appropriate LL representation in the gapless regime
Bc1 < B < Bc2.

Indeed, the experimental data of Ref. [17] indicate that
upon raising the magnetic field, the magnetothermal conduc-
tivity ∆κ(B) vanishes for fields smaller than Bc1. However,
when the magnetic field is raised further and the spin-gap is
closed, there is a large decrease in the magnetothermal con-
ductivity. On top of this decrease there is a double dip fea-
ture with a local maximum at B0 = Bc1+Bc2

2
, corresponding

to half-filling for the Fermionic excitations. We assert that
this data can be qualitatively explained as follows: first, the
spinons in this system are slower than the phonons, there-
fore they act as impurities for the phonons18. This effect
induces a decrease in the conductivity upon entering the spin-
liquid regime (Bc1 < B < Bc2). Second, around half-filling
(B = B0) there is a positive spinonic contribution to trans-
port observed as a maximum at B = B0 . The double dip fea-
ture resembles results obtained for spin-chains15,16 where the
minimum in the magnetothermal conductivity corresponds to
moving the chemical potential away from half filling, to a scale
of order T .

Motivated by these observations, in the present paper we
study a minimal model for the magnetothermal transport of a
coupled spinon-phonon system in a single ladder. Our theory
accounts for a crucial distinction between ladders and chains:
the strong magnetic field required to enter the gapless spinons
phase provokes an enhanced coupling between spinons and
phonons. This leads to hybridization between the spinons and
phonons excitations. In addition, scattering of the phonons by
the slower spinons is magnified, generating a relatively strong
negative contribution to ∆κ(B). Qualitatively, our calculated
∆κ(B, T ) resembles the experimental data of Ref. [17].

The paper is organized as follows: in Sec. II we derive
the low-energy model for the spin system in the presence of
coupling to 1D phonons. In Sec. III we study the effect of
scattering processes on the thermal conductivity in the frame-
work of the memory matrix approach for the calculation of
the conductivity tensor, and obtain the leading magnetic field
and temperature dependencies of the thermal conductivity κ.
In Sec. IV we summarize and discuss the results. Finally, in

appendices A through C we present details of the calculation
of the various memory matrix elements.

II. LOW-ENERGY MODEL FOR THE
COUPLED SPIN-PHONON SYSTEM

We wish to compute the thermal conductivity of a system
which consists of antiferromagnetic spin- 1

2
ladders interacting

with the lattice phonons. To this end, we focus on a simplified
model for such a system, which considers a single ladder - i.e.,
both spinons and phonons are one-dimensional. The param-
eters of the model are adjusted to mimic those of BPCB17,
in particular assuming the limit J⊥ > J‖ (strong rung cou-
pling). In addition, we assume J‖ � ΘD. In this section
we describe the low energy model of the system, and derive
the eigenmodes which constitute the elementary excitations
of the coupled spin-phonon system.

A. Bosonization of the spin ladder Hamiltonian

We begin by describing the spin system. The Hamiltonian
of a spin- 1

2
two leg ladder in a magnetic field B along the

z-direction is

Hs =

N∑
i=1

2∑
ν=1

[J‖Si,ν ·Si+1,ν −BSzi,ν ] +

N∑
i=1

J⊥Si,1 ·Si,2 , (3)

where ν = 1, 2 denotes the leg index. For J⊥ > J‖, it can
be approximately mapped into an effective spin- 1

2
chain in a

weaker magnetic field19 Beff = B −B0:

Hs =

N∑
i=1

[Jeffxy (σxi σ
x
i+1 +σyi σ

y
i+1)+Jeffz σzi σ

z
i+1]−

N∑
i=1

Beffσ
z
i ,

(4)
where the effective parameters are given by

Jeffxy = J‖, Jeffz = J‖/2 ,

Beff = B −B0, B0 ≡ J⊥ + J‖/2 . (5)

The isospin operators σαi describe the effective spin- 1
2

dynam-
ics characterizing the low energy sector, which at high B is
restricted to the singlet and lower triplet state on each rung.
Hence, in distinction from the real-spin XXZ model [Eq. (1)],
〈σzi 〉 = 0 corresponds to a time-reversal symmetry broken
state. To derive the low-energy model for the dynamics of
this system we first use the Jordan-Wigner transformation,

σ+
i → c†i exp(iπ

i−1∑
j=−∞

c†jcj), σzi → c†i ci − 1/2 (6)

which maps the spin problem onto a model of interacting
spinless Fermions on a lattice:

Hs = −t
∑
i

(c†i ci+1 + h.c) + V
∑
i

(c†i ci − 1/2)(c†i+1ci+1 − 1/2) , (7)

where t = Jeffxy /2 and V = Jeffz . For Beff = 0 the
Fermionic band is half-filled and the Fermi momentum is

k
(0)
F = π

2a
. Finite Beff corresponds to a chemical poten-
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tial for the Fermions, which shifts the Fermi momentum into

kF = k
(0)
F (1 +Meff ), with Meff an effective magnetization.

Near the middle of the band (Beff = 0), the Fermion oper-
ators can be expressed in terms of Bosonic ones related to the
Fermion density fluctuations using the standard dictionary of
abelian Bosonization (see, e.g., appendix D in Ref. [1]). For
the spin operators (in the continuum limit: x = ia) this yields

σ+(x) =
e−iθ(x)

√
2πa

[(−)x + cos(2φ(x))] ,

σz(x) = − 1

π
∂xφ(x) +

(−)x

πa
cos(2φ(x)) , (8)

where σ±(x) = 1√
a
σ±i , σ

z(x) = 1
a
σzi , and a is the lattice

constant. Substituting Eq. (8) into Eq. (4) we can describe
the low energy properties of the spin system in terms of the
Boson Hamiltonian:

Hs = H0
s +Hu ,

H0
s =

1

2π

∫
dx[g(∂xφ(x))2 + vF (πΠ(x))2] , (9)

Hu = gu

∫
dx cos[4φ(x)] ,

where

vF = aJ‖, g = vF

(
1 +

2

π

)
, gu = −

J‖
4π2a

, (10)

and Π(x) = 1
π
∂xθ(x) is the canonical conjugate of φ(x), obey-

ing [Π(x), φ(x′)] = iδ(x− x′). H0
s is the standard LL Hamil-

tonian

HLL =
u

2π

∫
dx

[
1

K
(∂xφ)2 +K(πΠ)2

]
, (11)

where

u = vF

(
1 +

2

π

)1/2

has the dimensions of velocity and

K =

(
1 +

2

π

)−1/2

is the dimensionless Luttinger parameter. Since K > 1/2,
the umklapp term Hu is irrelevant (i.e. flows to zero under
renormalization group (RG) for T → 0) and hence can be
neglected in the description of the low-energy thermodynamic
properties. However, as we shall see in the next section, it
plays an essential role in the transport.

For B 6= B0, the finite Beff introduces an additional term
to H0

s due to the last term in Eq. (4), which induces a finite
effective magnetization. The most relevant correction is of
the form

1

π

∫
dxBeff∂xφ , (12)

which can be absorbed in the Gaussian part by a shift of the
field φ, reflecting the shift of chemical potential for spinons.

As implied by the exact Bethe ansatz solution, the LL form
of H0

s is in any case maintained for arbitrarily large Beff ,
but with renormalized parameters1,20. In particular K(Beff )
approaches 1 close to the edges of the band (B → Bc1 or
B → Bc2).

An additional correction to Hs arises from weak disorder in
the lattice, which can be accounted for by adding a random
term δB(x) to Beff in Eq. (4). Such term may arise from
defects leading to random corrections to J⊥, J‖ via B0 [Eq.
(5)]. This introduces a scattering term proportional to∫

dxδB(x) cos[2φ(x)] . (13)

When we discuss the relaxation of the heat current, both the
umklapp and disorder terms will become important, and will
be considered as perturbations of H0

s .

B. Coupling to Lattice Phonon Modes

Up to now we described only the spin system. Next we will
include the phonons in the model. In a single two-leg ladder
of atoms, three modes of 1D phonons should be accounted
for: two acoustic modes, longitudinal and transverse, and an
optical mode associated with fluctuations in the rung length.
The dominant coupling of phonons to spinons arises from the
dynamical corrections to the exchange interaction, J , due to
lattice vibrations. The spinons therefore couple to leading
order only to the longitudinal acoustic mode (via fluctuations
in J‖) and to the optical mode (via fluctuations in J⊥).

We first consider the effect of coupling of optical transverse
phonon modes to the spinons. We show that such coupling
merely leads to normalization of the Luttinger parameters, u
and K of Eq. (11).

Let us define the transverse phonon field in the following
way:

Ut(x) = U1(x)− U2(x), (14)

where U1,2 are transverse displacements (along the rung di-
rection) of atoms in different legs of a ladder normalized by
the rung size b. Now, we substitute this definition of Ut in
the phonon-dependant exchange to obtain:

J⊥(Ut) ≈ J(0)
⊥ + δJ⊥Ut , δJ⊥ ≡ b

∂J⊥
∂r

∣∣∣∣
r=b

,

r = b(1 + Ut). (15)

Inserting into Eqs. (5) and (12), we find that this adds to the
Hamiltonian a term of the form

Ht
sp = −δJ⊥

∫
dx

2π
Ut(x)∂xφ(x). (16)

It is useful to change into momentum representation with

Ut(x) =

√
a

L

∑
k

(bke
ikx + b†ke

−ikx), φ(x) =

√
a

L

∑
k

(φke
ikx + φ−ke

−ikx) (17)
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(where L is the length of the legs). Then, the quadratic part
of the coupled spinon-phonon Hamiltonian is given by

H = H0
s +Ht

p +Ht
sp, (18)

where H0
s describes the spinons in terms of a Luttinger Hamil-

tonian [Eq. (11)],

Ht
p = ω0

∑
k

b†kbk (19)

describes the optical transverse phonons, and

Ht
sp = −δJ⊥a

∑
k

ik(φkb
†
k − φ−kbk) (20)

is the spinon-phonon interaction. Using a coherent path in-
tegral representation, it is a straightforward exercise to inte-
grate over the phonon degrees of freedom, yield an effective
action for the spinons, Seff , defined as

e−Seff [φ] =

∫
DbDbe−S[φ,b,b].

In the limit k, ωn → 0 this results in a Luttinger model with
a modified coefficient of (∂xφ)2:

u

K
→ u

K
+
δJ2
⊥a

ω0
. (21)

Hence, the renormalized parameters become:

K̃ = K

[
1 +

δJ2
⊥aK

ω0u

]−1/2

, ũ = u

[
1 +

δJ2
⊥aK

ω0u

]1/2

. (22)

Next we focus on the longitudinal phonons, which coupling
to the spin sector has the most dramatic consequences. As-
suming small displacements of atoms from their equilibrium
positions, we can approximate the exchange interaction by:

J‖(r) ≈ J(0)

‖ + g‖∂xUl(x), g‖ ≡ a2 ∂J‖
∂r
|r=a, (23)

where r = a[1 + Ul(x + a) − Ul(x)] is the distance between
neighboring atoms on the same leg, and the dimensionless
field Ul(x) describes the relative longitudinal displacements of
atoms. When inserted into Eq. (4), these corrections give rise
to coupling between the spinons and phonons. The Hamilto-
nian describing longitudinal phonons traveling parallel to the
chains is

Hl
p =

v

2π

∫
dx[(πPl(x))2 + (∂xUl(x))2], (24)

where v ∼ aΘD (with ΘD the Debye temperature) is the
sound velocity, and Pl is the momentum conjugate to Ul.

After inserting the phonon-dependant correction to the ex-
change interaction into Eqs. (5), (9) and (12), and adding the
phonon Hamiltonian [Eq. (24)], the low-energy Hamiltonian
of the coupled spin-phonon system can be written as:

H0 =
1

2π

∫
dx
{
g(∂xφ̃(x))2 + vF (πΠ(x))2 + hl∂xUl(x)∂xφ̃(x)

+v[(∂xUl(x))2 + (πPl(x))2] +
g‖B

(0)
eff

g
∂xUl(x)

}
, (25)

with

hl ≡ −g‖

[
1 +

2(1 + 2/π)B
(0)
effa

g

]
,

∂xφ̃(x) ≡ ∂xφ(x) +
B

(0)
eff

g
, B

(0)
eff ≡ B − J

(0)
⊥ − J

(0)

‖ /2. (26)

In Eq. (25) we neglected small terms (of order ∂xUl(∂xφ)2

and higher). These terms are irrelevant, and moreover corre-
spond to forward scattering that cannot contribute to trans-
port properties of the spinons to leading order. Note that,

in contrast with spin-chains13, at half-filling (B
(0)
eff = 0) the

coupling to the phonons via the coupling constant hl is lin-
ear in the spinon field ∂xφ and has to be included in the
low-energy Hamiltonian. This reflects the breaking of time-
reversal symmetry in the system, where spinons correspond
to fluctuations around a partially polarized magnetic state.
Below we show how these terms lead to new eigenmodes of
mixed spinon-phonon degrees of freedom.

C. Derivation of Hybrid Eigenmodes

The Hamiltonian H0 in Eq. (25) describes the low energy
properties of the coupled spinon-phonon system. In order to
find the eigenmodes which constitute the elementary degrees
of freedom of the system, we proceed in diagonalizing it by a
canonical transformation13:

φ̃(x) = Cφ1(x)− λ2Sφ2(x),

Ul(x) =
1

λ2
Sφ1(x) + Cφ2(x), (27)

and similarly for the canonically conjugate momentum:

Π(x) = CΠ1(x)− 1

λ2
SΠ2(x),

Pl(x) = λ2SΠ1(x) + CΠ2(x), (28)

where:

C ≡ 1√
2

[
1− 1√

A2 + 1

]1/2

, S ≡ 1√
2

[
1 +

1√
A2 + 1

]1/2

,

λ2 ≡
√
vF /v, A ≡

hl
√
vF /v

gvF /v − v
≈ −hl

v

√
vF
v
� 1. (29)

Eqs. (27) and (28) are designed to preserve the canonical
commutation relations [φν(x),Πν′(x

′)] = iδνν′δ(x− x′). The
last approximation in Eq. (29) assumes vF � v, which follows
from J‖ � ΘD. The parameter A defines the strength of
the coupling between the spinons and phonons. Note that it
would be much stronger in a compound where J ∼ ΘD, in
which case the phonon and spinon velocities match, vF ∼ v.

After this transformation, H0 [Eq. (25)] takes the form

H0 =
1

2π

∫
dx

{∑
ν=1,2

[
vν
Kν

(∂xφν(x))2 + vνKν(πΠν(x))2

]

+
hlBeff
g

[
S

λ2
∂xφ1(x) + C∂xφ2(x)

]}
, (30)

with
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v1

K1
=

1

2
√
A2 + 1

[
g(
√

1 +A2 − 1) +
v2

vF
(
√

1 +A2 + 1) +

√
v

vF
hlA

]
, v1K1 = vF

v2

K2
=

1

2
√
A2 + 1

[
gvF
v

(
√

1 +A2 + 1) + v(
√

1 +A2 − 1)− hl
√
vF
v
A

]
, v2K2 = v,

(31)

which can be approximated for vF � v by

v1

K1
≈ v2

vF

(
1− 3A2

4

)
,

v2

K2
≈ gvF

v

(
1 +

3A2v2

4gvF

)
. (32)

In this form, H0 is separable into two independent species of
LLs. Using A� 1, the LL parameters are approximated by

v1 ≈ v
(

1− 3A2

4

)1/2

, v2 ≈ vF

√(
1 +

2

π

)(
1 +

3A2v2

4gvF

)
,

K1 ≈
vF
v

(
1 +

3A2

4

)1/2

, K2 ≈
v

vF

√√√√1 + 3A2v2

4gvF

1 + 2
π

. (33)

Finally, to get rid of the linear terms ∂xφ1(x) and ∂xφ2(x) in
Eq. (30), we define

φ̃1(x) = φ1(x) +
BeffK1hlS

2v1gλ2
x ,

φ̃2(x) = φ2(x)− BeffK2hlC

2v2g
x , (34)

and

Π̃1(x) = Π1(x), Π̃2(x) = Π2(x) (35)

which preserve the canonical commutation relations. The low
energy Hamiltonian is now cast in the quadratic form of a LL:

H0 =

2∑
ν=1

vν

∫
dx

2π

[
1

Kν
(∂xφ̃ν(x))2 +Kν(πΠ̃ν(x))2

]
. (36)

The Hamiltonian (36) is integrable (i.e. it has an infinite
number of conservation laws), therefore the currents we are
interested in (e.g heat current) are protected and cannot de-
grade. In order to get a finite conductivity we must add per-
turbations around H0, e.g. the previously neglected umklapp
term, which in terms of the shifted spinon field is given by

Hu = gu

∫
dx cos[4φ̃(x)−∆kx], ∆k ≡ 4Beff

g
. (37)

Hu describes processes where two spinons move from the right
Fermi surface to the left (or vice versa), gathering momentum
∆k = 4kF −G in which G = 2π

a
is the reciprocal lattice mo-

mentum. Another important correction to H0 is the backscat-
tering term

Hd =

∫
dxζ(x) cos[2φ̃(x)], ζ(x) ≡ δB(x)

πa
, (38)

which describes scattering of spinons due to weak disorder
caused by defects in the lattice. We assume uncorrelated ran-
dom disorder where the sample average gives

ζ(x) = 0,

ζ(x)ζ(x′) = Dδ(x− x′) . (39)

Using Eq. (27), Hu and Hd can be expressed in terms of the
hybrid spinon-phonon eigenmodes φ1(x), φ2(x):

Hu = gu

∫
dx cos(2αφ1(x)− 2βφ2(x)−∆kx),

Hd =

∫
dxζ(x) cos(αφ1(x)− βφ2(x)), (40)

with

α ≡ 2C, β ≡ 2λ2S . (41)

Finally, we note that higher orders in the expansions Eq.
(15) and (23) yield an additional scattering term between
phonons and spinons, which turns out to have a significant
effect on the transport carried by phonons. subsection III B
is devoted to a detailed study of the implication of this term
on the thermal conductivity. Together with Hd, Hu [Eqs.
(37) and (38)], this scattering process governs the degrading
of currents leading to a finite conductivity.

III. THERMAL TRANSPORT OF THE
SPIN-LADDER SYSTEM

The magnetothermal effects observed, e.g., in Ref. [17]
are a consequence of the interplay between different scatter-
ing mechanisms which result in the change of the thermal
conductivity as a function of magnetic field [κ(B)]. Two pri-
mary effects are expected to dominate the B-dependance in
the coupled phonon-spinon system: one arises from the pos-
itive contribution of spinons as heat carriers, and the other
from the negative contribution of spinons acting as scatterers
of the phonons. The former contribution is governed by the
interplay of two scattering mechanisms, umklapp and disor-
der, and consequently depends on the deviation of the spinon
chemical potential from a commensurate value16. At the same
time, the scattering due to phonon-spinon interaction is also
dependant on the filling of the spinon band, which dictates
the available phase-space for scattering. We note that due to
the hybridization of phonons and spinons, these various effects
are not entirely separable. In the present section we derive
the magnetothermal conductivity of the spin-ladder model by
using a memory matrix formalism, which allows an account of
all the above mentioned scattering processes on equal footing.

A. Approximate Conservation Laws and Memory
Matrix Formalism

To calculate the heat conductivity of the spin-ladder sys-
tem, we use the memory matrix formalism21 which has been



6

successfully implemented in previous studies of thermal trans-
port in spin-chains13,16. The memory-matrix approach is
suited for systems where due to approximate conservation
laws, the conductivity almost diverges22. The main step
within this approach is the calculation of a matrix of re-
laxation rates for a given set of slow modes. The method
allows to calculate transport coefficients within a hydrody-
namic approximation, and provides a reliable lower bound to
the conductivity23. Moreover, it gives precise results as long
as all the relevant slow modes are included in the calculation.

The heat transport properties of the spin–ladder system at
low temperature are governed by the approximate conserva-
tion of a certain current, Jc which has a finite overlap with
the heat current. In particular, an exponentially slow decay
of Jc will lead to an exponentially large heat conductivity:
the component of the heat current overlapping with Jc is pro-
tected, and will decay exponentially slowly.

In the present case, the important step is to realize that in
the absence of disorder, the linear combination

Jc = Jφ −
∆k

4
Js (42)

is conserved, meaning [Jc, H0 + Hu] = 0, where H0 is the
LL Hamiltonian (36), and Hu the umklapp term [Eq. (37)].
Here,

Jφ =

∫
dxΠ(x)∂xφ(x),

Js = NR −NL =

∫
dxΠ(x), (43)

are the (normalized) heat current associated with the spinons
and the spin current, respectively, where NR and NL are the
total number of right or left moving spinons. The overlap
between the heat current and the conserved current is man-
ifested by the appearance of Jφ in Eq. (42). The reason
that Jc is conserved by umklapp scattering is as follows: the
umklapp term describes a process where a momentum ∆k is
generated and therefore induces a change in Jφ proportional
to ∆k. In the same process, the normalized spin current is
changed by −4 as two right-moving spinons are scattered into
left-moving states. Since Jc is conserved by the umklapp term
Hu, the heat current can not be degraded by Hu alone and
additional scattering processes need to be accounted for.

The low-energy Hamiltonian H0 conserves an infinite num-
ber of modes in addition to Jc. However, when perturbations
are added, these modes decay faster than the conserved cur-
rent Jc, since these modes do not commute with all the terms
added.

We now show how to calculate perturbatively the thermal
conductivity when the relaxation of the heat current is dom-
inated by the slow modes. In our case the memory matrix is
formulated in a space spanned by the slow modes J1, J2, J3

and Js [Eq. (43)], where

J1 =

∫
dxΠ1(x)∂xφ1(x), J2 =

∫
dxΠ2(x)∂xφ2(x),

J3 =

∫
dxΠ3(x)∂xφ3(x) (44)

which are all conserved by H0. The fields φ3,Π3 represent
the transverse acoustic phonons which do not hybridize with
spinons but are still scattered by spinons and therefore con-
tribute to relaxation of the heat current. The heat current

along the chains direction is JQ = v2
1J1 + v2

2J2 + v2
3J3, where

v1 and v2 are given in Eq. (33).
To set up the memory matrix formalism21, we first intro-

duce a scalar product on the operators in the space spanned
by the slow modes

(A(t)|B) = T

∫ 1/T

0

dλ〈A†(t)B(iλ)〉, (45)

where 〈...〉 denotes an expectation value at equilibrium, in-
cluding average over disorder configurations. The dynamic
correlation function of the operators A and B is

χAB(ω) =

∫ ∞
0

dteiωt(A(t)|B)

=
iT

ω

∫ ∞
0

dteiωt < [A(t), B] > − (A|B)

iω
, (46)

and the matrix of conductivities is given by

σpq(ω) =
1

TL
χJpJq (ω) (47)

where p, q are either of the slow modes. The heat conductivity
is given by

κ =
1

T
σQQ (48)

where JQ denotes the heat current. One can also write the
matrix of static susceptibilities as

χpq =
1

TL
(Jp|Jq) . (49)

It can be shown21 that the matrix of conductivities, σ̂, can
be expressed in terms of a memory matrix, M̂

σ̂ = χ̂(T )[M̂(ω, T )− iωχ̂(T )]−1χ̂(T ) . (50)

The elements of the matrix M̂(ω) in the d.c. limit (ω → 0)
are

Mpq = lim
ω→0

Cpq(ω)− Cpq(ω = 0)

iω
→ −i∂ωCpq|ω=0 (51)

where p, q can be each of the slow modes of the theory, and
Cpq(ω) is the Fourier transform of the retarded correlation
function,

Cpq(ω) =

∫ ∞
0

dteiωt〈[Fp(t), Fq(0)]〉, (52)

of the force operators:

Fp ∼ J̇p = i[H, Jp] = i[Hpert, Jp]. (53)

Here Hpert stands for perturbations to the low-energy Hamil-
tonian of the system H0, that can relax the current Jp [such
as Hu, Hd, Eqs. (37), (38)]. In the last equality we used
[Jp, H0] = 0 for p = s, 1, 2, 3, which justifies a perturbative

expansion of M̂ : since J̇p are already linear in perturbations
around H0, the expectation values in Eq. (49) and (52) are
computed with respect to H0.

From Eqs. (48) and (50) it follows that the d.c. thermal
conductivity is given by

κ =
1

T
χ̂M̂−1χ̂ . (54)
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The static susceptibility matrix is given by

χ̂ =


2

πvF
0 0 0

0 πT2

3v31
0 0

0 0 πT2

3v32
0

0 0 0 πT2

3v33

 (55)

(where the matrix indices are s, 1, 2, 3). In our case the three

leading perturbations contributing to the memory matrix, M̂ ,
are umklapp and disorder in the spin sector, and phonon
scattering processes which include phonon-spinon interaction.
Thus, the memory matrix is separated into three parts,

M̂ = M̂u + M̂d + M̂p−s . (56)

Using the conservation law of the slow mode Jc [Eq. (42)] we
find relations between the different umklapp matrix elements
(see appendix A):

Mu
s1 =

∆k

4
Mu
ss −Mu

s2,

Mu
12 =

∆k

4
Mu
s2 −Mu

22, (57)

Mu
11 =

∆k

4
Mu
s1 −Mu

12.

When vF � v, and thus K1α
2 � K2β

2 [see Eq. (41)], the

matrix M̂u greatly simplifies. Using the relations (57) we

find that the leading contribution to M̂u depends only on one
element Mu

ss = Mu
s , and we have

M̂u ∼=


Mu
s 0 ∆k

4
Mu
s 0

0 0 0 0
∆k
4
Mu
s 0 ( ∆k

4
)2Mu

s 0
0 0 0 0

 . (58)

The disorder contribution, M̂d, is a diagonal matrix with
elements denoted by Md

pp = Md
p (p = s, 1, 2, 3). Finally,

the dominant contribution from phonon-phonon and phonon-
spinon scattering, M̂p, appears in the diagonal elements M1,
M3 (a detailed calculation is provided in the next subsection).

Substituting these relations into Eq. (54), we obtain an
expression for the thermal conductivity

κ(B, T ) ∼=
1

T

[
v4

1χ
2
11

M1
+

16v4
2χ

2
22(Md

s +Mu
s )

∆k2Md
sMu

s + 16Md
2 (Md

s +Mu
s )

+
v4

3χ
2
33

M3

]
. (59)

The B-dependance of this expression is encoded in the vari-
ous matrix elements Mu

s , M
d
s ,M1 and M3. We note that the

scattering processes in the spin sector (described by Mu
s , M

d
s )

dominate near half-filling of the spinon band, where their

spectrum can be linearized and Bosonization is justified. Us-
ing Eq. (40) for the relevant terms in the Hamiltonian, we
derive Mu

s (for a detailed calculation, see appendix A),

Mu
s = gs

(
T

T0

)2K2β
2+2K1α

2−3

B[K2β
2/2− iδ, 1−K2β

2]B[K2β
2/2 + iδ, 1−K2β

2]<[Ψ(1−K2β
2/2− iδ)− (Ψ(K2β

2/2 + iδ)]

gs ≡
g2
u

2π2
sin(πK2β

2), δ ≡ v2∆k

4πT
, T0 ≡

v2

2πa
, (60)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function, Ψ(x) = Γ′(x)
Γ(x)

is the digamma function and the parameters K1, K2, α and
β are defined in Eqs. (33) and (41). The dimensionless pa-

rameter δ determines the dominant field dependance of M̂u

via ∆k [see Eq. (37)]. For the disorder part of M̂ we find

M̂d =


Ds
(
T
T0

)K2β
2/2+K1α

2/2−2

0 0 0

0 D1

(
T
T0

)K2β
2/2+K1α

2/2

0 0

0 0 D2

(
T
T0

)K2β
2/2+K1α

2/2

0

0 0 0 0

 (61)
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with

Ds ∼=
4πDa2

v3
2

, D1
∼=
DK1α

2

2v1
, D2

∼=
DK2β

2

2v2
(62)

where D is defined in Eq. (39). The B-dependance of M̂d is
implicit in the parameters K1, K2, α, β.

Incorporating Eqs. (60), (61) in the second term of Eq.
(59), we find the primary magnetothermal effects originating
from relaxation processes in the spin sector. To complete the
derivation of κ(B, T ), one must account for the B-dependance
of M1, M3 originating from phonon-spinon interaction. This
part of the derivation requires special attention, and is dis-
cussed in subsection B below.

B. Phonon-Spinon Scattering

As already mentioned above, we focus on ladders with small
exchange coupling obeying J‖ � ΘD, where the phonons typ-
ical velocity is much larger than the spinons velocity. There-
fore, the spinons act as impurities which scatter the phonons.
These scattering processes lead to relaxation of the phononic
heat current and therefore to a prominent dip in the thermal
conductivity upon entering the partially filled spinon band,
for Bc1 < B < Bc2. These add a B-dependant contribu-
tion to the scattering rate of both longitudinal and transverse
branches of acoustic phonons (represented by the Bosonic
fields Ul, φ3). Below we study the contribution of phonon-
spinon scattering processes to the corresponding memory ma-
trix elements.

In order to account for scattering processes of phonons on
spinons, we expand the phonon-dependant exchange (23) to
second order in ∂xUl. The most relevant phonon scattering
term arising from this order of the expansion is of the form

Hp−s = gp−s

∫
dx

2π
(∂xUl)

2∂xφ. (63)

A similar term resulting from the transverse displacements
yields a coupling of spinons density to (∂xφ3)2. We wish to

consider magnetic-field dependance in a wide range, i.e. the
entire spinon-band. For this purpose we model the spinons
as free Fermions at a chemical potential dictated by B, a rea-
sonable approximation, e.g., for the ladders in BPCB where
the Luttinger parameter K is not far from 1 for arbitrary B
[9]. Using ∂xφ(x) = −πρ(x) [1], and turning to Fourier space,
Hp−s acquires the form:

Hp−s =
∑

kk′pp′Gn

Vpp′c
†
k′ckb

†
p′bpδ(k − k

′ + p− p′ −Gn),

Vpp′ =
gp−spp

′

√
ωpωp′

, (64)

where ck is a Fermionic (spinon) annihilation operator, and bp
is a Bosonic (phonon) annihilation operator. Hp−s describes
elastic scattering where a phonon and a spinon with momenta
p and k respectively, scatter into p′ and k′ respectively.

We need to calculate the effect of this term on the phononic
heat current

JEph =
∑
p

vpωpb
†
pbp, vp =

∂ωp
∂p
≈ v sign(p), (65)

where we have assumed a linear dispersion ωp ≈ v|p|. The
memory matrix element [Eq. (51)] is therefore calculated with
the correlation function (52) of the force operator

Fp−s ∼ [JEph, Hp−s]. (66)

Using Wick’s theorem we obtain an expression for this corre-
lation function (see appendix C for details)

Cp−s =
∑
kpq

Wpqδ(∆ω)np+qfk−q(1 + np)(1− fk),

Wpq = −2v2g2
p−s|p(p+ q)|q2, q ≡ p′ − p,

∆ω ≡ εk − εk−q + ωp − ωp+q, (67)

where fk = (e(εk−µ)/T + 1)−1, np = (eωp/T − 1)−1, are Fermi
and Bose distributions respectively. The memory matrix ele-
ment is the derivative of Cp−s with respect to ω. Integrating
by parts and using the energies delta function we obtain:

Mp−s =

∫
dkdp

∂

∂q

[
Wpqnp+qfk−q(1 + np)(1− fk)

∂∆ω
∂q

]
q=q0

1
∂∆ω
∂q
|q=q0

, (68)

where q0 is the momentum transfer that obeys the energy
and momentum conservation dictated by the delta functions.
Since the phonon dispersion ωp = v|p| is much steeper than

the spinon dispersion εk = −J(0)

‖ cos(ka) , energy and momen-

tum conservation can only be satisfied by phonon backscat-
tering where p → p + q = −p + δp, |δp| << |p|. This is
because a small change in phonon momentum will lead to a
large energy change, while the spinon energy transfer is small
for small momentum transfer (see Fig. 1). The integrals in
Eq. (68) were solved numerically after approximating

δp ∼=
J

(0)

‖

v
[cos(k + 2p)− cos(k)] ,

to get the temperature and field dependencies of Mp−s (see
Figs. 2, 3). The memory matrix is closely related to the
relaxation time of the scattering processMp−s ∼ τ−1

p−s. Indeed
as indicated by Fig. 2, phonon scattering occurs practically
only for Bc2 < B < Bc1, in the spin-liquid phase where the
spinons are gapless, and it is maximal for B = B0 (half filling
of the spinon band). The temperature dependance of Mp−s
(Fig. 3) for Beff = 0 gives a good fit to a power law Mp−s ∼
Tσ, with σ ∼= 4.5.

We next recall that under the approximation vF � v, one
obtains α � β [see Eqs. (29), (41)], which implies that one
hybrid mode φ1 is phonon-like, while φ2 is spinon-like. There-
fore, the scattering of longitudinal phonons is included to a
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FIG. 1: (color online) Schematic Plot of the phonons (red)
and the spinons (green) energy dispersions, the allowed
phonon backscattering (red curved arrow) and the corre-
sponding spinon scattering (green curved arrow). The black
arrows represent the momentum transfer q0 = p′−p = k−k′.
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FIG. 2: (color online) Isotherms of Mp−s as a func-
tion of magnetic field for various temperatures T =
0.25K, 0.27K, 0.30K, 0.33K, 0.36K, 0.38K, 0.42K. The pa-
rameters used for this plot: J‖ = 3.6K, J⊥ = 14.4K, gp−s =
0.04, v

a
= 18K.

good approximation only in the M1 element of the memory
matrix. This is added to the disorder term already retrieved
earlier, and a B-independent contribution which assumes a
power-law dependance on T . We thus obtain an expression
of the form

M1 = D1

(
T

T0

)K2β
2/2+K1α

2/2

+DpT
γ +Mp−s . (69)

A similar expression, excluding the first term, holds for M3

which describes the scattering of transverse acoustic phonons.
Substituting in (59), we obtain the final expression for κ(B, T )
and consequently for ∆κ(B, T ) [Eq. (2)]. The resulting B
and T dependance of ∆κ(B)/κ(0) are plotted as a function
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FIG. 3: (color online) Mp−s at half-filling (Beff = 0) as a
function of temperature. The parameters used for this plot:
J‖ = 3.6K, J⊥ = 14.4K, gp−s = 0.04, v

a
= 18K.

of magnetic field for different temperatures (Fig. 4). We note
that this result, although based on a highly simplified min-
imal model which captures the main physics of the system,
qualitatively reproduces the prominent features of the exper-
imental data of Ref. 17.
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FIG. 4: (color online) Isotherms of the normal-
ized magnetothermal conductivity as a function
of magnetic field for various temperatures T =
0.25K, 0.27K, 0.30K, 0.33K, 0.36K, 0.38K, 0.42K. The pa-
rameters used for this plot: J‖ = 3.6K, J⊥ = 14.4K, gp−s =

0.04, D = 1.6 × 10−8, v
a

= 18K, Dp = 7.4 × 10−8, D3 =

4.6× 10−6, γ = 4.

IV. SUMMARY AND DISCUSSION

In this work we studied the thermal conductivity of weakly
disordered spin ladders subject to a magnetic field and cou-
pled to phonons. We found that due to coupling between
the phonons and the spins, the elementary degrees of free-
dom are hybrid spinon-phonon modes and strong scattering
of phonons on spinons is induced. Our study of the phonon-
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spinon scattering found that due to energy and momentum
conservation only certain backscattering processes are allowed.
The phonon-spinon scattering along with umklapp and disor-
der scattering lead to a prominent dip in the thermal con-
ductivity. We examined the mechanisms responsible for the
relaxation of the heat current, and showed that an interplay
between umklapp, weak disorder and phonon-spinon scatter-
ings underlies the transport properties at low temperatures.
For this system it leads to minima in the thermal conductiv-
ity isotherms when the effective field is of the order of the
temperature |Beff | ∼ T , while a local maximum appears for
zero effective field, when B = B0. In the vicinity of B0 there
is a single dimensionless parameter δ which determines the
leading field and temperature dependencies of the thermal
conductivity. δ depends on the field via the momentum ∆k
[Eq. (37)]: by substituting ∆k into δ [Eq. (60)] we obtain an
approximate (for v2 ∼ vF ) expression for δ:

δ ≡ v2∆k

4πT
=
v2Beff
gT

∼ Beff
T

. (70)

These features can be compared with the effects seen in
chains16 (by interchanging Beff and B) where the single min-
imum is at a field B ∼ T and the maximum at B = 0. Our
results for the thermal conductivity isotherms (Fig. 4) display
similar field and temperature dependance to those measured
in the experiment17.

It should be emphasized that our model relies on some
simplifying assumptions, and most importantly focuses on a
purely 1D system corresponding to a single ladder. To ac-
count for the perpendicular magnetothermal effects measured
in the experiment17, our model should be extended to include
phonons traveling perpendicular to the chains direction. Tak-
ing into account the coupling of such phonons with the spin
ladders could result in hybrid spinon-phonon degrees of free-
dom with higher-dimensional dynamics. Hence, due to this
hybridization we expect to obtain a higher dimensional spin-
liquid-like state with strong anisotropies which will account
for the perpendicular magnetothermal transport.

An additional limitation on the applicability of our theory
to a realistic system is that we have assumed a naive model for
the disorder, and in particular treat it perturbatively. This
approximation breaks down at sufficiently low T : the disorder
being a relevant perturbation eventually leads to localization,
and an effective breaking of the ladders to weakly coupled
segments of finite length15,17.

Finally, it should be noted that we have implemented an ap-
proximate mapping of a ladder onto a chain19 which amounts
to the truncation of high energy triplet states, and is formally
justified for J⊥ � J‖. Coupling to the high energy sector is
likely to induce asymmetry between positive and negative de-
viations of B from B0, as indeed observed in the experiment17.

As a concluding remark, in this work we focused on the
limit vF � v, compatible with the parameters of BPCB.
However, in other quasi 1D spin compounds, where J ∼ ΘD

(e.g., NaV2O5 [24] and NO[Cu(NO3)3] [25]), the spinons and
phonons velocities are comparable in size vF ∼ v. Hence a
strong hybridization between the two degrees of freedom is ex-
pected in such compounds. Our theoretical approach can be
extended to account for this phenomenon as well; we expect
to investigate it further in future work.
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Appendix A: Umklapp Memory Matrix

Before proceeding into the calculations of correlation func-
tions, we show that due to the conservation law (42), simple
relations between the umklapp matrix elements can be found.
Substituting Eqs. (27), (28) into (44) and using Eq. (53), we
get

J1 + J2 = Jφ + JU (A1)

where JU is the longitudinal phonons current JU =∫
dxPl∂xUl. In addition we have

FU = [JU , Hu] = 0 , ⇒ F1 + F2 = Fφ . (A2)

Substituting this into the conservation law (42), we find

F1 + F2 =
∆k

4
Fs. (A3)

Then it is easy to see, from Mpq ∼ 〈Fp;Fq〉, the following
relations:

Mu
s1 =

∆k

4
Mu
ss −Mu

s2,

Mu
12 =

∆k

4
Mu
s2 −Mu

22, (A4)

Mu
11 =

∆k

4
Mu
s1 −Mu

12.

According to Eq. (51) and (52), we need to calculate the
Fourier transform of retarded correlation functions of the form

Cupq(x, t) = 〈fup (x, t); fuq (0, 0)〉0, (A5)

with the force density operators fup (x, t) defined so that

Fup = i[Jp, Hu] ≡
∫

dxfup (x), (A6)

in which Hu is the umklapp term defined in Eq. (37). The
expectation value 〈...〉0 is evaluated with respect to H0 (36).
The first umklapp term to calculate is Mu

ss; from commutator
identities we find

fus (x) = i[Π(x), Hu] = (A7)

igu

∫
dx′[Π(x), cos[4φ(x′)−∆kx′]] = −4πgu sin[4φ(x)−∆kx] .

To calculate correlation functions between trigonometric
functions, we use the result (appendix C in [1]):

〈
∏
j

eiAjφ(rj)〉 = e−
1
2
K

∑
i<j AiAjKF1(ri−rj), (A8)

with Ai some constants, K the LL parameter, and F1 =
1
2

ln
[(
βu
πa

)2 (
sinh2

(
πx
βu

)
+ sin2

(
πτ
β

))]
, this correlation func-

tion has the property that for
∑
iAi 6= 0, it equals zero. Since

H0 is separable in terms of the eigenmodes φi (i = 1, 2), the
correlation function Cuss can be written as a product of two
correlation functions
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Cuss(x, t) = C1(x, t)C2(x, t) ≡ 〈ei[2αφ1(x,t)−2αφ1(0,0)]〉〈ei[2βφ2(x,t)−2βφ2(0,0)]〉, (A9)

where the correlation function of each species of the eigen-
modes is calculated independently with respect to the corre-

sponding LL Hamiltonian. This yields:

Cuss(x, t) ∼= sin(πK2β
2)

(
T

T0

)2K2β
2+2K1α

2

(sinh[πT (x/v1 − t+ iε)] sinh[πT (x/v1 + t− iε)])−K1α
2

×

(sinh[πT (x/v2 − t+ iε)] sinh[πT (x/v2 + t− iε)])−K2β
2

, T0 =
v2

2πa
, (A10)

with α = 2C and β = 2λ2S defined in Eq. (41), the LL pa-
rameters K1/2 are defined in Eq. (33). The Fourier transform

Cuss(∆k, ω) is evaluated using the approximation K1α
2 ∼ 0,

which simplifies the correlation function into an expression
that can be calculated straightforward by the integral26:∫ ∞

0

dξ sinh−η/2(πTξ)eizξ =
2η−1

πT
B(η/4− iz

2πT
, 1− η/2)

(A11)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function. This yields

Cuss(∆k, ω) = 4g2
u sin(πK2β

2)

(
T

T0

)2K2β
2+2K1α

2−2

B[K2β
2/2− i(ω/v2 −∆k)

4πT
, 1−K2β

2]B[K2β
2/2− i(ω/v2 + ∆k)

4πT
, 1−K2β

2] ,

(A12)

and consequently the matrix element

Mu
ss = −i∂ωCuss|ω=0 =

g2
u

2π2
sin(πK2β

2)×(
T

T0

)2K2β
2+2K1α

2−3

B[K2β
2/2− iδ, 1−K2β

2]B[K2β
2/2 + iδ, 1−K2β

2]<[Ψ(1−K2β
2/2− iδ)−Ψ(K2β

2/2 + iδ)], (A13)

δ ≡ v2∆k

4πT
.

After deriving the expression for Mu
ss, we wish to show that

Mu
s2 is proportional to Mu

ss, and the rest of the elements are
found from Eq. (A4). Again, using commutator identities we
have,

Cus2 = −iC1(x, t)∂xC2(x, t), (A14)

then

Mu
s2 =

∫
tdt

∫
dx=[Cus2(x, t)]ei∆kx. (A15)

Using ∂xe
2iβφ2(x,t) = 2iβ∂xφ2(x, t)e2iβφ2(x,t) and integrating

by parts we have

∫
dx∂xC2(x, t)ei∆kx = −

∫
dxC2(x, t)∂x(ei∆kx) = −i∆k

∫
dxC2e

i∆kx (A16)
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which gives the simple relation

Mu
s2 = − 1

4i
(−i∆k)Mu

ss ⇒Mu
s2 =

∆k

4
Mu
ss . (A17)

In a similar way

Mu
22 = (

∆k

4
)2Mu

ss . (A18)

By substituting Eqs. (A17), and (A18) into Eq. (A4) we
see that all the elements with p or q = 1 vanish, and the
derivation of the umklapp memory matrix is complete.

Appendix B: Disorder Memory Matrix

Now we turn to the calculation of the disorder part of the
memory matrix. Note that all the non diagonal elements are

zero. Since we are interested only in the leading temperature
and field dependencies of the memory matrix, the results of
the integrals in this section will be important only to get the
powers of T in each matrix element. The force operators is
derived from Hd [Eq. (38)], using

Fud = i[Jp, Hd] = i

∫
dxζ(x)[Jp, cos(2φ(x))] . (B1)

Eq. (A8) is again useful: after disorder averaging, and using

the identity ζ(x)ζ(0) = Dδ(x) [Eq. (39)], we get

Cdss(ω) =
D

π2

(
T

2T0

)K2β
2/2+K1α

2/2

×∫
dteiωt| sinh(πTt) sinh(−πTt)|−K2β

2/2−K1α
2/2 =

D

2π3

(
T

T0

)K2β
2/2+K1α

2/2−1

B[K2β
2/4− iω

2πT
, 1−K2β

2/2] . (B2)

Md
ss = −i∂C

d
ss

∂ω
|ω=0 = DssT

K2β
2/2+K1α

2/2−2,

Dss ∼=
D

πv2
. (B3)

After some algebra,

Cd11(ω) = D

(
T

2T0

)K2β
2/2+K1α

2/2 ∫
dxδ(x)

∫
dteiωt×

∂2
x[(sinh[πT (x/v1 − t+ iε)] sinh[πT (x/v1 + t− iε)])−K1α

2/4](sinh[πT (x/v2 − t+ iε)] sinh[πT (x/v2 + t− iε)])−K2β
2/4, (B4)

⇒ Cd11(ω) ∼=
DK1α

2

2

(
T

T0

)K2β
2/2+K1α

2/2+1

B[K2β
2/4 +K1α

2/4 + 1− iω

4πT
,−1−K2β

2/2−K1α
2/2] .

Md
11 = −i∂C

d
11

∂ω
|ω=0

∼= D11

(
T

T0

)K2β
2/2+K1α

2/2

,

D11
∼=
DK1α

2

2v1
. (B5)

The result for Md
22 is pretty much the same

Md
22 = −i∂C

d
22

∂ω
|ω=0

∼= D22

(
T

T0

)K2β
2/2+K1α

2/2

D22
∼=
DK2β

2

2v2
(B6)
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Appendix C: Phonon-Spinon Memory Matrix

In this appendix we detail the calculation of the correlation
function appearing in the memory matrix elements responsi-

ble for phonon-spinon scattering.

Cp−s(ω) =

∫
dteiωt〈Fp−s(t);Fp−s(0)〉 =

v4g2
p−s

∫
dt

∑
kk′pp′Gn;k1k

′
1p1p

′
1Gn1

ei(ω+∆ω)tδ(k − k′ + p− p′ −Gn)δ(k1 − k′1 + p1 − p′1 −Gn1)pp′(p′ − p)p1p
′
1(p′1 − p1)×

[〈c†k′ckc
†
k′1
ck1〉〈b

†
p′bpb

†
p′1
bp1〉 − 〈c

†
k′1
ck1c

†
k′ck〉〈b

†
p′1
bp1b

†
p′bp〉].

∆ω ≡ εk − εk−q + ωp − ωp+q. (C1)

Using Wick’s theorem, one obtains

〈ĉ†k′ ĉk ĉ
†
k′1
ĉk1〉 = fkfk1δk′kδk′1k1−fkfk1δk′k1δk′1k+fk1δk′k1δk′1k,

(C2)
and similarly for the other expectation values. We thus get

Cp−s(ω) =
∑
kpq

Wpqδ(ω + ∆ω)np+qfk−q(1 + np)(1− fk),

Wpq ∼ −2v2g2
p−s|p(p+ q)|q2, q ≡ p′ − p. (C3)

where fk = (e(εk−µ)/T + 1)−1, np = (eωp/T − 1)−1, are Fermi
and Bose distributions respectively.
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