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Based on ab initio density functional calculations of Si nanocrystals (NCs) in a SiO2 matrix we
study the impact of NC size and separation on electronic properties and present consequences for
inter-NC carrier transport. The nanocrystal size and separation significantly influence the electronic
structure of three-dimensional superlattice systems with different NC filling. The energy levels for
large NC distances are broadened to minibands for small separations due to the wave-function
overlap. Their formation is described in terms of inter-NC hopping and carrier tunneling. We find
that electron transport in conduction minibands is more likely than hole transport.
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I. INTRODUCTION

Silicon quantum dots (Si QDs), or silicon nanocrystals (Si NCs), are subject of intense research for the past
almost two decades. Activities are driven by fundamental scientific interests as well as by promising applications
in next-generation quantum devices for energy conversion and communication technology1–5. The effect of quantum
confinement on electrons and holes due to the reduced dimensions of Si NCs will overcome limitations of the indirect-
gap semiconductor Si for optoelectronic devices. Silicon nanostructures are also viewed to pave the road toward
Si-based solar cells of the third generation6.
Energy conversion efficiency is the key parameter for all photovoltaic technologies. Si NCs embedded in amorphous

SiO2 have been identified to improve the conversion efficiency7,8: (i) Quantum confinement effects allow to tailor the
effective band gap3,5,9,10. Multistack solar cells with varying fundamental gaps overcome the Shockley-Queisser limit
of 30 %. A Si-based tandem cell has a theoretical efficiency limit of 60 %6. (ii) Conversion of high-energy photons
of the solar spectrum in bulk Si is limited by carrier relaxation and hence heat generation. The stronger excitonic
effects in nanostructures will allow the transformation of high-energy photons into low-energy electron-hole pairs via
multiple-exciton generation or quantum-cutting processes4,10

Key properties of nanoscale Si-based solar cells are related to the Si/SiO2 interfaces and the embedding insulating

matrix. The interfaces constitute energy barriers ∆Ẽc and ∆Ẽv for both carrier types, electrons and holes, with a
height of the order of several eV11–13. Carrier transport from Si dots into or through the matrix is unlikely for thick
and intact dielectrics. Only charge diffusion from charged to neighboring uncharged Si NCs seems to be possible14.
Quantum confinement in Si nanostructures, thus, generates a dilemma: increased absorption and decreased relaxation
in localized QDs15 appears opposite to sufficient charge extraction and transport in bulk Si16. Electron-hole pairs
photo-excited in a device have to be separated into free electrons and free holes, which in turn will travel to their
respective negative and positive electrodes. The fundamental problem then is how to exploit the favorable optical
properties of Si NCs, while at the same time increasing mobility and transport of carriers in the device. Clearly, any
solution to this predicament demands to understand the principle transport mechanisms in the device, e.g. miniband
transport or hopping17,18.

In this paper we provide a detailed insight into the problem by investigating the behavior of the most relevant
electronic states in Si NC arrangements and their impact on inter-NC carrier transport. We focus on the highest
occupied and lowest empty NC electronic states and elucidate their relevance for tunneling processes, which are most
fundamental here as well as in many fields of physics19. In particular, we study the interactions between electronic
states localized nominally in different NCs and their dependence on the separation between the NCs. We analyze our
results in the context of wave-function overlap, miniband transport, and NC hopping.

II. AB INITIO DESCRIPTION

A. Superlattice systems

As model systems we investigate three-dimensional arrangements of nearly spherical Si NCs of diameter D in a
simple cubic (sc) lattice with lattice constant A and a single NC per unit cell. The space between the NCs is filled with
an amorphous SiO2 matrix. The minimum distances B = A−D between surfaces of neighboring NCs occur in 〈100〉
directions. For appropriate D and A values such arrangements combine properties of individual NCs and collective
properties of the arrays and, hence, represent NC solids. Such systems have been experimentally realized2,3,7,20

applying a method of Zacharias et al.
21 to photovoltaics, though their NC arrangement is closer an orthorhombic

than a simple cubic lattice. The size of the NCs and their density and, hence, the filling factor f are tunable.
An illustration of a simple-cubic cell with a Si NC and embedding SiO2 is displayed in Fig. 1. Such superlattice
arrangements, of course, describe idealized systems of NC arrangements. In real samples these arrangements are
influenced by two different types of disorder. (i) First, there is a size distribution of the NCs. It is accompanied
by different characteristic energy levels in the NCs due to varying confinement. Together with the high energy
barriers due to the surrounding oxide, this (diagonal) disorder in the site energies implies that electrons and holes
may experience Anderson localization22. Therefore, for efficient charge transport the fluctuations of the site energies
should be small. Hopping transport becomes dominant at large disorder23,24. (ii) There is a second kind of disorder
related to fluctuating distances between NCs. The principal effect of this (off-diagonal) disorder will be discussed
below by varying the superlattice constant. One expects that only NCs in a small distance contribute to the transport
of carriers which will take the most efficient paths. However, recent experiments25 show that the carrier mobility
is independent of size disorder, indicating further open questions for transport in NC solids. Also recent transport
simulations within the kinetic Monte Carlo framework demonstrate only a weak reduction of carrier mobility by
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FIG. 1. (Color online) Three-dimensional representation of a cubic unit cell (black solid lines) with a Si NC illustrated by
Si core atoms (large green circles) and the SiO2 barrier material with Si and O atoms as dark red and bright yellow dots,
respectively. The nominal diameter of D=1.6 nm and lattice constant of A=2.6 nm correspond to 99 Si core atoms and 1189
matrix atoms.

disorder at room temperature26.
The use of such Si nanodot superlattices as in Fig. 1 with a certain barrier material is in complete agreement with a

general modelling of nanostructures by means of periodic boundary conditions with the resulting Bloch character of the
electronic eigenstates. Similar simple-cubic arrangements have been studied for cubic Si quantum dots together with
the effective-mass approximation (EMA), bulk effective electron masses, and model parameters for the energy barriers
between Si, SiC, SiO2, and Si3N4

27,28. However, there are several theoretical29 and experimental30 indications that the
effective-mass concept is simply not valid in nanostructured systems, or at least, size-dependent effective masses have
to be taken into account. First-principles methods are parameter-free and do not need questionable approximations
as the EMA for small NCs or input from experiment. The mutual influence of neighboring NCs and the effect of
tunneling processes for varying NC distance is demonstrated by varying the lattice constant A and the NC size D.
Also the limiting cases of isolated but embedded and strongly interacting NCs can be studied.

B. Electronic structures

The calculations are based on the density functional theory (DFT)31 within the local density approximation (LDA)
for the exchange-correlation functional32 and explicitly performed using the Vienna Ab-initio Simulation Package
(VASP) implementation33. The electron-ion interaction is described within the projector augmented-wave (PAW)
method34. The electronic eigenstates are expanded into plane waves until a cutoff energy 400 eV. The Brillouin-zone
(BZ) integrations are carried out using only the Γ point. The Kohn-Sham eigenstates and eigenvalues32 are used to
describe the electronic structure of the superlattice system. Since the quasiparticle excitation aspect is missing, the
resulting energy differences between occupied and empty states are underestimated35. For instance, the calculated
fundamental gap values for bulk Si and SiO2 (ideal β-cristobalite) are 0.44 eV and 5.26 eV. Nevertheless, the DFT-
LDA gives a reasonable band dispersion35 which is most important for transport description36. Also the band offsets
are reasonably described12. This especially holds for their reduction due to the confinement in the NC cores which
has been experimentally confirmed37.
In order to describe the correct absolute positions of the energy levels quasiparticle (QP) corrections of the Kohn-

Sham eigenvalues are recently also taken into account for Si nanocrystals38,39. Thereby, the exchange-correlation
(XC) self-energy is approximated in the framework of Hedin’s GW approximation40. The corrections give rise to
shifts of occupied (empty) states toward lower (higher) energies and, hence, open the energy gaps. Recently, it has
been shown that a certain amount of the QP effects can be also simulated by replacing the semilocal XC potential
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FIG. 2. (Color online) Density of states (DOS) of Si NCs with a nominal diameter D=1.2 nm and lattice constant A=1.9 nm
within two approximations for the exchance and correlation functional, LDA (dark black line) and HSE03 (bright red line). In
addition, the DOS projected onto the Si atoms in three regions, Si NC core, Si-SiO2 interface, and SiO2, are plotted.

in the Kohn-Sham equation by a non-local one derived from a hybrid XC functional11,41. For illustration of the QP
effects on the energy positions in Fig. 2 for the density of states (DOS) we use the HSE hybrid functional42. The main
effect of the QP corrections results in the above-discussed shifts toward lower and higher energies. We distinguish Si
atoms in the core, the interface, and the matrix according to the number of neighboring O atoms 0, 1−3 or 443. In
the Si NC core and the interface regions, especially in the energy region of the fundamental gap, the DOS lineshape
remains unaffected, only the empty states are more or less rigidly shifted to higher energies by about 0.7 eV. This
indicates that the band dispersion near the band edges is less influenced, so that the LDA results can be indeed used
to investigate charge-carrier transport. The projected DOS onto the Si atoms in the SiO2 matrix also show a shift
toward lower energies by 0.6 eV of occupied states besides the 1.5 eV shift toward higher energies of the conduction
states. The latter energy shifts can be interpreted as the increase of the band discontinuities ∆Ẽc/v between Si NCs

and SiO2 matrix material due to the inclusion of the excitation effect11. These barrier increases indicate that the
LDA results discussed throughout this paper may somewhat overestimate the transport between NCs through the
matrix.
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TABLE I. Models studied for embedded Si NCs with number of Si NC atoms NNC, total number of atoms in the supercell
Ntotal, nominal NC diameter D, separation between neighboring NCs B, and filling factor f . In addition, resulting band gaps
Eg and inter-NC hopping integrals t for the Γ-X (Γ-M) direction are listed.

model NNC Ntotal D B f Eg t

(nm) (nm) (eV) (meV)

Si29(2×2×2) 29 116 1.0 0.2 0.30 1.60 20 (4)

Si29(3×3×3) 29 572 1.0 1.0 0.07 2.23 0 (0)

Si47(2×2×2) 47 80 1.2 0.0 0.28 0.73 56 (65)

Si47(3×3×3) 47 524 1.2 0.7 0.13 1.99 0 (1)

Si71(3×3×3) 71 464 1.4 0.5 0.21 1.71 3 (2)

Si71(4×4×4) 71 1352 1.4 1.2 0.08 1.90 0 (0)

Si99(3×3×3) 99 400 1.6 0.2 0.33 0.50 58 (51)

Si99(4×4×4) 99 1288 1.6 1.0 0.11 1.76 0 (0)

C. NC construction

The construction of optimized supercell geometries for the Si NCs embedded in amorphous SiO2 has been described
in detail in Refs. 43 and 44. We use a five step procedure. At first, Si diamond supercells 2×2×2, 3×3×3, and 4×4×4
with edge lengths between 1.1 and 2.6 nm are taken as starting geometries. They nominally contain 64, 216, and
512 Si atoms. In a supercell an almost spherical Si NC with 29, 47, 71 or 99 atoms, i.e., with a nominal diameter
of D=1.0, 1.2, 1.4, and 1.6 nm, is chosen. In the remaining part of the supercell O atoms are inserted into the
Si−Si bonds within the third step. A bond-switching algorithm together with a randomizing procedure leads to an
amorphous SiO2 network. In the last step, a local network relaxation by means of the ab initio DFT optimization is
used to make the bonding topology stress-free. The atomic geometries are considered to be in equilibrium when the
Hellmann-Feynman forces are smaller than 10 meV/Å. By construction, Si−O−Si bridge bonds form the interface,
once B approaches 0.2 nm or larger values. Optimized geometries with interface defects, e.g. dangling bonds, are
not further investigated. The resulting structures are characterized in Table I by the geometry parameters D and B
and numbers of Si NC atoms NNC and the total number of atoms Ntotal in a supercell. In addition, the systems are
described by the filling factor f which is the ratio of NC volume and total cell volume. The filling factors f vary in
the range of 0.07-0.33.
The majority of systems in Table I possesses a sufficiently thick minimum thickness B ≥ 0.5 nm in the cubic-axis

directions 〈100〉 in order to speak about NCs and matrix material in-between. However, in the other three models
with B ≤ 0.2 nm the barriers are small in Cartesian directions. However, even for B = 0 the barrier thickness is
finite in other directions, e.g. in a body-diagonal direction it amounts to (

√
3− 1)A = 0.9 nm. Indeed, these models

exhibit bond percolation12,44, effectively a few inter-cluster Si-Si bonds. This most extreme situation is displayed in
Fig. 3. This Si47(2×2×2) arrangement possesses a maximum of Si–Si bonds between neighboring clusters. We observe
eight such inter-cluster bonds from a total number of 12 for two adjacent NCs in a Cartesian direction. Electrons
(or holes) may be transported along these Si–Si bond paths without scattering by oxygen atoms. The impact of such
inter-cluster Si–Si bond paths on carrier transport is discussed below in terms of the miniband dispersion.

III. ELECTRONIC STRUCTURE AND TRANSPORT

A. Minibands, hopping integrals and carrier masses

For the eight systems of three-dimensional Si NC arrangements embedded in amorphous SiO2 and characterized in
Table I we have calculated the electronic band structures versus high-symmetry lines in the BZ of the corresponding sc
crystals. For two classes of NCs with 47 (D=1.2 nm) and 99 (D=1.6 nm) Si core atoms but different lattice constant
A the atomic arrangements are depicted in Fig. 4 together with the resulting band structures. The differences between
well isolated and interacting NCs are clearly visible. The non-interacting NCs in Figs. 4(b) and 4(d) give rise to flat
bands around the fundamental gap, which in turn can be identified with the energy levels of the isolated NCs43. The
energy difference between the lowest unoccupied molecule orbital and highest occupied molecule orbital defines the
(Kohn-Sham) gap Eg

32. It is enlarged with respect to its bulk value by quantum size effects and varies remarkably
with the NC diameter as D−β with β.1 in experiment2 and theory43. Note that the presence of the SiO2 matrix
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FIG. 3. (Color online) Bonds between Si atoms (green dots) for the Si47(2×2×2) model with D=1.2 nm and B=0 nm. The
unit cell is indicated by solid lines.

drastically reduces the gap size with respect to the case where the Si NC surface is passivated by hydrogen atoms [see
Ref. 43].
Reducing the matrix material between neighboring NCs toward values B<0.5 nm, especially along the cubic axes,

broadens the energy levels to minibands. In particular, this is observed for unoccupied states in Figs. 4(a) and
4(c), but is also seen for occupied states in the case of almost vanishing separation B [see Fig. 4(c)]. Besides band
dispersions, the fundamental gap Eg is influenced too. Eg is significantly reduced, the data is given in Table I. In the
limit of small B the embedded-NC systems become indirect semiconductors. The minimum of the lowest conduction
miniband (LCMB) is located at the Γ point, while the k-space position of the maximum of the highest valence
miniband (HVMB) is at the BZ boundary edge, but fluctuates between R and M. Both reduction of the band gap and
the band dispersion depends on B. A clear energetical ordering ε(Γ)<ε(R)<ε(X)<ε(M) of the minima and maxima
of the LCMB ε(k) at high-symmetry points is observed.
The different dispersions of the minibands have wide implications on transport properties of photo-excited electrons

and holes between Si NCs2. This is well known from miniband transport in one-dimensional superlattices45. The
dispersion of the highest valence miniband is weak for the models Si47(2×2×2) and Si99(3×3×3) with vanishing or
small B. The small band curvature at the maxima at R and M indicates large effective hole masses and, hence, less
mobile holes. Focussing our discussion on electrons in the LCMB ε(k), we observe a strong dispersion for this band
[cf. Figs. 4 and 5]. The implication of the dispersion on the transport mechanism of the electrons can be interpreted
in terms of miniband transport. Following the ideas developed to treat the carrier transport between large molecules
in organic semiconductors [see reviews in Refs. 36 and 46] a tight-binding approach to the LCMB leads to hopping
integrals illustrating the strength for hopping from one NC site to another one. Restricting to nearest-neighbor NCs,
the corresponding hopping integral t follows from a tight-binding approach as

ε(k) = ε0 − 2t[cos(kxA) + cos(kyA) + cos(kzA)] (1)

with ε0 as the energy of the electronic level formed for large separations between the NCs. In Fig. 5 we show an
example of the fit using Eq. (1) for the model Si99(3×3×3) and the LCMB along the high-symmetry lines between Γ
and X as well as Γ and M. The resulting t values for the eight three-dimensional superlattices of Si NCs embedded
in SiO2 are listed in Table I. For comparison results obtained for both directions Γ−X and Γ−M are given. The
magnitude of hopping integrals t for small separations approaches values for the corresponding hole quantities in
molecular semiconductors fabricated by different organic molecules36. We find a strong influence of the separation
between the NC surfaces, e.g. with t=58 or 51 meV for B=0.2 nm [see Fig. 5] and t∼0.0 meV for B=1.0 nm
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FIG. 4. (Color online) Band structures (left panels) and atomic structures (right panels) of the models (a) Si99(3×3×3), (b)
Si99(4×4×4), (c) Si47(2×2×2) and (d) Si47(3×3×3). The atomic geometries are indicated as projections onto a (001) plane.
Green balls represent Si atoms in the core. The amorphous SiO2 networks are depicted by thin red lines. The black lines
indicate the unit cells with varying lattice constant A =1.2 (a), 1.9 (b), 1.8 (c), and 2.6 (d) nm. The highest occupied state is
used as energy zero.

comparing the models Si99(3×3×3) and Si99(4×4×4) with fixed NC diameter. Interestingly, the hopping integrals for
the systems Si47(2×2×2) and Si99(3×3×3) are rather similar despite the different inter-cluster spacings B=0.0 and
0.2 nm. The hopping integrals t for systems with significant miniband dispersion give an upper limit for the diagonal
disorder22,23 for which miniband transport is still possible. With t ≈50 meV (see Table I) and a thickness variation
∼ D−0.5 of the confinement energies43 only small diameter fluctuations of a few percent are allowed.
The tight-binding approach Eq. (1) can be directly related to the effective mass of electrons in the LCMB of the NC
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FIG. 5. (Color online) Band structure (dashed lines and dots) between Γ and X and fit curve (red, solid line) for the LCMB
using (1) for the Si99(3×3×3) model. The HVMB maximum is used as energy zero.

arrangement near Γ by m∗=~
2/(2tA2). From the fitting shown in Fig. 5 we obtain m∗=0.20m, a value comparable

to the smallest conduction band mass of bulk silicon47. Since the carrier mobility µ due to miniband conduction is
proportional to the inverse effective mass, one finds

µ ∼ 1

m∗
∼ tA2 (2)

in qualitative agreement with expressions for coherent transport in superlattices and crystals of molecular systems8,36,46.

B. Wave-function overlap and tunneling

The magnitude of the hopping integrals in Eq. (1) depends on the overlap between electronic wave functions
localized in adjacent NCs. In Fig. 6 we plot the wave-function squares, i.e., the radial probability distributions of
HVMB and LCMB states as a function of the distance r from the centers of two adjacent Si NCs for two different
models with equal NC diameter but different NC separation. For comparison, we also depict the local energies Ec

(Ev) of the lowest unoccupied (highest occupied) levels in the region of Si NCs and SiO2 matrix as calculated by a
projection technique12 which indicate the potential barriers for electrons (holes). Apparently, the potential barriers,
especially their width, in Fig. 6(a) are smaller in comparison to that indicated in Fig. 6(b) for a system with larger
separation between the NCs. In Fig. 6(a), the barrier thickness approaches the extent of the Si/SiO2 interface12. In
agreement with the magnitude of the hopping integrals significant overlap of the wave functions localized in different
NCs only occurs for small separations (B=0.2 nm) between the NC surfaces [Fig. 6(a)]. Vanishing overlap of the
wave functions occurs for a large barrier thickness (B=1.0 nm) [Fig. 6(b)]. We conclude that substantial tunneling
of corresponding carriers through the respective barriers happens for small NC distances. Based on our analysis, we
expect this effect to be larger for electrons, while for holes tunneling may occur only when NCs already connect to
each other [see Fig. 6(a) for B=0.0 nm]. Our thickness predictions are in agreement with plausible parameters derived
from measurements. Conductance measurements indicate to tolerance parameter of about 0.73 nm48 while tunneling
is known to typically occur for separations below 1.2 nm [see Fig. 4 in Ref. 49].

The above analysis is in qualitative agreement with an alternative picture for the carrier transport. The SiO2

matrices represent potential barriers for the (coherent) tunneling of electrons and holes through them. Incoherent
phonon-assisted tunneling processes46 are not considered. Our findings in Fig. 6 fit the textbook picture of tunneling
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FIG. 6. (Color online) Radial probability distributions of highest valence miniband (HVMB) and lowest conduction miniband
(LCMB) state as a function of the distance r from the center of a Si NC for the (a) Si99(3×3×3) and (b) Si99(4×4×4) models.
The wave-function squares are averaged for each r. In addition, the energies of the local lowest conduction (Ec) and highest

valence (Ev) states are depicted as dots to illustrate the respective energy barriers ∆Ẽc and ∆Ẽv. The situation of two
neighboring NCs in a Cartesian direction is displayed.

of electrons (holes) with mass m∗ through a barrier with height ∆Ẽc (∆Ẽv)
11,12 and thickness B50,

µ ∼ exp

{

−
√

8m∗

~2

√

∆Ẽc/v ·B
}

. (3)

The band discontinuity ∆Ẽc (∆Ẽv) and the barrier thickness B are visible in Fig. 6. The mass dependence of
the mobility is the dominant factor governing the variation of µ for electrons and holes. Qualitatively the mobility
expression Eq. (3) gives similar dependencies on the geometry parameters as formula Eq. (2). Both expressions
suggest a positive conclusion for the application of Si NCs to improve the efficiency of Si-based photovoltaic devices:
If the distance between the surfaces of the nanoparticles as well as their diameter fluctuations are small enough,
efficient electron transport is likely. Another precondition is that the effect of the Coulomb charging energies on the
carrier transfer probability is negligible18,26. The condition of small barrier distances (or lower barrier heights) is in
agreement with experimental findings for vertical transport through Si/SiO2 superlattices51. The strong influence of

the barrier height ∆Ẽc/v has been demonstrated experimentally by the change of the matrix material. The replacement
of SiO2 by Si3N4 leads to their reduction to about 50 % and an increase of the current by a factor 4 – 5 for a given
voltage13.
Temperature- and electric-field-dependent studies of charge-carrier transport in multilayer structures of Si NCs

embedded in SiO2 established that the transport is best described by a combination of phonon-assisted and direct
tunneling mechanisms52. However, for low electric fields tunneling is favorable in agreement with our assumption. The
tunneling contribution is in qualitative agreement with the mechanism predicted in Eq. (3). Phonon-assisted processes
do not occur in this approach. According to the investigations of phonon-assisted processes in molecule crystals53,
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inter-molecule vibrations should dominate these processes. In analogy, inter-NC vibrations may also influence the
transport between small nanocrystals as long as their atomic weights are not too large. However, until now such
vibrations have not been studied. The computation of the corresponding small electron-phonon coupling constants
and inter-NC vibrations is a challenge for future ab initio studies of embedded Si NCs with less than 150 Si atoms
and vanishing distances. In the limit of narrow bands and high temperatures the many-phonon processes53 may be
described by Marcus’ electron-transfer theory54. Brus55 applied this theory as electron transfer kinetics to Si NCs.
The characteristic parameter of the theory, the polaron binding energy53, is approximated by the Fröhlich coupling
mechanism in a SiO2 matrix with a polaron radius of the order of the NC one. Meanwhile the strong coupling of SiO2

phonons to carriers in Si NCs is confirmed by photoluminescence studies56. However, the resulting polaron energies
are large compared to the thermal energy kBT , so that the contribution of SiO2-phonon-assisted processes remains
small. The Marcus’ factor in the electron transfer rate between two NCs is weighted by the square of the transmission
coefficient which decays exponentially ∼ exp(−2β · B), similar to Eq. (3), with a typical tunnel lengths β−1 = 1.1
Å57 in rough agreement with the above estimations.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the probability of carrier transport between Si nanocrystals embedded in amorphous
SiO2 in the dependence of nanocrystal distance and size by first-principles calculations. The studies are mainly
based on electronic-structure calculations of three-dimensional arrangements of Si nanocrystals with varying size and
distance. For the case of small NC separation below 0.2 nm, we found the formation of minibands and a remarkable
band dispersion especially in the conduction-band region and hence evidence of electron transport in the lowest
conduction miniband. The band dispersion results in an effective mass of the charge carriers in the solid formed by
nanocrystals and embedding matrix. In order to relate the electronic-structure results to carrier transport between
NCs, we follow ideas developed for large organic molecules in semiconducting molecule crystals. Interestingly, the
miniband dispersion can directly be related to hopping integrals between different Si NCs embedded in a-SiO2.
Our model provides a band-structure-based unified picture of miniband and hopping transport of electrons between
adjacent NCs, at least for the coherent contribution. The incoherent contributions to the carrier mobility due to
phonons are not taken into account. Because of the large atomic mass of the NCs the inter-NC vibrations possess
small frequencies and coupling constants to the electrons. However, also assistance of the tunneling by barrier phonons
seems to be not efficient enough. Finally, we have shown that finite miniband dispersion is directly related to overlap
of the corresponding wave functions. The carrier transport related to this effect can be also due to coherent tunneling
through energy barriers.
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