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CeB6 is a cubic heavy fermion compound with a Γ8 ground-quartet for which an ESR signal was
observed. All other Ce or Yb compounds displaying an ESR signal have strong magnetic anisotropic
and ferromagnetic correlations among the spins. The role of the ferromagnetic correlations is to
narrow the resonance width rendering the signal observable. In CeB6 the orbital content of the
Γ8-quartet gives rise to an antiferro-quadrupolar ordered phase below 4 K. Single ions with a Γ8

ground-multiplet are expected to display four transitions, however, only one has been observed.
The following questions are addressed in this paper: (1) why is only one transition seen?, (2) why is
this transition observed if the Kondo temperature is comparable to the linewidth and the resonance
frequency?, and (3) are there ferromagnetic correlations between the Ce ions? The answer to these
questions is associated with the antiferro-quadrupolar order. While for other Ce and Yb compounds
with ESR-signal it is difficult to distinguish if the resonance is due to localized spins or conducting
heavy electron spins, an itinerant picture within the antiferro-quadrupolar phase is necessary for
CeB6.

PACS numbers: 71.27.+a, 72.15.Qm, 75.20.Hr, 76.30.-v

I. INTRODUCTION

There is an intimate relation between the the relax-
ation rate for a Kondo impurity and the Kondo suscep-
tibility, χ0/T1 ≈ constant for all T .1 At ω = T = H = 0
this relation is exact (for S = 1/2 the constant is 2/π)
and known as the Shiba relation.2 This result suggests
that an electron spin resonance (ESR) signal could not be
observed in heavy-fermion compounds due to the broad
linewidth proportional to the Kondo temperature. This
common belief was recently proven wrong, when an ESR
signal was found in single crystals of the quantum critical
system YbRh2Si2,

3 and since then in several other Yb
compounds, e.g., YbIr2Si2,

4 YbRh,5 and YbCo2Zn20,
6

and one Ce compound CeRuPO.7 The resonance was at-
tributed to the Yb3+ and Ce3+ ions despite of their rather
large Kondo temperature. All of the above compounds
are very anisotropic and have ferromagnetic correlations
among the rare earth spins.5 The resonance in YbRh2Si2
has been confirmed by other groups8,9 and on a different
batch of samples,9 as well as followed up to 360 GHz.10

The observed resonances have a Dysonian lineshape,11

as expected from the skin depth and spin diffusion in a
metallic environment. ESR of magnetic ions in a metal12

as well as the resonance of conduction electrons11 have
a similar Dysonian lineshape. The analysis of the data
performed within the known framework of ESR of mag-
netic impurities in metals,12 i.e., single ions with localized
spins resonating independently, is consistent with the g-
factor anisotropy expected for Yb3+-ions in a tetragonal
crystalline electric field, as well as with the linewidth.
It has been estimated that in YbRh2Si2 more than 60%
of the Yb3+ ions contribute to the ESR signal.13 On the
other hand, in the case of conducting heavy fermions, the
g-shift is dominated by the one of the f -electrons and is
going to have the crystalline field anisotropies of the rare
earth-sites. It is hard to justify an intensity correspond-

ing to more than 60% of the Yb ions, since a resonance of
conduction electrons takes place only close to the Fermi
level. Based solely on ESR it is then difficult, if not im-
possible, to decide, if the resonances arise from localized
moments or the carriers in a heavy electron band.14

Recently Abrahams andWölfle15 studied the linewidth
of the ESR signal for a heavy fermion compound within
the framework of the Anderson lattice. They obtained
that the heavy mass in conjunction with ferromagnetic
fluctuations can lead to observable narrow resonances.
The heavy mass is equivalent with arguing with a small
Kondo temperature for the lattice, but is not enough to
produce an observable ESR signal. The ferromagnetic
correlations further reduce the linewidth of the signal.
Wölfle and Abrahams16 have applied their theory to the
Fermi liquid regime for YbRh2Si2 and found excellent
agreement with the experimental data. They also ex-
tended the description to the non-Fermi liquid regime of
this material and found a close relation of the T depen-
dence of the specific heat and spin susceptibility with the
observed T dependence of the g-shift and the linewidth.

Schlottmann14 arrived at similar results to those in
Ref. [15] by studying the dynamical susceptibility for lo-
calized spins within the framework of the Kondo lattice.
Based on the proportionality of the linewidth with the
inverse susceptibility this investigation clearly shows the
relevance of the ferromagnetic correlations, since a Curie-
Weiss law with an antiferromagnetic Weiss temperature
(Kondo effect) would produce a broad, and hence not ob-
servable, ESR line, while ferromagnetic correlations with-
out long-range order enhance the susceptibility and hence
can produce an observable resonance.

Several other approaches to explain the ESR in
heavy fermion systems have been proposed. Zvyagin et

al.
17 considered a system with strong local anisotropic

electron-electron interactions and showed that together
with a hybridization between localized and itinerant elec-
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trons it may cause a g-shift of the ESR signal and
a change in the linewidth. Huber,51 on the other
hand, studied the effects of anisotropy and the Yb-
Yb interactions on the low-field ESR in YbRh2Si2
and YbIr2Si2 with main emphasis on the anisotropy
of the g-shift. Finally, for the anisotropic Kondo
model with anisotropic Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction Kochelaev et al.

19 investigated the
relaxation of a collective spin mode assuming that the
Kondo coupling has the same anisotropy as the g-factor.

The experimental interpretation5 and some of the
above theoretical studies14,16,17,19,51 have the underly-
ing assumption of a strong anisotropy leading to ferro-
magnetic correlations among the resonating spins. Re-
cently, an ESR signal was observed at 60 GHz in the
cubic compound CeB6 in the temperature range from 1.8
K to 3.8 K for the magnetic field parallel to the [110]
direction.20,21 The resonance22 has a Dysonian-like line-
shape and a g-factor of 1.59. The compound has a Kondo
temperature of the order of 1 K and displays antiferro-
quadrupolar order23 where the resonance was observed.
The crystalline field splitting of the Ce3+ ions in CeB6

leads to a Γ8 ground-quartet,
24 which has simultaneously

spin and quadrupolar content. The long-range order is
driven by the quadrupolar degrees of freedom. There are
several questions arising in the context of the observation
of the ESR signal: (1) A Γ8 quartet allows four transi-
tions, why is only one observed? (2) The isotropy of the
compound does not favor ferromagnetic correlations (the
Curie-Weiss temperature arising from the Kondo effect
has to be suppressed first), why is a resonance observed
at all? (3) Can the resonance be understood within the
single ion picture or is the signal necessarily due to itin-
erant electrons?

There was a report25 on ESR in CeB6 previous to those
by Demishev et al.

20–22 where a resonance was seen in a
temperature range up to 150 K. These results could not
be reproduced by other groups.22,26 There is a strong
possibility that the ESR results are sample dependent.

In this paper we present arguments that can explain
why only one resonance is observed in CeB6. The re-
mainder of the article is organized as follows. In Sect. II
we lay the ground work by analyzing the transitions for a
single Ce3+ ion with Γ8 ground-quartet for the magnetic
field rotating in the (1,−1, 0) plane. This leads to four
resonances for every angle of the magnetic field with the
crystal axis. In Sect. III we consider a single Ce3+ ion
embedded in a lattice with antiferro-quadrupolar (AFQ)
order. The long-range order with two sublattices reduces
the four resonances to two signals, one for each sublattice.
These results are extended to the full lattice in Sect. IV,
where the 4f electrons are itinerant.15,16 This reduces the
two resonances to one resonance with g-factor equal to
the half-sum of the g-factors of the two sublattices. This
allows us to conclude that the single site picture cannot
explain ESR in CeB6. In Sect. V we show that ferromag-
netic spin correlations are generated via the quadrupolar
correlations. These correlations explain the phase bound-

ary between the AFQ and Kondo phases, the T and H
dependence of the magnetization, as well as the narrow-
ing of the ESR linewidth. Hence, it is unlikely that an
ESR signal could be observed in a cubic Ce heavy fermion
compound with a Γ7 ground doublet. Conclusions follow
in Sect. VI. In Appendix A the linewidth of the transi-
tions discussed in Sect. II is addressed. The dynamical
transversal susceptibility is expressed in terms of relax-
ation functions27 for each of the transitions, yielding the
Knight shift and the Korringa relaxation rate, as well as
the proportionality relation of the relaxation time with
the local static susceptibility. In Appendix B we show
that a single heavy fermion band for the AFQ ordered
lattice yields similar results as the two band Anderson
lattice, namely a single resonance with a g-factor equal
to the average of the g-factors of the two sublattices.

II. SINGLE-SITE RESONANCES FOR A

CE-ION WITH Γ8 GROUND STATE

ESR of impurity rare earth ions with Γ8 ground quar-
tets have been studied in several occasions, e.g. Dy3+

ions in the insulator28 CaF2 and the metal29 Au, and
Er3+ in the heavy fermion low carrier compound30 Yb-
BiPt. Both, Dy3+ and Er3+ ions, have large total angu-
lar momenta of J = 15/2, and hence in cubic symmetry
two crystalline field parameters, B4 and B6, are needed
to characterize the splittings. The energy levels and the
wave functions are then not universal, but depend on the
parameter x related to B4/B6.

31

This is different for Ce3+ ions which have J = 5/2
and only require one crystalline field parameter, B4. In
a matrix with eightfold coordination a Γ8 ground quartet
is expected with wave functions that can be expressed in
terms of the Jz eigenstates31

|+ ↑〉 =
√

5
6 |+ 5

2 〉+
√

1
6 | − 3

2 〉 ,

|+ ↓〉 =
√

5
6 | − 5

2 〉+
√

1
6 |+ 3

2 〉 ,
|− ↑〉 = |+ 1

2 〉 , |− ↓〉 = | − 1
2 〉 . (1)

Here ↑ and ↓ refer to the spin σ and + and − to the
quadrupolar degrees of freedom.

The magnetization vector is given by ~M = µB(~L+2~S)

and the non-vanishing matrix elements of ~M are32

〈+σ|Mz |+ σ〉 = 11
7 σµB ,

〈−σ|Mz | − σ〉 = 3
7σµB ,

〈− ↓ |M+|+ ↑〉 = 〈+ ↓ |M+|− ↑〉 = 4
7

√
3µB ,

〈+ ↑ |M+|+ ↓〉 = 10
7 µB ,

〈− ↑ |M+|− ↓〉 = 18
7 µB , (2)

where σ takes values ±1 and M± = Mx ± iMy. For a
magnetic field H parallel to the crystal [0,0,1]-direction
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(z-axis), there are then four possible transitions

|+ ↑〉 → |− ↓〉 , ∆E = 2µBH , w = 12
49

|− ↑〉 → |+ ↓〉 , ∆E = 2µBH , w = 12
49

|+ ↑〉 → |+ ↓〉 , ∆E = 22
7 µBH , w = 25

49

|− ↑〉 → |− ↓〉 , ∆E = 6
7µBH , w = 81

49 (3)

where ∆E is the corresponding transition energy and w
the spectral weight (in arbitrary units) evaluated as the
square of the matrix element of Mx. There are two more
transition (|+ ↑〉 → |− ↑〉 and |− ↓〉 → |+ ↓〉) which
for this direction of the magnetic field have zero spectral
weight.
In ESR experiments it is customary to rotate

the magnetic field in the (1,−1, 0) plane. The

magnetic field can then be parametrized as ~H =
H(sin θ, sin θ,

√
2 cos θ)/

√
2, so that for θ = 0 the field

is along the [0, 0, 1]-axis, if θ = π/2 ~H ‖ [1, 1, 0], and for

θ = arctan(
√
2) = 54.7o the magnetic field points into

the [1, 1, 1] direction. The Zeeman Hamiltonian takes
the form

HZ = − ~M · ~H = −M̃zH

= −H
[

Mx +My√
2

sin θ +Mz cos θ

]

, (4)

where Mx, My and Mz are 4× 4 matrices defined by Eq.

(2). Here M̃z is the magnetization operator along the di-
rection of the field. The Zeeman Hamiltonian is easily di-
agonalized numerically and the six transitions discussed
in Eq. (3) now depend on the angle θ. The resonance
fields µBHr in units of hν (where ν is the microwave fre-
quency) are displayed in panel (a) of Fig. 1. We choose

M̃x pointing into the [1,−1, 0] direction which is always

perpendicular to the direction of M̃z. In terms ofMx and
My for θ = 0 we have that M̃x = (Mx −My)/

√
2. The

relative intensities of the transitions can now be calcu-
lated using the eigenstates of M̃z and are shown in panel
(b) of Fig. 1. In Fig. 1 the eigenstates of M̃z are la-
beled in decreasing order of their energy. The four states
correspond to two Kramers spin doublets, namely, states
(1,4) and (2,3), the doublet (1,4) having the larger effec-
tive g-factor. There are no level crossings as a function
of θ. Note that the transitions |4〉 → |3〉 and |2〉 → |1〉
have the same resonance field and hence their transition
probabilities have been added. Similarly for the transi-
tions |4〉 → |2〉 and |3〉 → |1〉, which also have the same
resonance fields.
In Eq. (1) we defined the four Γ8 wave functions in

terms of two indices, the spin σ (↑ and ↓) and +/−
labeling the Kramers doublets. The latter represents
the quadrupolar degrees of freedom of the quartet,32

which are conveniently parametrized using a pseudo-spin
description.33,34 The spin and pseudo-spin operators are
1/2 times Pauli matrices, denoted ~σ and ~τ , respectively,
such that32

σ+|± ↓〉 = |± ↑〉 , σ−|± ↑〉 = |± ↓〉 ,
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FIG. 1: (a) Transition fields normalized to the microwave
energy hν and (b) transition probabilities for a noninteract-
ing Ce3+ in a Γ8 quartet with Zeeman splitting for a magnetic
field rotating in the (1,−1, 0) plane (angle θ). The four eigen-
states are labeled with decreasing energy. State 1 with 4 and
2 with 3, form two spin Kramers doublets. There are no level
crossings as a function of θ.

σz | ± σ〉 = 1
2σ| ± σ〉 , τz| ± σ〉 = ± 1

2 | ± σ〉 ,

τ+| − σ〉 = |+ σ〉 , τ−|+ σ〉 = | − σ〉 . (5)

Using the above relations the magnetic moment operator
for the Γ8 states can be written as32

Mα = 2µB

(

1 + 8
7Tα

)

σα , α = x, y, z , (6)

where

Tz = τz , Tx = − 1
2τz+

√
3
2 τx , Ty = − 1

2τz−
√
3
2 τx . (7)

Note that ~M does not depend on τy and the Zeeman

Hamiltonian is still given by HZ = − ~M · ~H .32

So far we have discussed only the positions of the pos-
sible resonances. Their linewidth arises from the in-
teraction with the electron gas. The formalism lead-
ing to the Lorentzian form of the transversal dynamical
susceptibility27 is sketched in Appendix A. This formal-
ism leads to the proportionality of the relaxation time to



4

the static susceptibility, i.e. the Korringa law for higher
temperatures and the 1/Trel ≈ TK at low T . In the
following section we show that the long-range antiferro-
quadrupolar order reduces the four single ion resonances
to two.

III. SINGLE-SITE RESONANCES WITH

ANTIFERRO-QUADRUPOLAR ORDER

When the temperature is lowered CeB6 undergoes
a phase transition from the paramagnetic disordered
phase into an antiferro-quadrupolar ordered phase with
~Q-vector along the (1, 1, 1) directions.23 The transition
boundary is field dependent and Tc increases with mag-
netic field from 3.25 K at zero-field to about 5.5 K at 4
T to 8.5 K at 15 T and almost 10 K at 30 T.35

The quadrupolar degrees of freedom are described
by the Pauli matrices τ defined by Eq. (5).32 Long-
range order implies that the τ -matrices are replaced by
their eigenvalues. It is not known which combination of
quadrupolar degrees of freedom provides the quadrupo-
lar order at each site, i.e. the order does not necessarily
form along τz. The magnetization operators (6) only de-
pend on τx and τz, but not on τy. To define a general
direction of the orbital order, it is then natural to rotate
the τ -matrices in the x-z plane, i.e.,

τ̃x = cos(ϕ)τx − sin(ϕ)τz ,

τ̃z = sin(ϕ)τx + cos(ϕ)τz . (8)

Without loss of generality we can now choose the
quadrupolar order along τ̃z. We will consider two ori-
entations of the magnetic field with the crystallographic
axis. The simplest case corresponds to the magnetic
field parallel to the crystal z-axis. In the experimen-
tal situation20–22 the magnetic field points in the (1, 1, 0)
direction.

A. ~H = H(0, 0, 1)

The z component of the magnetization is given by Eq.
(6). Inverting Eq. (8) and inserting into Eq. (6) we
obtain

Mz = 2µB {1 + (8/7) [cos(ϕ)τ̃z − sin(ϕ)τ̃x]}σz . (9)

To introduce the antiferro-quadrupolar order we replace
τ̃z by its eigenvalues, ±1/2. This way we assume the
order is fully developed and along the direction of τ̃z. The
quadrupolar fluctuations, represented by τ̃x, are taken
into account by substituting τ̃x by its expectation value,
〈τ̃x〉 = 0. The g-factors are then

g± = 2± (8/7) cos(ϕ) . (10)

For ϕ = 0 we recover g+ = 22/7 and g− = 6/7 in
agreement with Eq. (3). There are then two simple

resonances, one corresponding to each sublattice of the
antiferro-quadrupolar order. Note that the originally
four transitions (see Fig. 1) are reduced to two due to
the antiferro-quadrupolar order.
Similarly we can express Mx (Eq. (6)) in terms of τ̃

operators

Mx = 2µB

{

1 + (8/7)
[(

−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

)

τ̃z

+
(1

2
sin(ϕ) +

√
3

2
cos(ϕ)

)

τ̃x

]}

σx . (11)

With the same replacements as above we have

Mx = µB

[

2± (8/7)
(

−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

)]

σx (12)

and the transition probabilities for the two sublattice
sites are given by

|〈↑ |Mx| ↓〉|2 = µ2
B

[

1±(4/7)
(

−1

2
cos(ϕ)+

√
3

2
sin(ϕ)

)]2

.

(13)
The resonance field and the spectral weights then depend
on the angle ϕ determined by the linear combination of
orbits in the antiferro-quadrupolar order. For ϕ = 0 we
recover w2

+ = 25/49 and w2
− = 81/49 in agreement with

Eq. (3).

B. ~H = H(1, 1, 0)/
√

2

This field direction is the one employed for the ESR
measurements in CeB6.

20–22 It is convenient to rotate
the magnetization so that M∗

z is parallel to the magnetic
field, i.e. we choose

M∗
z = (Mx+Mz)/

√
2 , M∗

x = (Mx−Mz)/
√
2 , M∗

y =My .
(14)

With the rotations of the τ matrices, Eq. (8), we obtain

M∗
z = µB

√
2
{

1 + (8/7)
[(

−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

)

τ̃z

+
(1

2
sin(ϕ) +

√
3

2
cos(ϕ)

)

τ̃x

]}

σx

+ µB

√
2
{

1 + (8/7)
[

cos(ϕ)τ̃z − sin(ϕ)τ̃x

]}

σz (15)

and imposing antiferro-quadrupolar order as in Sect.
III.A we have

M∗
z = µB

√
2
{[

1± (4/7)
(

−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

)]

σx

+
(

1± (4/7) cos(ϕ)
)

σz

}

. (16)

M∗
z is a 2 × 2 matrix in spin space which has to be

diagonalized to obtain the effective g-values

g± =
√
2
[(

1± (4/7) cos(ϕ)
)2

+
(

1∓ (2/7) cos(ϕ)± (2
√
3/7) sin(ϕ)

)2]1/2

.(17)
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FIG. 2: (a) Effective g-factors and (b) transition probabili-
ties for a noninteracting Ce3+ in a Γ8 quartet with Zeeman
splitting for a magnetic field along the (1, 1, 0)-direction for
antiferro-quadrupolar order. ϕ is the hybridization angle for
the quadrupolar degrees of freedom (see text).

Here, the ± refers to the sites of the two sublattices.
The eigenstates are linear combinations of up-spin and
down-spin states. Again, with antiferro-quadrupolar or-
der there are only two resonances, rather than four (see
Sect. II).
M∗

x can be obtained in a similar fashion,

M∗
x = µB

√
2
{

1 + (8/7)
[(

−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

)

τ̃z

+
(1

2
sin(ϕ) +

√
3

2
cos(ϕ)

)

τ̃x

]}

σx

− µB

√
2
{

1 + (8/7)
[

cos(ϕ)τ̃z − sin(ϕ)τ̃x

]}

σz

=⇒ µB

√
2
{

1± (4/7)
[

−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]

σx

−
[

1± (4/7) cos(ϕ)
]

σz

}

, (18)

and the spectral weight of the transition is given by the
off-diagonal matrix elements ofM∗

x within the eigenstates
of M∗

z .

The g-factors and the spectral weights for the two tran-
sitions are shown in Fig. 2 as a function of the quadrupo-
lar mixing angle ϕ. If ϕ is continued into the interval π to
2π the + solution goes over into the − solution and vice
versa. So far we considered full orbital order, which sup-
presses quadrupolar fluctuations. In principle, it is possi-
ble to introduce partial antiferro-quadrupolar order and
quadrupolar fluctuations. The partial order shifts the g-
factors slightly and the fluctuations prevent g+ and g−
from crossing, since the fluctuations act as a hybridiza-
tion between the two resonances. The fluctuations also
reinstate the two resonances suppressed by the full or-
bital order, but with a weak spectral weight proportional
to the square of the fluctuations.
The main problem with the present formulation is that

two resonances arise, one corresponding to sites of each
sublattice. However, the system is not inhomogeneous
and only one resonance is observed. To correct for this
fact it is necessary to introduce coherence in the lattice,
which is then not just a collection of independent sites.

IV. COHERENCE IN THE KONDO LATTICE

So far we considered single ion resonances and reduced
the four transitions for the Ce3+ Γ8 quartet to two res-
onances by imposing antiferro-quadrupolar order. These
resonances correspond to a single resonance for the ions
on each of the two sublattices. CeB6 is a heavy elec-
tron metal, so that the resonating electrons are not local-
ized and are allowed to travel through the crystal. These
itinerant electrons form a coherent state at low temper-
atures. This coherence reduces the two resonances dis-
cussed in Sect. III to a single resonance.
We consider two hybridized bands, a conduction and

a localized electron band, and two interpenetrating sub-
lattices, labeled with 1 and 2, respectively. The excluded
double occupancy of the localized sites can be taken into
account via slave bosons in the mean-field approxima-
tion, i.e. by replacing the hybridization V by a much
smaller effective one, Ṽ .36,37 The hopping between sites
of the conduction states conserves the spin component
and the Hamiltonian can be written as the sum of one
for up-spins and one for down-spins. As a short-hand
notation we will suppress the spin index and write

H0 =
∑

~kα

ǫ~kαc
†
~kα
c~kα +

∑

j

[

ǫ1d
†
1jd1j + ǫ2d

†
2jd2j

]

HV = Ṽ
∑

~kαj

[

c†~kαd1je
−i~k ~Rj + c†~kαd2je

−i~k(~Rj+~a)

+ H.c.
]

, (19)

where ~Rj labels the sites of the sublattice 1 and ~Rj+~a the
sites of the sublattice 2. There are then two Ce3+-ions
per unit cell and α = a, b labels the two conduction bands
in the reduced Brillouin zone. Fourier-transforming the
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site index j, the Hamiltonian has the form H =
∑

~k H~k,
where H~k can be cast into the form of a 4 × 4 matrix.
The diagonal part of the matrix contains the four one-
particle energies and the off-diagonal entries are either
Ṽ or 0. The diagonalization of the matrix yields four
bands separated by gaps. This picture is related to the
Anderson lattice considered by Abrahams and Wölfle15

with two main differences consisting in the slave-boson
mean-field and the two sublattices with different on-site
energies. The former simplifies the calculation, while the
latter is specific to the CeB6 problem.
For CeB6 two electrons per Ce atom have to be placed

into these bands, i.e. four into the reduced zone scheme.
Including the spin-index, there are two electrons per spin
component. In zero magnetic field ǫ1 = ǫ2 = ǫ, i.e. the
two quadrupolar states have the same energy (note that
ǫ1 6= ǫ2 implies a charge density wave), and we can as-
sume that the Fermi level lies in the lower of the conduc-
tion bands. This way we can neglect the upper conduc-
tion band and reduce the dimension of the matrix to 3×3.
Dropping the subindex α the secular equation becomes

(λ− ǫ~k)(λ − ǫ1)(λ− ǫ2) + Ṽ 2(2λ− ǫ1 − ǫ2) = 0 . (20)

For zero magnetic field, the roots of this cubic polynomial
are

λ∗0 = ǫ , λ∗± =
ǫ~k + ǫ

2
± 1

2

√

(ǫ~k − ǫ)2 + 8Ṽ 2 , (21)

i.e. there is one flat band, λ∗0, and two dispersive bands,
λ∗±. The dispersive bands are essentially the standard
hybridized bands of the Anderson lattice, which now has
the dispersionless level in the center of the gap. A similar
model has been proposed for Ce3Au3Sb4,

38 which is a
narrow gap semiconductor with a very large density of
localized states in the gap.
To discuss the general case, i.e. in a non-zero magnetic

field, we introduce

ǫ = (ǫ1 + ǫ2)/2 , δ = (ǫ1 − ǫ2)/2 , (22)

or ǫ1 = ǫ + δ and ǫ1 = ǫ − δ and insert them into the
secular equation,

λ3 − λ2(ǫ~k + 2ǫ) + λ(2ǫ~kǫ+ ǫ2 − δ2 − 2Ṽ 2)

−ǫ~kǫ
2 + ǫ~kδ

2 + 2Ṽ 2ǫ = 0 . (23)

For δ = 0 the equation reduces to the one discussed be-
fore. δ represents the Zeeman splitting and is propor-
tional to the magnetic field. It is useful to explicitly
include the shift due to the Zeeman effect for the con-
duction electrons, by writing ǫ~k → ǫ~k + ǫe. To obtain the
effective g-factor, we are allowed to neglect all terms of
order H2.
Introducing λ = λ∗ + δλ we have

(λ∗)3 − (λ∗)2(ǫ~k + 2ǫ) + λ∗(2ǫ~kǫ+ ǫ2 − 2Ṽ 2)ǫ

−ǫ~kǫ2 + 2Ṽ 2 + δλ[3(λ∗)2 − 2λ∗(ǫ~k + 2ǫ)

+2ǫ~kǫ+ ǫ2 − Ṽ 2]− (λ∗ − ǫ)2ǫe = 0 . (24)

0.0 0.5 1.0 1.5 2.0
ε

k

-1.0

-0.5

0.0

0.5

1.0

E
k

FIG. 3: Schematic hybridized bands: The dotted lines are
the unhybridized dispersions for the conduction and localized
states for the full Brillouin zone; the full curves are the hy-
bridized bands showing a hybridization gap also for the full
Brillouin zone; the dashed curves represent the folding of the
hybridized bands into the reduced Brillouin zone; and the
horizontal dash-dotted line displays the possible position of
the Fermi level.

For δλ = ǫe = 0 we recover the roots in Eq. (21); there
is then the following relation between δλ and ǫe

δλ = ǫe
(λ∗ − ǫ)2

3(λ∗)2 − 2λ∗(ǫ~k + 2ǫ) + 2ǫ~kǫ+ ǫ2 − Ṽ 2
, (25)

which can be used to determine the effective g-shift.
The simplest situation is when the Fermi level lies in

the λ∗0 level. In this case δλ = 0 and hence there is a
single resonance with

geff = (g1 + g2)/2 , (26)

where g1 and g2 are the g-factors of the two sublattices
as discussed in Sect. III. A more realistic assumption is
that the Fermi level lies in one of the dispersive bands,
but close to the hybridization gap. A simplified band
picture is schematically shown in Fig. 3 for the full and
reduced Brillouin zones for ǫ1 = ǫ2. A possible position
for the Fermi level is shown as the horizontal dash-dotted
line.
To evaluate the right-hand side of Eq. (25) in the

general case it is sufficient to neglect δ and to work in
the full Brillouin zone. The hybridized band dispersions
are

λ =
ǫ+ ǫ~k

2
± 1

2

√

(ǫ− ǫ~k)
2 + 4Ṽ 2 . (27)

We consider the lower band and expand for small varia-
tions of ǫ and ǫ~k due to the Zeeman shift and obtain

geff =
1

2

[g1 + g2
2

+ ge

]

− 1

2

ǫ− ǫ~k
√

(ǫ− ǫ~k)
2 + 4Ṽ 2

×
[g1 + g2

2
− ge

]

=
g1 + g2

2
+ corr , (28)
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where corr is a correction term given by

corr = −1

2

[g1 + g2
2

− ge

]



1− ǫ− ǫ~k
√

(ǫ− ǫ~k)
2 + 4Ṽ 2



 .

(29)
For heavy fermions the Fermi level intersects the lower
band were ǫ − ǫ~k ≫ 2V , so that there is almost a com-
plete cancellation of the two terms in the second bracket.
Neglecting the corr term (there are uncertainties in the
Knight shift of the resonance as well) we obtain one

resonance with a g-factor given by expression (26), i.e.
the average g-factor of the two sublattices for all cases.
Note also that since the two sublattices have different g-
values, a uniform magnetic field induces a spin-density
wave commensurate with the lattice of amplitude pro-
portional to H .
In the Appendix B we show that similar results are

obtained for a single-band model of the t-J type.

V. MAGNETIC CORRELATIONS

Usually, in a heavy fermion compound the rare earth
spins are antiferromagnetically correlated, even if the sys-
tem does not undergo a phase transition to long-range
order. The correlations have short-range character and
the susceptibility follows a Curie-Weiss law with antifer-
romagnetic Weiss-temperature θ, χ0 = C/(T + θ), where
θ is of the order of TK . The relaxation rate is inversely
proportional to χ0 (see Eq. (41)) and roughly follows a
Korringa law, with a residual T = 0 linewidth propor-
tional to θ. Hence, the resonance can only be observed
if θ is very small, i.e. of the order of 100 mK or less for
X-band microwaves.39 This would require an extremely
narrow heavy fermion band or fermions with an effective
mass of 105me, where me is the free electron mass. The
T -dependence in this case would be linear in T , i.e. a
Korringa law.
If, on the other hand, the rare earth spins are ferro-

magnetically correlated, the static susceptibility is given
by χ0 = C/(T − TC) for T > TC , where TC > 0 is the
Curie temperature. As T → TC the susceptibility di-
verges and hence, according to expression (41), the ESR
linewidth becomes very narrow. This result has to be re-
garded with some caution, because we have neglected the
relaxation through collective excitations, i.e. magnons.
The ESR-signal found in single crystals of YbRh2Si2,

3

and other compounds4–7 was attributed to the ferromag-
netic correlations among the rare earth spins and the
strong magnetic anisotropy.5 CeB6 is an exception to this
picture, since it is a cubic compound (very small mag-
netic anisotropy) and the ESR signal was observed in the
antiferro-quadrupolar ordered phase. Below we present
arguments on how ferromagnetic spin correlations can
arise in CeB6.
Consider the wave function for two electrons on neigh-

boring sites. Each state consists of a coordinate wave

function, an orbital (quadrupolar) wave function and a
spin wave function. For the non-interacting system, the
two-particle wave function then factors into a product of
two-particle wave functions

Ψ ∼ ψcoor(~r1, ~r2)ψorb(m1,m2)ψspin(σ1, σ2) . (30)

The total wave function Ψ should be antisymmetric un-
der the interchange of the indices 1 and 2. This implies
that either one of the three factors in Eq. (30) is an-
tisymmetric (and the other two symmetric) or all three
factors have to be antisymmetric.

The wave function ψcoor is the product of single site
wave functions, ϕ(~r1)ϕ(~r2), where both electrons are in
the same state. This wave function is then necessarily
symmetric. Hence, out of ψorb(m1,m2) and ψspin(σ1, σ2)
one has to be antisymmetric and the other one symmet-
ric. We now assume that the effective two-particle inter-
action Hamiltonian is of the form Hint = a~τ1 · ~τ2, where
a is the quadrupolar exchange. To be able to generate
antiferro-quadrupolar order necessarily a has to be pos-
itive. Hence, ψorb(m1,m2) represents a singlet and has
odd parity. Consequently the spin wave function has to
be a triplet (even parity). The spins are then ferromag-
netically correlated.

The singlet state of the orbital degrees of freedom can-
not be satisfied simultaneously between all the neighbor-
ing sites and generates a resonant valence bond lattice for
the quadrupolar wave function. A magnetic field helps to
align the spins and hence to enforce the antiferro correla-
tions between the orbits. This could be the explanation
of why the Tc of the phase boundary between the para-
quadrupolar disordered (Kondo) phase and the antiferro-
quadrupolar phase increases with magnetic field. The
magnetic field stabilizes the orbital order.

Some of the ferromagnetic correlations are expected to
survive in the ordered phase and enhance the magnetic
susceptibility, reducing the Weiss temperature and per-
haps even changing its sign. At higher T the Weiss θ
is antiferromagnetic or Kondo-like while when the phase
boundary is approached θ becomes ferromagnetic22 (see
also Fig. 1 of Ref. 25). As seen in Eq. (41), the relax-
ation rate is inversely proportional to the static transver-
sal susceptibility, so that an enhanced χT

0 reduces the
linewidth and the resonance becomes observable. A sim-
ilar conclusion, although with different arguments, has
been presented in Ref. 22.

Quadrupolar degrees of freedom play a fundamental
role in Ce3+ and Nd3+ ions with Γ8 ground-state.

40 They
manifest themselves in first place through interactions
among the sites. There is, however, no consensus about
the origin of the interactions. Kubo and Kuramoto41 suc-
cessfully described the excitation spectrum of NdB6 us-
ing nearest-neighbour intersite exchange and quadrupo-
lar interactions. A different approach emphasizing crys-
talline fields was proposed by Uimin and Brenig.42 For
CeB6, on the other hand, quadrupolar interactions be-
tween sites,32 the RKKY interaction arising from the
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Coqblin-Schrieffer model,43,44 and a detailed group the-
oretical study45 have been presented.

VI. CONCLUSIONS

Generally, in heavy fermion systems an ESR signal
cannot be observed because of antiferromagnetic corre-
lations that broaden the line. At low temperatures the
linewidth is of the order of the Weiss temperature or
TK , and only with microwave frequencies of a few 100
GHz a signal could be detected. There are exceptions to
this rule in magnetically very anisotropic compound with
ferromagnetic correlations, e.g. YbRh2Si2,

3 YbIr2Si2,
4

CeRuPO,7 YbRh,5 and YbCo2Zn20.
6 The ferromagnetic

correlations dramatically reduce the linewidth5,14–16 so
that a resonance can be seen with standard X- and Q-
band frequencies.
CeB6 constitutes an exception to the exceptions, since

a resonance was observed in a cubic Kondo lattice in
the antiferro-quadrupolar ordered phase. ESR in this
compound requires a separate explanation. The crys-
talline field ground state of each Ce ion is a Γ8 quar-
tet, which displays spin and quadrupolar degrees of free-
dom. From the antisymmetry of two-electron wave func-
tions for neighboring sites we conclude that in order to
have antiferro-quadrupolar correlations necessarily the
spins have to be ferromagnetically coupled. A magnetic
field favors this state and the Tc of the phase bound-
ary between the disordered Kondo phase and the phase
with antiferro-quadrupolar order increases with H , in
agreement with the experiment. Furthermore, the fer-
romagnetic correlations enhance the susceptibility (in
agreement with experiment22,25) and hence reduce the
linewidth of the resonance, which then becomes accessi-
ble to observation.
In the experimental papers3–5,9 the results for

YbRh2Si2 have all been interpreted as if the resonance is
due to localized f-electrons. In other words, as for ESR
on an impurity, if the microwave induces a spinflip at one
site, the response of the system is measured at the same
site. The response function in that case is the local dy-
namical susceptibility. The global dynamical susceptibil-
ity, on the other hand, is the Fourier-transform over the
site pairs, S(q, ω), and ESR response corresponds to the
q → 0 limit.15 This appears to be the natural approach
for extended conducting states.16 However, since more
than 60% of the Yb ions participate in the resonance,13

it is hard to distinguish between the two approaches.14

Four resonances are expected from a single Ce3+ site
with a Γ8 ground quartet. Their resonance fields and
spectral weights have been discussed in detail in Sect. II.
The antiferro-quadrupolar order quenches three of these
resonances at each site, leaving two resonances, one for
each sublattice. Experimentally, however, only one reso-
nance is observed. The ESR results for the system CeB6

can therefore not be interpreted within the single site
approach. The coherence in the global susceptibility re-

duces the two resonances to one with a g-factor approx-
imately given by the average of the g-factors of the two
sublattices. This average g-factor depends on the angle
ϕ of the quadrupolar order and its value is of the order
of 2 or slightly larger. The experimentally observed g-
value20–22 is about 1.6, i.e. considerably smaller than the
theoretical value. The Knight-shift due to the exchange
in the Coqblin-Schrieffer model yields a correction (of
about 10 % of g) in the right direction. However, even
if we consider the contribution of the four conduction
channels coupling to the Γ8-multiplets, the Knight-shift
is probably not large enough to account for the difference.
There is also the possibility that the quadrupolar order,
the intersite interactions and the coherence of the lattice
change the Knight g-shift into the correct direction.
Experimentally, the resonance has a dysonian line-

shape and the linewidth22 is a Korringa law at low T
(1.8 ≤ T ≤ 3.0 K). When T is extrapolated to zero
there is only a small residual linewidth left. This indi-
cates that the antiferro-quadrupolar order and the fer-
romagnetic correlations between spins are effective in
preventing the Kondo effect to develop in the ordered
phase. At larger T (3.0 ≤ T ≤ 3.8 K) the linewidth
is larger than the Korringa law. There are two possible
explanations for this enhancement: (i) the modulation
of the ligand field by lattice vibrations causes, by means
of the spin-orbit coupling, a spin-lattice relaxation (Or-
bach relaxation process46), which depends exponentially
on the thermal activation of the excited Γ7 crystalline
field state (the splitting between the Γ8 and Γ7 multiplets
is 530 K47), and (ii) the relaxation increases because the
phase boundary is approached and quadrupolar fluctua-
tions consequently become larger and favor spin-lattice
relaxation.
In summary, the reason why an ESR line is observed

in CeB6 is very different from that of the other com-
pounds. CeB6 is cubic and hence magnetically only
weakly anisotropic. It requires a Γ8 ground state with
antiferro-quadrupolar correlations to enhance the spin
susceptibility and reduce this way the linewidth. The
single resonance observed in CeB6 is evidence (in con-
junction with the analysis in Ref. 16) that the ESR sig-
nal is a collective phenomenon involving all the sites of
the lattice. Note also that in a cubic compound with
Γ7 ground doublet antiferromagnetic correlations are in-
duced and hence an ESR signal is too broad to be ob-
served with standard techniques. The Γ8 ground state
and the antiferro-quadrupolar order are essential ingre-
dients for the observability of an ESR signal in a cubic
environment.
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APPENDIX A: Relaxation functions

In this Appendix we present a sketch of a calculation of
the dynamical transversal susceptibility, the Knight shift
and the relaxation rates of the four resonances discussed
in Sect. II. We follow the procedure developed in Ref.
27 for a spin S. The dynamics described by this method
is equivalent to Bloch’s equations.48 The present is an
extension of Refs. 1,14,27 to many resonances due to the
crystalline field splitting.
The Ce3+ site interacts with the conduction states via

the Coqblin-Schrieffer exchange Hamiltonian, H = H0 +
HCS ,

H0 =
∑

km

ǫkmc
†
kmckm +

∑

m

Em ,

HCS =
J

N

∑

kk′mm′

[

1− 1
4δmm′

]

c†km|m′〉〈m|ck′m′ ,(31)

where H0 represents the kinetic energy of the conduc-
tion electrons (in principle there are three elliptic bands
centered about the X points in CeB6) and the Zeeman
splitting of the four Ce-Γ8 states, which are labeled here
with m = 1, · · · , 4. The energies Em are proportional to
the field H and depend on the angle between the field
and the crystallographic axis as discussed in Sect. II.
The Ce site under consideration is the origin of the co-
ordinate system and ckm refers to the conduction state
with momentum k = |k| and partial wave m. HCS has
been defined so that its trace is zero. J is the exchange
coupling and N the number of sites in the lattice.
The ESR response is determined by the transversal

dynamical susceptibility corresponding to a transition.
Without loss of generality we can consider the transition
between the states m1 and m2. Assuming that Em2

>
Em1

the operator inducing the transition is A†
m1m2

=

|m1〉〈m2| (for a two level system A† corresponds to the
raising operator S+) and we can define the spin-current
operator as

j†m1m2
=

[

|m1〉〈m2|,HCS

]

=
J

N

∑

kk′m

(

c†kmck′m2
|m1〉〈m| − c†km1

ck′m|m〉〈m2|
)

.(32)

Taking the expectation value of the conduction states we
obtain

j†〈av〉m1m2
=

J

N

∑

k

(f(ǫkm2
)− f(ǫkm1

)) |m1〉〈m2|

= −Jρ(Em2
− Em1

)|m1〉〈m2|, (33)

where ρ is the conduction density of states. This term
renormalizes the Zeeman splitting of the Γ8 states and
corresponds to the Knight-shift of the magnetic reso-
nance. It is convenient to work with the Hartree-Fock
factored variant of HCS , i.e. we include the Knight shift
into the energies Em.

We define the correlation function for the transition as

χT
m1m2

(z) = −µ2
B〈〈A†

m1m2
;Am1m2

〉〉z . (34)

For S = 1/2 this response function corresponds to the
transversal susceptibility. Following Götze and Wölfle27

we write

χT
m1m2

(z) =
NT

m1m2
(z)− µ2

B〈[A†
m1m2

, Am1m2
]〉

z − (Em2
− Em1

) +NT
m1m2

(z)/χT
0

, (35)

which defines the function NT
m1m2

(z) and χT
0 =

χT
m1m2

(z = 0) is the static transversal response func-

tion. The important part of NT
m1m2

(z) is its imagi-
nary part at the resonance, i.e. for z = Em2

− Em1
,

which divided by χT
0 yields the relaxation rate. The

function NT
m1m2

(z) is analytic in the complex upper and
lower frequency half-planes and falls off as 1/z for large
z (see Ref. 27). To simplify we will use the short-
hand notation χT

m1m2
(z) = χ12(z), N

T
m1m2

(z) = N12(z),
Em2

− Em1
= h21, etc.

It is instructive to calculate the relaxation function
N12(z) to second order in J . The imaginary part of the
relaxation function N12(z) is given by the spin-current
correlation function27

N ′′
12(ω) = −(µ2

B/ω)〈〈j
(c)
12 ; j

(c)†
12 〉〉′′ω , (36)

where j
(c)
12 = j12−j〈av〉12 is the Hartree-Fock corrected spin

current operator. We obtain

N ′′
12(ω) = π(JρµB)

2

[

e−E1/T + e−E2/T

Z
+ 2φ12(ω)

]

+π(JρµB)
2
[

φ13(ω) + φ14(ω) + φ32(ω) + φ42(ω)
]

,(37)

where Z =
∑4

i=1 e
−Ei/T is the partition function of the

quadruplet and

φij(ω) =
ω − hji
2ω

× e−Ei/T − e−Ej/T

Z

×
[

coth

(

ω − hji
2T

)

+ coth

(

hji
2T

)]

. (38)

The first bracket of Eq. (37) is the contribution involving
only the levels 1 and 2 and is similar to the one obtained
in Ref. 27 for a spin 1/2 system. The second bracket
represents the contributions involving the intermediate
states 3 and 4. These terms do not appear for a spin 1/2
system. The static susceptibility χT

0 for the states m1

and m2 is given by

χT
0 = µ2

B

e−E2/T − e−E1/T

h21Z
. (39)

For small frequencies and in the high temperature
limit, i.e. for T larger than the Zeeman splittings, the
functions φij(ω) approach the constant 1/4. From Eq.
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(35) it is seen that the dynamical response function has
a Lorentzian shape with a relaxation rate27

1/Trel = N ′′
12(ω = 0)/χT

0 = 2π(Jρ)24T . (40)

This expression is essentially the well-known Korringa
relaxation rate, i.e. the linewidth is proportional to the
temperature. The difference with the standard relaxation
rate for a spin 1/2 and the s − d Kondo Hamiltonian is
a factor of eight; a factor of four can be attributed to
the definition of the exchange coupling (Jsd = 2J) and a
factor of two arises from the contributions to N ′′

12 from
the intermediate states 3 and 4.
The Korringa relaxation rate can also be obtained via

Fermi’s Golden Rule by calculating the spin transfer to
the conduction electrons via exchange scattering. In this
case the factor T arises from the fraction of the Fermi sea
that is available for scattering. The relaxation function
method yields the same result, but the factor T comes
from the susceptibility. The relaxation function method
can be derived from Bloch’s equations48 or justified from
the Mori-Zwanzig projector formalism.49,50 The method
has also been used by Huber in his treatment of elec-
tron paramagnetic resonance in exchange-coupled sys-
tems with unlike spins.51

The above calculation is the extension of the formalism
of Ref. 27 for S = 1/2 to a more complex situation
involving four states. It is interesting to point out that
the T -dependence of the relaxation rate arises from the
static susceptibility. We obtain this way that1

Trel ∝ χT
0 , (41)

as stated in the Introduction.
The frequency dependence of N ′′

12 at temperatures less
than the Zeeman spitting can give rise to retardation
effects.27 At low frequencies the relaxation is suppressed
since the transition has to overcome the Zeeman splitting
and the energy of the thermal bath is not sufficient for
this. However, the experiments for CeB6 were carried
out T > 1.8 K and at 60 GHz, which translated to tem-
peratures corresponds to 1.5 K, so that the temperature
is always larger than the Zeeman splitting. Retardation
effects do then not play a relevant role.
Perturbatively in J the Kondo effect introduces log-

arithmic divergencies as a function of T and B, which
eventually give rise to the screening of the spin. The
Kondo effect affects both, the relaxation function NT (z)
and the static susceptibility χT

0 . The relaxation func-
tion is enhanced by the Kondo effect (NT (0) reaches the
Shiba2 unitarity limit NT (0) = i(gµB)

22/π for S = 1/2)
and the static susceptibility decreases reaching a con-
stant value, inversely proportional to TK . Hence, the
relaxation rate is considerably enhanced, rendering the
resonance too broad to be observed (only if TK is less
than 100 mK an ESR resonance would be observable
in X-band39). In CeB6, however, TK ∼ 1 K, so that
for T > 1.8 K and due to the antiferro-quadrupolar or-
der, the Kondo screening is not fully developed. For

the temperature regime of interest, the susceptibility is
a Curie-Weiss law with antiferromagnetic Weiss temper-
ature θ ≈ −2TK and the linewidth is still too large to be
observed with X- band or Q-band spectrometers.
When the Ce-ion under consideration is embedded into

a magnetic lattice (antiferromagnetic or ferromagnetic)
the mean-field of the surroundings modifies the static
susceptibility to a Curie-Weiss law with a θCW . In the
paramagnetic phase the proportionality of Trel ≈ χ0 ≈
1/(T −θ) is then favorable for the observation of an ESR
signal in the ferromagnetic case, but not in the antifer-
romagnetic situation.
The total intensity of the line is the integral over the

resonance times the square of the matrix element of Mx

(spectral weight), as discussed in Sect. II. In the absence
of retardation effects this yields π|〈1|Mx|2〉|2χT

0 , i.e. the
intensity of the line is proportional to the corresponding
susceptibility. If the system has several transitions that
are well separated, the spectrum is given by the sum
of the corresponding dynamic response functions times
their spectral weight. If two transitions have the same
resonance field (as e.g. 4 → 2 and 3 → 1 or 4 → 3
and 2 → 1 in Fig. 1) then the response functions are
the same and have a spectral weight corresponding to
the sum of the spectral weights. Finally, in the general
case when two or more resonance fields are similar, it is
necessary to introduce a matrix response function and
a corresponding relaxation matrix52 with the transitions
to be considered as entries. When the resonances are
sufficiently separated the matrix formalism reduces again
to individual resonances.
In summary, in the present Appendix we have gener-

alized the resonance formalism of Ref. 27 for a general
spin S to a system with multiple possible resonances.

APPENDIX B: Single band model

In Sect. IV we studied a two-band model involving a
flat band of localized states hybridized with a dispersive
conduction band and concluded that as a consequence
of the lattice coherence the two sublattice resonances re-
duce to one with the g-factor approximately given by the
average of the g-factors of the two sublattices. In this Ap-
pendix we show that a similar result is obtained within
a single-band model (of the t-J family).
We consider one tight-binding band with two interpen-

etrating sublattices, 1 and 2. The unit cell has two sites
of one-electron energies ǫ1 and ǫ2, respectively. Correla-
tions can be taken into account in mean-field, reducing
the hopping matrix element to a smaller effective one. As
in Sect. IV we suppress the spin index. In the reduced
Brillouin zone, the one-electron Hamiltonian is then

H =
∑

~k

[

ǫ1c
†
~k1
c~k1+ǫ2c

†
~k2
c~k2+ǫ~k

(

c†~k1c~k2+c
†
~k2
c~k1

)

]

, (42)

where ǫ~k = −2t
∑

i cos(
~k · ~Ri) with ~Ri being the vectors

joining the nearest neighbor sites.
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The Hamiltonian is easily diagonalized for each value

of ~k and the eigenvalues are

λ =
ǫ1 + ǫ2

2
± 1

2

√

(ǫ1 − ǫ2)2 + 4ǫ2~k
. (43)

For antiferro-quadrupolar order and in zero field ǫ1 = ǫ2,
so that with an applied magnetic field (ǫ1 − ǫ2)

2 ∼ H2

(which can be neglected for the purpose of a g-factor
calculation), and the effective g-factor is

geff =
g1 + g2

2
, (44)

in agreement with the result in Sect. IV, Eq. (26).
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