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Topological insulators with a time reversal symmetry breaking perturbation near the surface
present a magnetoelectric response that is quantized when the frequency of the probing fields is
much smaller than the surface gap induced by the perturbation. In this work we describe the
intrinsic finite frequency magnetoelectric response of topological insulators for frequencies of the
order and larger than the surface gap, including the experimentally relevant case where the system
is metallic. This response affects physical observable quantities and will give rise to new finite
frequency phenomena of intrinsic topological origin.

I. INTRODUCTION

It is well understood1 that under a time dependent ex-
ternal electromagnetic perturbation any given material
will develop a time dependent response, whenever the
characteristic frequencies of the perturbation are larger
than the characteristic frequencies that induce a polar-
ization or a magnetization in the material. The linear
response of conventional dielectrics is characterized by
a dielectric function ε(ω) and a magnetic permeability
µ(ω). There is in fact a wider class of materials, known as
magnetoelectric materials2, which effectively introduce
other response functions that couple electric and mag-
netic fields and which in general can also depend on the
frequency. Perhaps the most striking case of the latter
are the recently discovered three-dimensional topological
insulators (TI)3,4. They have been predicted to host a
quantized magnetoelectric term in the action, topologi-
cal in origin5,6 of the form S =

∫

dtd3x(α/4π2)θE · B,
where α = e2/~c and θ = π, only physically relevant
when time reversal symmetry is broken which implies
that the surface states that characterize these materials
are gapped. Despite the fact that this term remains ex-
perimentally elusive, there has been much ongoing work
on its consequences. It has has been predicted to give
rise to a plethora of phenomena including the Kerr and
Faraday rotation of light determined by the fine struc-
ture constant7,8 and a repulsive Casimir effect9,10, where
the region of repulsion is determined by θ. Physically,
these approaches are valid only when the frequencies of
the relevant fields are much smaller than the surface gap
m, and the topological magnetoelectric term θ is inde-
pendent of the frequency and quantized. In general, the
magnetoelectric response will depend on the frequency,
and permeate into physical observables, just as the dielec-
tric function or the magnetic permeability do, modifying
all the described phenomena related to this topological
term.
In this work, we derive the finite frequency magnetoelec-
tric response of a model hamiltonian which captures the
basic features of a three dimensional TI. To do so, we
will generalize the method introduced in Ref. 5 to finite
frequency, relating the response of TIs to that of an ef-

fective model with an extra dimension that behaves as a
higher dimensional analogue of the Quantum Hall Effect
(QHE)11. This approach has been shown to be helpful to
understand the topological origin of this response, and it
is also an efficient computational tool in practice. It has
proven useful to predict the magnetoelectric response in
a related physical situation12–14 where the bulk of the
TI is assumed to be doped. In this particular case, the
magnetoelectric response is not quantized if the chemical
potential is outside the band gap, a behaviour that may
be interpreted as arising from the corresponding anoma-
lous QHE analogue in five dimensions.
Here we extend these analysis to a more general and po-
tentially relevant experimental situation where both the
frequency and the chemical potential are kept finite, a
case that can also be understood as descending from a
five dimensional finite frequency QHE at finite chemi-
cal potential. As a consistency check we will show how
known results are recovered in the appropriate limits,
giving further physical insight into them.

II. THE MODEL

Consider the lattice hamiltonian introduced in Ref. 5,
which captures the low energy description of a generic TI,
for instance Bi2Se3

13,15. This hamiltonian can be written
as H = H0 +HM with

H0 = t
∑

x,s

c†x
Γ0 − iΓs

2
cx+ŝ + h.c.− 3tc†xΓ

0cx, (1)

HM = M
∑

x

c†xΓ
0cx, (2)

with x running through all unit cells, s = 1, 2, 3, and ŝ

is the lattice vector in the s direction. Γµ are defined as
the set of 4 × 4 matrices that satisfy {Γµ,Γν} = 2δµν ,
with µ, ν = 0, 1, 2, 3, 4 including an extra Γ4 that will be
used shortly. In momentum space this can be written as

H(k) =

(

t

3
∑

s=1

cos(ks) +M − 3t

)

Γ0 + t

3
∑

s=1

sin(ks)Γs

(3)
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These models can be thought of as lattice models
that host an odd number of low energy massive Dirac
fermions16. For example, for |M | < t there is a single
Dirac fermion at k = 0 of gap M .
The presence of a boundary in the hamiltonian can be
modeled by making the gap position dependent, promot-
ing (2) to

HM =
∑

x

M cos θ(x)c†xΓ0cx. (4)

This accounts for the band inversion by setting θ(−∞) =
π in the bulk of the TI and θ(∞) = 0. The specific de-
pendence of θ on x will not be needed for our purposes,
only its asymptotic values. Both experimentally17 and
from ab initio calculations15 the bulk band gap is well
approximated by M = 0.3 eV for Bi2Se3. A time rever-
sal symmetry breaking perturbation may generically be
included as12

Hm =
∑

x

m sin θ(x)c†xΓ4cx, (5)

which is localized at the boundary and opens a surface
gap m. This surface gap can arise from doping the TI
with magnetic impurities, and has been measured to be
m ∼ 50 meV18,19.

III. FINITE FREQUENCY

ELECTROMAGNETIC RESPONSE OF A

TOPOLOGICAL INSULATOR

To obtain the finite frequency response of a TI system
to electromagnetic fields in the presence of θ(x), we will
first generalize the original procedure devised in Ref. 5 to
finite frequency. In what follows, we compute the current
response of the system with a generalized Kubo formula
in a way that the effect of θ(x) is included in a manifestly
perturbative fashion along the derivation. Our starting
point is to consider the current density at some particular
point in space-time x0:

jµ(x0) =
δS

δAµ(x0)
, (6)

where S is the action functional of the system. For a pro-
file θ(x) that is smooth over length scales lm ≡ 1/(vFm)

(this is, |~∇θ| << 1/lm), the current at x0 is mainly de-
termined by θ around θ(x0) ≡ θ0, because correlation
functions decay exponentially with lm. We may therefore
include its effects in perturbation theory in ∂iθ, which is
by assumption small. For the calculation of jµ(x0), we
thus approximate12:

θ(x) ≈ θ(x0) + ∂iθ|x=x0
(xi − xi

0) + · · · , (7)

in the hamiltonian H = H0+HM+Hm defined by (1),(4)
and (5) respectively. To first order in ∂iθ the mass terms

read

HM +Hm =
∑

x

c†x(M cos θ0Γ0 +m sin θ0Γ4)cx

+ ∂iθ|x0

∑

x

(xi − xi
0)c

†
x(−M sin θ0Γ0 +m cos θ0Γ4)cx.

(8)

Note that in this hamiltonian θ0 is just a constant pa-
rameter.
We can now compute the current response at x0 when
a time dependent uniform electric field is applied to the
system. This is done by computing the expectation value
of jµ to first order in both ∂iθ and the electromagnetic
field Aµ, with a generalized Kubo formula

ji(x0) = ∂sθ|x0

∑

x,x′

〈

Ĵ i(x0)Ĵ
j(x)Ĵs

θ (x
′)
〉

Aj(x) (9)

where i, j, s = 1, 2, 3, repeated indices summation is im-
plied and x0, x, x

′ are full space-time variables. In this
expression Ĵ i(x) are the current operators, and Ĵs

θ (x) is
the operator attached to ∂sθ in (8) which defines the fol-
lowing vertex in momentum space

Js
θ (k) = (−M sin θ0Γ0 +m cos θ0Γ4)∂ks

≡ Jθ∂ks
. (10)

With this, the Fourier transform of the current reads

ji(x0) = ∂sθ|x0

∫

BZ

d4p

(2π)4
e−ipx0Aj

p

∫

BZ

d4k

(2π)4
(11)

×
[

TrJ i
k−p/2Gk−pJ

j
k−p/2GkJθ∂ks

Gk +

{

p ←→ −p
i←→ j

}

]

.

where the integral spans the entire Brillouin Zone (BZ).
The electronic Green’s function, which depends on a four-
momentum vector k = (k0,k) is given by G(k, θ0) =
(k0 − H(k, θ0))

−1 defined through the Fourier trans-
formed hamiltonian

H(k, θ0) = H(k) + (M cos θ0Γ0 +m sin θ0Γ4), (12)

that depends parametrically on θ0, the bulk mass M and
the surface mass m. The current vertices are defined as
J i(k) = ∂H(k,θ0)

∂ki

, J0 = I4×4 with i = 1, 2, 3. In the
derivation we have omitted terms arising from vertices
with higher derivatives of H(k, θ0) with respect to k20,
that will not contribute to the magnetoelectric response.
Before we proceed further, it is worth noting that this
equation may also be written as

ji(x0) = ∂sθ|x0

∫

BZ

d4p

(2π)4
e−ipx0∂qs

[

Πij
4 (p, q, θ0)

]

q=0
Aj

p

(13)
where

Πµν
4 (p, q, θ0) = −ie

2

∫

BZ

d4k

(2π)4
(14)

×
[

TrJ i
k−(p+q)/2Gk−pJ

j
k−p/2GkJθGk−q +

{

p ←→ −p+ q
i←→ j

}

]

.
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and again the identity holds disregarding higher deriva-
tives ofH(k, θ0). Π

ij
4 (p, q) can be considered the response

function to δθ = θ0 − θ(x)

ji(x0) =

∫

BZ

d4p

(2π)4
d4q

(2π)4
e−i(p+q)x0Πij

4 (p, q, θ0)A
j
pδθq,

(15)
which is the generalization to finite frequency and mo-
menta of Ref. 5. Equation (11) represents an equiva-
lent statement that features an explicit small parameter
throughout the derivation.
Consider now the case where the boundary of the TI is in
the z direction, so that θ(x) = θ(z). A uniform but time
dependent electric field Ej in momentum space can be
written in terms of an external vector potential Ai that
is constant in space, so that Ai(p0,p) = δ(p)Ai(p0).
The total current density in the xy plane, shown to
be quantized in the DC limit5,12 is defined as J i

2D =
∫

dzji(z) with i = x, y. The finite frequency generaliza-
tion of this quantity, i.e. the integrated current density,
thus reads

J i
2D(p0) =

∫

dz0∂z0θ(z0)∂qz

[

Πij
4 (p, q, θ0)

]

q=0,p=0
Aj

p0
.

(16)

With the change of variables
∫∞

−∞
dz0∂z0θ =

∫ 0

−π
dθ the

current is finally

J i
2D(p0) = 2π

∫ 0

−π

dθ

2π
∂qz

[

Πij
4 (p, q, θ)

]

q=0,p=0
Aj

p0
.(17)

As in the static case, the parameter θ can be thought of as
the fifth coordinate of a 4+1 model described by H(k, θ),
whose response functions are integrated only over half of
the BZ, because 0 ≤ θ ≤ π. The topological finite fre-
quency response of a 3D TI is thus intimately related to
the finite frequency response of a D = 4 + 1 insulator.
Consider now the experimentally relevant limit where
m ≪ M . In this limit the response in (17) can be
obtained analitically. This is due to the fact that the
low energy physics of hamiltonian (12), considered now
as 4 + 1 hamiltonian in half of the BZ, is dominated
by an effective 4+1 Dirac fermion of gap m located at
(k, θ) = (0, π/2), where the 4 + 1 analogue of the Berry
curvature is largest. Integrals in the five dimensional
BZ are thus well approximated by a region of momenta
around (0, π/2) within some cut-off Λ, and the effective
hamiltonian in the vicinity of that point is given by

H(k, θ) ≈H(0, π/2) + ∂ki
H |(0,π/2) ki + ∂θH |(0,π/2) θ̃

=Γiki +Mθ̃Γ0 +mΓ5 (18)

with θ = π/2 + θ̃. We can identify this hamiltonian as

that of a 4+1 Dirac fermion where k4 = Mθ̃. The cut-off
for this model is of order Λ ≈ M , and for ω << M may
be taken to infinity. Within this approximation, the θ

k−p

k

k−q

k−p

k+p−q

k−q

FIG. 1. Feynman diagrams corresponding to eq. (19). The
second diagram is obtained from the first by by i ↔ j and
p ↔ −p+ q. The grey dot represents the ∂sθ vertex.

integral in (17) is

Πij0
5 (p, q) ≡

∫ 0

−π

dθ

2π
Πij

4 (p, q, θ) ≈
−ie2

M

∫ ∞ d5k

(2π)5

Tr
[

ΓiGk−pΓ
jGkMΓ0Gk−q + ΓjGk+p−qΓ

iGkMΓ0Gk−q

]

,

(19)

where we have used dθ̃ = dk4/M , and eq. (14) with the
current vertices approximated around (0, π/2): J i = Γi,
Jθ = MΓ0. The Green functions in these expressions
are those of a 4+1 Dirac fermion, obtained as G(k) =
(k0−H(k))−1 from eq. (18), where now k has four com-

ponents. Consequently, the function Πij0
5 corresponds

to the Dirac fermion triangle diagrams shown in Fig. 1
that can be computed analytically with standard meth-
ods that are detailed in appendix A (see also Ref. 21),
and can be considered as the optical response of the five
dimensional analogue of the QHE. The magnetoelectric
response is given by the antisymmetric part of the dia-
gram and thus the total current finally reads

J i
2D(p0) = 2πΠ5(p0, µ)ǫ

ijEj(p0)

≡ σ(p0, µ)ǫ
ijEj(p0), (20)

where the function

Π5(p, q) =
ǫij
2

1

p0
∂qz

[

Πij0
5 (p, q)

]

q=0,p=0
, (21)

and we have used that Ej
p = ip0A

j
p.

Equations (20) and (21) define the finite frequency re-
sponse of a TI, which we proceed to evaluate in the next
section for different experimentally relevant scenarios.

IV. RESULTS

In this section we compute the function σ(p0, µ) de-
fined above which determines the response of the TI to
an external electromagnetic field of finite frequency.
Firstly, it is possible to restore the dependence on the
chemical potential since nothing in the above argument
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FIG. 2. Real (top) and imaginary (bottom) parts of σ(p0, µ =
0) given by (22) as a function of p0 in units of the surface
gap m. The quantization is lost at higher frequency and a
logarithmic singularity appears at p0 = 2m

depends on whether or not the chemical potential is fi-
nite as long as µ << M . For a massive Dirac fermion at
zero chemical potential, the function Π5(p0, µ = 0) can
be analytically computed. The final analytical expression
to which one arrives depends only on the surface gap m
and is given by (we refer the reader to appendix A for
details)

σ(p0, µ = 0) =
1

2

e2

h

m

p0
log
∣

∣

∣

2m+ p0
2m− p0

∣

∣

∣
. (22)

This function, plotted in Fig. 2, governs the finite fre-
quency response of a TI and is one of the central results
of this work. The quantization of the real part at low
frequencies is broken down at finite frequency giving rise
to a logarithmic divergence at p0 = 2m. Therefore, close
to this range of frequencies, the θ term will dominate
the electromagnetic response of the TI. This is particu-
larly important for Casimir type experiments9,10, where
the interplay between the optical properties of ordinary
and topological response determines not only the sign of
the force, but also at what distance does the crossover
between attractive and repulsive behavior happens. The
precise way this response alters the Casimir force is an
interesting issue on its own, and it is left for a future
study.
It is important to note that the analytic result (22) co-
incides exactly with the optical Hall conductivity of a
massive D = 2 + 1 dimensional Dirac fermion. The DC
response of a single Dirac fermion is quantized to e2/2h,
which is consistent with the fact that in the lattice model
the integrals span only half of the BZ. We thus recover
the well known result that the boundary of a TI with bro-
ken time reversal symmetry hosts a half-integer quantum
Hall effect.
Being precise, this result should not be interpreted as if
there is a massive D = 2+1 Dirac fermion somewhere in
the system. Instead, these results imply that the three-
dimensional optical response of a TI is characterized by
spatial average in the z direction of all the σxy(z) Hall

conductivities that occur wherever there is a non zero
gradient of ∂zθ(z). This situation is relevant for the re-
cent experiments described in18,19 where TI are doped
with magnetic impurities that break time reversal sym-
metry. It is remarkable nevertheless that a full D = 3+1
calculation reduces to a D = 2 + 1 result. As will be
shown immediately below, this statement does not hold
for the case of finite chemical potential.
To do so, one should compute Π5(p0, µ). This can be
exactly evaluated for some cases which we proceed to de-
scribe (technical details are left for appendix B).
One of them is the DC response at finite µ. This limit was
discussed earlier in Ref.12–14 having obvious interest on
its own since TI appear naturally doped in experiments.
The numerical evaluation for Π5(p0 → 0, µ) in the DC
limit is exactly given for our model by the expression:

σ(p0 → 0, µ) =
e2

h
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2
sgn(m) if |µ| ≤ m

1

4

[

3m

|µ|
−

m3

|µ|3

]

if |µ| ≥ m
(23)

The result is shown in Fig. 3(a). The analytical ex-
pression reveals that although there is a quantized value
at values of |µ| ≤ m which also occurs for D = 2 + 1
fermions22,23, already one can notice very important dif-
ferences with respect to the D = 2+1 case. In D = 2+1
it can be shown22,23 that only a term m/|µ| arises at fill-
ings larger than the gap. In the present case however,
there is a second term which has a different behaviour
and scales like m3/|µ|3. This term is therefore intrinsi-
cally related to the D = 3+1 nature of the carriers which
is only fully transparent in the analytic result. The extra
term turns the kink between the two regimes |µ| ≤ m
and |µ| ≥ m smoother, making the curve in Fig. 3(a)
differentiable at all µ, in contrast with the 2 + 1 result.
Finally it is possible to gain analytic insight into the

regime where both the frequency p0 and µ are kept fi-
nite, a situation that can be clearly relevant for experi-
mentally realistic situations. It is easy to see that when-
ever |µ| ≤ m and p0 < 2m the result is the same as
in (22). However there is an experimentally more rele-
vant situation when |µ| ≥ m but still p0 < 2m. This is
the case of a doped TI at finite frequency. Evaluating
Π5(p0 << 2m, |µ| > m) one obtains the first non trivial
order in p0:

σ(p0, |µ| > m) =
1

4

e2

h

[

3m

|µ|
−

m3

|µ|3
+

mp20
6|µ|3

]

, (24)

which is plotted as a function of the external frequency
p0 for different values of the chemical potential µ in Fig.
3(b). In the limit where µ = m this coincides with the
expansion of (22) when p0 << 2m. In this general case,
the quantization of the zero frequency value is also absent
for finite values of µ and p0. Thus our results imply
that the Kerr and Faraday rotation7,8 will turn not to
be quantized in units of the fine structure constant if the
samples are doped and/or if the frequency of the probe
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FIG. 3. σ(p0, µ) as a function of (a) the chemical potential µ
for zero frequency in units of the surface gap m and (b) as a
function of the external frequency p0 for µ/m = 1.0 − 2.0 in
steps of 0.2 (top to bottom). There is a quantization plateau
whenever |µ| ≤ m and a decay for µ ≥ m given by (23). For
finite frequencies and whenever |µ| ≥ m is satisfied the DC
value is not quantized and given by (24).

is of the order of the surface gap, a common situation in
actual experiments.

V. DISCUSSION AND CONCLUSIONS

To summarize, the present findings will inevitably
permeate into physically observable quantities whenever
optical probes have a frequency comparable or larger
than the surface gap. Given the sizes of the gaps, which
are as large as 0.3 eV for the bulk gap and 50 meV for
the surface gap18,19, it should be possible to observe
these effects with infra-red probes, which are fully
controllable within current state of the art technology24.
The interplay between both scales can be studied in

full lattice models and will be the aim of a subsequent
publication.
More elaborate scenarios, such as the proposed re-
pulsive Casimir effect9,10, the Topological Kerr and
Faraday effect7,8 or even the optical-modulator device
proposed in25 should be revisited. These findings can
be generalized to other classes of topological materials
such as certain classes of Weyl semi-metals that host
a Carroll-Field-Jackiw term26–29 and also to higher
dimensional analogues of TI.
In conclusion we have calculated, the electrodynamic
response of TI at finite frequencies and finite chem-
ical potential relating it to the response of a higher
dimensional analogue of the anomalous QHE. Beyond
reasonable doubt, these findings will permeate and
strongly affect physical observables, just as any other
finite frequency response function. We have shown that
there is a well defined action in this case and that it is
possible to define a quantity, the total current, which
is not sensitive to the particular time reversal breaking
profile inside the TI but it is still dependent on the
external frequency characterizing the electromagnetic
perturbation. These results pave the way to the under-
standing of topological phenomena at finite frequency,
which are bound to be relevant in current experimental
set-ups.

ACKNOWLEDGEMENTS

A.G.G. is grateful to A. Cortijo and Shoucheng Zhang
for discussions in the early stages of this work. We
thank M. A. H. Vozmediano, H. Ochoa, E. Cappelluti
for useful insights. A.G.G acknowledges support from
spanish FIS2008-00124, FIS2011-23713 and PIB2010BZ-
00512 (Brazil). F. J. acknowledges funding under NSF
Grant No. DMR-1005035.

1 L. D. Landau and E. M. Lifshitz, Electrodynamics of con-

tinuous media (Pergamon Press, Oxford, 1984).
2 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442,
759 (2006).

3 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (Oct
2011).

4 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(Nov 2010).

5 X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,
195424 (Nov 2008).

6 A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev.
Lett. 102, 146805 (Apr 2009).

7 J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, Phys.
Rev. Lett. 105, 166803 (Oct 2010).

8 W.-K. Tse and A. H. MacDonald, Phys. Rev. Lett. 105,
057401 (Jul 2010).

9 A. G. Grushin and A. Cortijo, Phys. Rev. Lett. 106,
020403 (Jan 2011).

10 A. G. Grushin, P. Rodriguez-Lopez, and A. Cortijo, Phys.
Rev. B 84, 045119 (Jul 2011).

11 S.-C. Zhang and J. Hu, Science 294, 823 (2001).
12 M. Barkehli and X.-L. Qi, Phys. Rev. Lett. 107, 206602

(2011).
13 D. L. Bergman, Phys. Rev. Lett. 107, 176801 (2011).
14 D. L. Bergman and G. Refael, arXiv:1201.3042(2012).
15 C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C.

Zhang, Phys. Rev. B 82, 045122 (Jul 2010).
16 A term of the type ǫ(k)I4×4 can also be included but it

does not affect the topological properties so we neglect it
for simplicity.

17 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Ban-
sil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan,
Nature Phys. 5, 398 (2009).

18 Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu,
K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore,
D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R.



6

Fisher, Z. Hussain, and Z. X. Shen, Science 329, 659
(2010).

19 L. Wray, S. Xu, and et. al, Nature 6, 855 (2010).
20 D. M. Basko, New Journal of Physics 11, 095011 (2009).
21 R. Delbourgo and A. B. Waites, Austral.J.Phys. 47, 465

(1994).
22 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(Nov 2005).
23 A. Cortijo, A. G. Grushin, and M. A. H. Vozmediano,

Phys. Rev. B 82, 195438 (Nov 2010).

24 A. A. Schafgans, B. C. Chapler, K. W. Post, D. N.
Basov, A. A. Taskin, Y. Ando, and X.-L. Qi,
arXiv:1202.4029(2012).

25 R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nature 6, 284
(2010).

26 S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D
41, 1231 (Feb 1990).

27 L. Balents, Physics 4, 36 (May 2011).
28 A. G. Grushin, Phys. Rev. D 86, 045001 (Aug 2012).
29 A. A. Zyuzin and A. A. Burkov(2012), arXiv:1206.1868.

Appendix A: Calculation of Π5(p0, µ = 0)

As described in the main text the main text Π5(p0, µ) determines the finite frequency response of the TI system
at finite frequency. In this appendix we provide an alternative derivation starting from the response of a D = 4 + 1
system and give details of how to compute it for µ = 0 leaving the µ 6= 0 for the last appendix.
As shown in Ref. 5 the quantized DC magnetoelectric response of TI system can be described as descending from a
five dimensional analogue of the quantized integer quantum Hall effect (IQHE)11. Under this perspective the work
of Refs. 12–14 for finite chemical potential can be understood as arising from the corresponding anomalous QHE
analogue in five dimensions. Similarly, it is possible to reinterpret our results presented in the main text as descending
from a five dimensional finite frequency QHE at finite chemical potential.
To describe the finite frequency response of the D = 4+1 at µ = 0 we couple the model to an external electromagnetic
field Aµ. After integrating out fermions, we obtain an effective action for the gauge field. This effective action will
generate an analogue of the QHE described by a Chern-Simons like term which in momentum space reads:

Seff
4+1 =

∫

BZ

d5q

(2π)5

∫

d5p

(2π)5
Π5(p, q)ǫ

µνρστAµpνAρqσAτ , (A1)

where ǫµνρσ is the Levi-Civita totally antisymmetric tensor and Aµ is the electromagnetic gauge field. In real space,
the pµ, qν momenta turn into derivatives and one recovers an action of the form A∂A∂A, which is a five dimensional
analogue of the IQHE action in D = 2 + 1 spacetime dimensions of the form A∂A. The function Π5(p, q) accounts
for the finite frequency, finite momentum response of the system. It is generated in perturbation theory from the
Feynman diagrams shown in Fig. 1 and can be regarded as arising from the antisymmetric part of the tensor:

Πµνρ
5 (p, q) = −ie2

∫

d5k

(2π)5
Tr [Gk−pΓ

µGkΓ
νGk−qΓ

ρ +Gk+p−qΓ
νGkΓ

µGk−qΓ
ρ] . (A2)

The electronic Green’s function is a function of a five-momentum vector k = (k0,k) given by G(k) = (k0 −H(k))−1.
For our model with one massive Dirac fermion in D = 4 + 1 dimensions5 the low energy propagator is of the form:

G(k) =
k0 + Γaka
k20 − k2

. (A3)

Using that the Γa matrices satisfy

Tr [ΓaΓbΓcΓdΓe] = −4ǫabcde, (A4)

one can isolate in (A2) the antisymmetric term with five Γa matrices to obtain, in terms of the Feynman parameters
α, β, γ21:

Π
(a)µνρ
5 (p, q) = −16ie2mǫµνρστpσqτ

∫

d5k

(2π)5

∫ 1

0

dαdβdγ
δ(1 − α− β − γ)

(k2 −m2 + p2αβ + q2γα+ (p+ q)2βγ)
3 , (A5)

= −
e2m

8π2
ǫµνρστpσqτ

∫ 1

0

dαdβdγ
δ(1− α− β − γ)

√

m2 − p2αβ − q2γα− (p+ q)2βγ
≡ ǫµνρστpσqτΠ5(q, p). (A6)

It is not diffucult to check that this definition of Π5(p, q) is analogous to that given in the main text. To compute it,
it is possible to numerically evaluate the integrals on the Feynman parameters and find Π5(q, p).
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As shown in the main text, it is important to keep in mind that in order to calculate the finite frequency response
to an external time dependent but spatially uniform electric field, only the external frequency p0 is kept finite while
all the rest are sent to zero. The integrals in Feynman parameters are analytic and give the logarithmic dependence
shown in (22) in the main text.
Consistent with the DC response of a single Dirac fermion5, at p0 = 0 the response is quantized to e2/2h, also in
agreement with the fact that in the lattice model the integrals span only half of the BZ. The theory recovers the fact
that at the boundary of a TI with broken time reversal symmetry there is a half-integer quantum Hall effect.

Appendix B: Finite chemical potential: Π5(p0, µ)

In this appendix we discuss the details of the computation of the response at finite frequency p0 and chemical
potential µ. The integral to be computed in this case is defined in (A5) with the replacement k0 → k0 + µ:

Π5(p, q) = −16ie
2m

∫

d5k

(2π)5

∫ 1

0

dαdβdγ
δ(1− α− β − γ)

((k0 + µ)2 − k2 −m2 + p2αβ + q2γα+ (p+ q)2βγ)
3 . (B1)

Following the arguments in the main text the relevant case is where all external momenta are zero except p0. The
integral in k0 has two third order poles at k±0 . The position of the poles in the complex plane is determined by the
relative magnitude of m2, µ, α, p0 and k2.
Consider the simple case where p0 → 0. Following the procedure in Ref. 23 in this case there is a pole which is
always has a negative imaginary part, no matter what value of k it has. The other pole however depending on k will
change semi planes and so for certain values of k the integral should be split into two. At this point it is possible to
identify several cases:

|µ| ≤ m: In this case there are always both poles in different semiplanes and the integral is proportional to sign(m).

|µ| ≥ m: In this case it is necessary split the integral on k into two parts. One from 0 to k∗ and the other one from

k∗ to ∞ where k∗ is the value of k at which the pole changes semiplane, namely
√

µ2 −m2. The first integral gives
zero since both poles are on the same side. The second one is:

Π5(µ) = 16e2m

∫

dk0
2π

∫ ∞

k∗

k3
dk

(2π)4
2π2 1

((k0 + µ)2 − k2 −m2)
3 . (B2)

We do first the k0 integral with the residue theorem. It is a third order pole so closing the contour from above and
restoring ~ we find:

Π5(µ) =
1

2

1

8π2

[

−
3m

|µ|
+

m3

|µ|3

]

e2

~
. (B3)

Since we need σ(µ) ≡ 2πΠ5(µ) we finally obtain (23):

σ(µ) = 2πΠ5(µ) =
1

4

[

−
3m

|µ|
+

m3

|µ|3

]

e2

h
, (B4)

which reduces to the familiar 1
2
e2

h sign(m) contribution of a 2 + 1 massive Dirac fermion when m = µ, and has an

extra term
m3

|µ|3
compared to the D = 2 + 1 case23.

For finite p0 and |µ| ≥ m one can generalize the same arguments and find that for p0 << 2m we have

σ(p0 < 2m,µ) =
1

4

[

−
3m

|µ|
+

m3

|µ|3
−

mp20
6|µ|3

]

e2

h
. (B5)


