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We extend the semiclassical study of fermionic particle-hole symmetric semi-Dirac (more ap-

propriately, semi-Dirac semi-Weyl) dispersion of quasiparticles, εK = ±
√

(k2
x/2m)2 + (vky)2) =

±ε0
√

K4
x +K2

y in dimensionless units, discovered computationally in oxide heterostructures by
Pardo and collaborators. This unique system is a highly anisotropic sister phase of both (symmetric)

graphene and what has become known as a Weyl semimetal, having < v2y >1/2≈ v independent of

energy, and < v2x >1/2∝ m−1/2√ε being very strongly dependent on energy (ε) and depending only
on the effective mass m. Each of these systems is distinguished by bands crossing (sometimes re-
ferred to as touching) at a point Fermi surface, with one consequence being that for this semi-Dirac
system the ratio |χorb/χsp| of orbital to spin susceptibilities diverges at low doping. We extend the
study of the low-energy behavior of the semi-Dirac system, finding the plasmon frequency to be
highly anisotropic while the Hall coefficient scales with carrier density in the usual manner. The
Faraday rotation behavior is also reported. For Klein tunneling at normal incidence on an arbitrarily
oriented barrier, the kinetic energy mixes both linear (massless) and quadratic (massive) contribu-
tions depending on orientation. Analogous to graphene, perfect transmission occurs under resonant
conditions, except for the specific orientation that eliminates massless dispersion. Comparisons of
the semi-Dirac system are made throughout with both other types of point Fermi surface systems.

PACS numbers:

I. INTRODUCTION

The isolation of single layers of graphite (graphene)
with its unique linear (massless Dirac, properly called
Weyl) low energy band structure has become, within
only a few years, a heavily studied phenomenon.1,2 The
appearance of unanticipated new features in band struc-
tures, which generally has far-reaching implications, have
in the past included half metallic ferromagnets and com-
pensated half metals (“half metallic antiferromagnets”),
and more recently topological insulators.3,4 Each of these
systems provide the promise of not only new physical
phenomena but also new applications of their unconven-
tional properties.

Another key feature of graphene is the point Fermi
surface aspect. The touching (or crossing) of bands is
accompanied by a gap throughout the rest of the Bril-
louin zone that pins the Fermi level (EF ) in the intrinsic
material to lie precisely at the point of crossing – the
point Fermi surface (two of them in graphene). This
point Fermi surface aspect has been well studied5 in con-
ventional zero gap semiconductors where a touching of
the valence band maximum and conduction band mini-
mum is symmetry determined and occurs at a high sym-
metry point. The dielectric susceptibility of such a sys-
tem is anomalous6 – neither metallic nor semiconducting
in character – and unusual consequences of the touching
bands and residual Coulomb interaction promise unusual
phases, such as excitonic condensates including excitonic
superconductors and excitonic insulators.

The linear dispersion at the zone boundary in graphene
has been known for many decades; it took the ability to
prepare the delicate material and perform a variety of ex-
periments to ignite interest. There are quasilinear (and

potentially truly linear) band structure features in cer-
tain materials, viz. skutterudites,7 that have been known
for some time and with recent developments8 may attract
new attention. To actually discover a feature in a band
structure that provides the quasiparticle dispersion of a
new and unexpected type is rare, and the discovery of
a semi-Dirac dispersion pinned to the Fermi energy is a
very recent example.

Pardo and one of the authors9,10 reported such a find-
ing in ultrathin (001) VO2 layers embedded in TiO2.
This new point Fermi surface system, dubbed ‘semi-
Dirac,’ is a hybrid of conventional and unconventional:
dispersion is linear (“massless”, Dirac-Weyl) in one of
the directions of the two-dimensional (2D) layer, and is
conventional quadratic (“massive”) in the perpendicular
direction. At directions between the axes the dispersion
is intermediate and highly direction-dependent. Interest
in this unique, maximally anisotropic, dispersion arises
for several reasons. The (topologically determined pin-
ning at the) point Fermi surface is itself of interest. The
highly anisotropic dispersion (from massive to massless
depending on angle) is unique to this system. The fact
that it arises in an oxide nanostructure of the general
type that is grown and studied regularly these days also
strengthens the promise of applications. Another layered
superstructure, a double cell layer of Ti3SiC2 embedded
in SiC, has displayed a point Fermi surface, but the dis-
persion is of the convention type.11 As alluded to above,
an unusual point Fermi surface at zero momentum, with
linear bands degenerate with quadratic bands, has been
discovered in the skutterudite class of semimetals.8

Such a spectrum had been noted earlier in different
contexts. Volovik obtained such a spectrum at the point
node in the A-phase of superfluid 3He [12] and studied



its topological robustness.13 More relevant to solids was
the discovery by Montambaux’s group of this spectrum in
a graphene-like model.14 The model has a broken sym-
metry such that hopping to two nearest neighbors is t
but to the third neighbor is t′. When t′ differs from t,
the graphene “Dirac points” wander away from the K
and K ′ points, and at t′ = 2t they merge, resulting in
the semi-Dirac spectrum. This group began a study of
low energy properties of such a system,15 which was con-
tinued by Banerjee et al.16 and will be extended in the
present paper.
In this paper we first provide results for the Hall coef-

ficient and plasma frequency versus doping level, finding
some new behavior along with some somewhat conven-
tional results. Our transport results are obtained within
a semiclassical picture, following most transport studies
in solids. Further work will be required to address be-
havior at very low doping level, where a fully quantum
treatment is expected to be required. In the final section
we provide selected results for Klein tunneling of semi-
Dirac particles, a problem that acquires extra richness
due to the variable angle of the barrier with respect to
the anisotropic dispersion.

II. SEMI-DIRAC DISPERSION

SemiDirac dispersion is quadratic along one symmetry
direction in the Brillouin zone and linear along the di-
rection perpendicular to it: massless Dirac(i.e. Weyl).
Choosing kx and ky to be the momentum variables and
taking ~=1 except occasionally for clarity, the semi-Dirac
dispersion is given by:

εk = ±
√

[ k2x
2m

]2
+

[

vky
]2

(1)

where the effective mass m applies along kx and v is the
velocity along ky(the massless direction). For interme-
diate angles β = arctan(ky/ky), the dispersion is of an
entirely new type. Two natural scales are introduced, one
for the momentum and the other for the energy: p = 2mv

(momentum scale) and ε0 = p2

2m = 2pv. (Untidy factors
of 2 appear because of the clash between the natural clas-
sical 1

2pv and relativistic pv units for energy.) One can

then define the dimensionless momenta KX = ~kx

p and

Ky =
~ky

p in terms of which the semi-Dirac dispersion

given by Eq. 1 becomes

εk = ±ε0
√

K4
x +K2

y . (2)

The corresponding velocity ~vk = ∇kεk can be scaled to

a dimensionless form ~VK using

~VK ≡ ~vk
v

= ∇KξK (3)
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FIG. 1: Fig. a: Fermi-surfaces of semi-Dirac dispersion, along
with arrows representing ~VK. The length of an arrow is pro-
portional to the magnitude of ~VK. As can be seen from the
figure, the arrow-length is constant along the Ky axis indicat-

ing a constant velocity in the relativistic (y) direction. ~VKs
are all normal to the constant Fermi energy contours, as they
should be. Fig. b: The surface and contour plot of the mag-
nitude of ~VK. The magnitude is constant in the y direction
as opposed to the monotonically changing values in the non-
relativistic (x) direction, with rapid variation of other direc-
tions of propagation.

Figure 1 shows semi-Dirac Fermi surfaces as well as con-

tour plots of ~VK .

We first compute 〈v2x〉 and 〈v2y〉, which are the aver-

ages of the Fermi surface velocity vF = (〈v2x〉+ 〈v2y〉)
1
2 for

the semi-Dirac dispersion in the non-relativistic and the
relativistic directions respectively, which will prove to be
useful later, and will also give the semiclassical conduc-
tivity tensor σαβ = e2τD(ε)〈vαvβ〉. They are defined as
follows

〈vαvβ(ε)〉 =
∑

k

vαvβδ(εk − ε)/
∑

k

δ(εk − ε) (4)

=
1

2π2D(ε)

∫

dkt
vαvβ
|vk|

,

2



where D(ε) is the density of states. For semi-Dirac dis-
persion the density of states was obtained earlier16 as

D(ε) = I1

√
2mε

π2v
= I1

2m

π2

√

ε

ε0
, (5)

with proportionality coefficient
√

m/v2. The integral I1
is given by

I1 =

∫ 1

0

ds(1 − s4)−
1
2 ≈ 1.3110. (6)

Bácsi et al. have studied the quantum critical exponents
of point Fermi surface semimetals17 with D(ε) ∝ |ε|r for
a continuous range of r including this r = 1/2 case.
The squared Fermi velocities for semiDirac dispersion

are obtained as

〈v2x〉 =
4I3
I1

ε

m
, (7a)

〈v2y〉 =
I2
I1

ε0
m

≈ 1.3v2, (7b)

note that the former involves only m, the latter only v.
The integrals I2 and I3 are given by

I2 =

∫ 1

0

ds(1− s4)
1
2 ≈ 0.8740, (8a)

I3 =

∫ 1

0

ds
s6

(1− s4)
1
2

≈ 0.3595, (8b)

Thus the ratio of 〈v2x〉 to 〈v2y〉 scales as ε/ε0, which reflects
the extreme anisotropy at small doping. For the VO2

system where semi-Dirac dispersion was discovered,9,10

only very small doping levels will remain within the
energy range represented by the semi-Dirac dispersion
( ε
ε0

∼ 10−4) but we consider more general cases.

III. FARADAY ROTATION IN THE CONTEXT

OF THE SEMI-DIRAC SYSTEM

A. The semiclassical equation of motion

The behavior of point Fermi surface semimetals in a
magnetic field has stimulated lively interest due to un-
usual quantum Hall effect behavior, with the case of
graphene having been reviewed recently by Goerbig.18

The semiclassical equation of motion of an electron in a

magnetic field ~B is given by

~
d~k

dt
= −e

c
~vk × ~B. (9)

Using Eq. (3) for ~vk in Eq. (9), one obtains the following
expressions

dKx

dt
= −ω0Ky, (10a)

dKy

dt
= 2ω0K

3
x, (10b)

where Kx and Ky are the dimensionless variables associ-
ated with momentum introduced before, and ω0 is given
by

ω0 =
eBv2

cε
=
eB

mc

ε0
ε
, (11)

where B is the magnetic field, and ε, the Fermi energy.
The Fermi surface orbiting frequency diverges as the dop-
ing level decreases; the Fermi surface orbit length goes
smoothly to zero whereas the mean velocity remains fi-
nite. Eliminating Ky from Eqs. (10a) and (10b), the
following differential equation is obtained

d2Kx

dt2
= −2ω2

0K
3
x, (12)

In order to solve this second order differential equation,
we multiply both sides of the equation by K̇x (K̇x de-
notes the time derivative of Kx). Both the right and the
left sides of the equation can then be written as a total
derivatives, which can be integrated to give

K̇x
2

= −ω2
0K

4
x + C, (13)

where the constant C can be determined from the con-
dition that K̇x = 0 when Kx = Kx,max. Kx,max =

(ε/ε0)
1/2 corresponds to Ky = 0, from the semiDirac

dispersion given by Eq. 2, and the rest follows from
Eq. (10a). Hence Eq. 13 becomes

K̇x = ±ω0

√

K4
x,max −K4

x. (14)

Integrating the above equation (numerically) one can get
Kx as a function of time. Once Kx is known, Ky can
be obtained from Eq. 10b. The differential equation for
the cyclotron orbit is obtained by dividing Eq. 10b by
Eq. 10a. Solving for that, we obtain the semi-Dirac con-
stant energy contour as an expression for the cyclotron
orbit, which is expected, since the energy of an electron
does not change when it moves under the influence of
magnetic field.

B. The cyclotron frequency

Eq. 14 can be integrated using the limit −Kx,max to
Kx,max for the variable Kx to obtain the time period.
The result for the time period (T ) thus obtained is

ω0T =
4I1

Kx,max
= 4I1

√

ε/ε0, (15)

where I1 is given by Eq. 6. From Eq. 15, the fundamental
semi-Dirac cyclotron frequency Ωc ≡ 2π

T is obtained as

Ωc/ω0 =
π

2
I−1
1

√
ε0ε. (16)

3



The cyclotron frequencies for the parabolic and the

linear dispersion cases are given by (µBB
~

= eB
mc) and

eBv2

cε
respectively(µB is the Bohr magneton). Comparing with
Eq. 16 we see that the cyclotron frequencies for all the
three cases(the parabolic, linear, and semi-Dirac) depend
linearly on the magnetic field. The cyclotron frequency is
independent of the Fermi energy for parabolic dispersion,
whereas it varies as ε−

1
2 for the semiDirac dispersion and

as ε−1 for the linear Dirac dispersion. One important
aspect of the semi-Dirac dispersion is that the semi-Dirac
dispersion being anisotropic in the momentum space can
have harmonics of the fundamental cyclotron frequency
given by Eq. 16. This feature is absent in the Dirac or the
two dimensional parabolic dispersion where the energy
momentum dispersion is isotropic giving rise to only one
value for the cyclotron frequency.

C. Faraday Rotation

The Faraday rotation angle is given by the expression19

θ(ω,B) = Z0fs(ω)Re[σxy(ω,B)], (17)

where Z0 is the impedance of the vacuum, fs is the spec-
trally featureless function specific to the substrate, and
σxy is the dynamic Hall conductivity. According to the
Drude formula the dynamic Hall conductivity is given
by19

σxy =
−2D
π

ωc

ω2
c − (ω + i

τ )
2
, (18)

where D is the Drude weight, given by D = π
6 e

2D(ε)〈v2〉.
Taking the real part of Eq. 18 and using it in Eq. 17 we
obtain

θ(ω,B) =
−2Z0fs(ω)Dωc

π
I(ω), (19)

where I(ω) is given by

I(ω) =
ω2
c − ω2 + 1

τ2

(ω2
c − ω2 + 1

τ2 )2 +
4ω2

τ2

(20)

Extremizing I(ω) and inserting the resulting expres-
sion for I(ω) in Eq. 19 we obtain the following expression
for the maximum value of the Faraday rotation angle θ

θ(ω,B) =
−Z0fs(ω)Dωcτ

2

2π((ω2
cτ

2 + 1)
1
2 − 2)

, (21)

The Drude weight D ∼ ε for Dirac dispersion(since
D(ε) ∼ ε, and 〈v2〉 is a constant). The Dirac cyclotron
frequency ωc ∼ ε−1. Hence the product Dωc that ap-
pears in the numerator of Eq. 21 is independent of the

doping level for Dirac dispersion. For semi-Dirac disper-
sion, D ∼ ε

1
2 , which follows from the fact that the prod-

uct D(ε)〈v2〉 ∼ D(ε)〈v2y〉, where vy is the speed in the

relativistic direction, and that D(ε)〈v2y〉 ∼ ε
1
2 . The last

step follows by combining Eq. 5 and Eq. 7b. For the same
dispersion ωc ∼ ε−

1
2 (From Eq. 16). Hence, like Dirac

dispersion, Dωc for the semi-Dirac dispersion is indepen-
dent of the doping energy. For two dimensional parabolic
dispersion, ωc is independent of the doping energy, but
D ∼ ε. Hence Dωc depends on the doping energy. This is
a significant difference when compared to the Dirac and
the semi-Dirac dispersion.
For Dirac and semi-Dirac systems the dependence of

the Faraday angle on the doping level arises from the
term ωcτ in the denominator of Eq. 21, whereas the nu-
merator is independent of doping. For those dispersions
one can fine tune the Fermi energy to obtain a large value
of the Faraday angle by bringing the term ωcτ close to
three, so that the term (ω2

cτ
2 + 1)

1
2 − 2 appearing in de-

nominator goes to zero causing a significant value for the
Faraday angle.

IV. HALL COEFFICIENT

According to semiclassical Bloch-Boltzmann transport
theory, the Hall coefficient of a two dimensional Fermi
liquid (in the x− y plane) is20

RH ≡ RH
xyz =

Σkvx(k)[v(k)×∇(k)]zvy(k)(
−∂f
∂ε )

[Σkv2x(k)(
−∂f
∂ε )][Σkv2y(k)(

−∂f
∂ε )]

. (22)

Due to the algebraic complexity of the first and second
derivatives of ξK , this expression is formally unwieldy.
We show however that general properties of this expres-
sion lead to a simple and familiar result for RH .
The numerator of Eq. (22) is the area Av spanned by

the velocity vector over the Fermi surface21. In the zero
temperature limit each term in the denominator reduces
to a line integral along the Fermi-surface. The carrier
density n is proportional to the area swept by the vector
k over the Fermi surface, which is the area AFS enclosed
by the Fermi surface. Hence the quantity RHn is given
by:

RHn =
AvAFS

∮

dkl
v2
x

vk

∮

dkl
v2
y

vk

. (23)

Using the fact that the gradient ∇kε is perpendicular to
the vector line element dkl along the Fermi surface, so
that the dot product between them is zero, the denomi-
nator of Eq. (23) reduces to

∮

dkl
v2x
vk

∮

dkl
v2y
vk

=

∮

dkyvx

∮

dkxvy. (24)

Using Eq. (24) in Eq. (23) we obtain

RHn =
AvAFS

∮

dkyvx
∮

dkxvy
. (25)

4



RHn as given by Eq. (25) is unity for the semi-Dirac
dispersion. This result can be argued directly from equa-
tion Eq. (25) in the following way. The semi-Dirac dis-
persion is symmetric both in the x and the y directions.
Hence we can restrict the limits of the integrals appear-
ing in Eq. (25) to the first quadrant. For the first term in
the denominator of Eq. (25), carrying out the integration
by parts one obtains:

−
∫

dkyvx = −kyvx|fi +

∫

dvxky (26)

i and f correspond to the points on the Fermi surface
with ky = 0 and kx = 0 respectively. The boundary
terms in Eq. (26) at i and f are zero because ky and
the x component of the gradient at the semi-Dirac Fermi
surface vanish at i and f respectively. Using the above
reasoning the first term in the denominator of Eq. (25)
is changed to

∫

dvxky. Making use of this along with
the definition of area under a curve(for the terms in the
numerator), Eq. (25) can be written as

RHn = −
∫

dkxky
∫

dvxvy
∫

dvxky
∫

dkxvy
. (27)

vy for the semiDirac dispersion evaluated on the Fermi
surface turns out to be proportional to ky as can be seen
from Eq. (2). Hence it is observed that in Eq. (27) the
numerator and the denominator are equal except for a
minus sign. That explains why we obtain RHn = −1 for
the semiDirac dispersion. Incidentally, vy is proportional
to ky for the Dirac and the parabolic dispersion relations.
Hence, RHn is equal to −1 for those dispersions too. So
it can be said that the Hall coefficient times the carrier
density is a topologically invariant quantity for a certain
class of band structures, reminiscent of the geometrical
representation of Ong.21

V. PLASMON FREQUENCY

The plasmon frequency for the semiDirac system can
be computed by setting the random phase approximation
expression for the dielectric constant

ǫ(q, ω) = 1− v(q)χ0(q, ω) (28)

to zero.22,23 χ0(q, ω) is the polarizability and v(q) is the
Fourier transform of the Coulomb potential. χ0(q, ω) is
given by the Lindhard expression

χ0(q, ω) =

∫

d2k

(2π)2
f(εk)− f(εk+q)

ω + εk − εk+q

. (29)

Expanding εk+q in Eq. 29 for small q (we treat only this
regime), the numerator in Eq. 29 takes the following form
at low temperature

f(εk)− f(εk+q) = ~vk · ~qδ(εk − ε). (30)

Expanding the denominator as well, Eq. 29 becomes

χ0(q, ω) =

∫

d2k

(2π)2
~vk · ~q
ω

(1 +
~vk · ~q
ω

)δ(εk − ε). (31)

The Coulomb potential v(q) in two dimensions is

v(q) =
2πe2

κq
, (32)

where q =
√

q2x + q2y, and κ is the background dielectric

constant of the medium. Using Eq. 31 and Eq. 32 in
Eq. 28, and setting ǫ(q, ω) = 0, the plasmon frequency is

ωp
2 =

8I3
π

e2qε0
κ

F (θ), (33)

where F (θ) is given by

F (θ) = ξ
3
2 (cos2 θ +

1

4
ξ−1 I2

I3
sin2 θ), (34)

and I2, I3 are given by Eq. 8a and in Eq. 8b respec-
tively. ε0 is the energy scale defined earlier. θ denotes
the angle that the plasmon wave-vector makes with the
non-relativistic axis kx of the semi-Dirac dispersion. Re-
call that the Fermi energy variable is defined as ξ ≡ ε

ε0
.

ωp ∝ √
q is characteristic of a two-dimensional system.
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FIG. 2: Angular dependence of the function F

The function F (θ) is plotted against θ in Fig. 2. Us-
ing Eq. 5 for the semiDirac density of states and Eq. 7a
and Eq. 7b for the mean square Fermi velocities, Eq. 33
reduces to

ωp
2 = π

e2q~D(ε)

κ
(〈v2x〉 cos2 θ + 〈v2y〉 sin2 θ). (35)

The plasmon frequency is highly anisotropic and reaches
its maximum along the relativistic direction, which could
be a signature characteristic of s semiDirac system.
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VI. MAGNETIC SUSCEPTIBILITY

In this section we consider the magnetic susceptibilities
for the semi-Dirac dispersion. The Pauli spin suscepti-
bility is given by

χsp/µ
2
B = D(ε), (36)

where D(ε) is the density of states. Using Eq. 5 for the
semi-Dirac density of states Eq. 36 reduces to

χsp/µ
2
B =

2m

π2

√

ξ, (37)

where ξ is the same dimensionless variable related to the
Fermi energy appearing in the previous section. For a
non-interacting Fermi liquid the orbital susceptibility is
given by24

χorb/µ
2
B = − m2

12π3

∫

d2k[
∂2εk
∂k2x

∂2εk
∂k2y

+ 2(
∂2εk
∂kx∂ky

)2(38)

+
3

2
(
∂εk
∂kx

∂3εk
∂kx∂k2y

+
∂εk
∂ky

∂3εk
∂ky∂k2x

)]δ(ε− εk)

Using Eq. 2 for εk in Eq. 38 and doing the integral we
obtain

χorb/µ
2
B = −2

√
2I4

3π3

m
3
2 v

ε
1
2

, (39)

where the integral I4 is given by

I4 =

∫ 1

0

dα
−33α10 + 41α6 − 9α2

(1− α4)
1
2

. (40)

Evaluating the numerical value for I4 and using the di-
mensionless variable ξ, Eq. 39 reduces to

χorb/µ
2
B = −0.0798m

π3

√

ε0
ε
. (41)

We observe that the orbital susceptibility for the semi-
Dirac system is always diamagnetic. The absolute value
of the ratio of the spin to the orbital susceptibilities (the
ratio of Eq. 37 to Eq. (41)) of the semi-Dirac dispersion
is given by

| χsp

χorb
| ∼ 80mξ (42)

Hence orbital magnetic susceptibility for the semi-
Dirac dispersion dominates the spin susceptibility at low
energy. This result is distinct qualitatively from both the
Dirac and the parabolic dispersion cases. For the doped
Dirac dispersion the orbital susceptibility vanishes iden-
tically. For conventional two dimensional parabolic dis-
persion the orbital susceptibility calculated using Eq. 38is
found to be 6π times smaller than its spin susceptibility.
Hence the unusually large orbital susceptibility can be
considered a distinctive feature of the semi-Dirac disper-
sion.

VII. HEAT CAPACITY

We show here how the heat capacity for the non-
interacting two-dimensional semi-Dirac electron gas is
similar to that of the three-dimensional non-interacting
electron gas with the parabolic energy-momentum dis-
persion at both the low and the high temperature ends.
The similarity becomes equality at high temperature.
Relative to the natural energy scale ε0 introduced at the
beginning, the low and the high temperatures can be con-
sidered. The low temperature heat capacity per particle
for the semiDirac dispersion is :

cv =
2I1
3
mk2BT

√

ε

ε0
, (43)

which is calculated using Sommerfeld expansion25(I1 is
given in Eq. 6). It is observed that the heat capacity
in Eq. 43 is proportional to D(ε) ∝ √

ε, as it must be
because cv depends only on the spectrum of energy levels.
A similar type of dependence with energy is observed
for the three dimensional electron gas with the parabolic
energy-momentum dispersion. The difference between
them is in the prefactors. This difference disappears quite
nicely in the high temperature end as is shown in the
following. At high temperature, the heat capacity for
the three dimensional electron gas is given by 3

2kB . In
order to emphasize a technique that will be used for the
semi-Dirac problem, a derivation of the above result for
the three-dimensional electron gas is first outlined in the
following. The parabolic three dimensional Hamiltonian
is given by Hparabolic = 1

2m (p2x + p2y + p2z), so it follows

that
∂Hparabolic

∂pi
= pi

m [where i = x, y, z]. Hence Hparabolic

can be written as

Hparabolic =
1

2
(px

∂Hparabolic

∂px
(44)

+py
∂Hparabolic

∂py
+ pz

∂Hparabolic

∂pz
).

By the equipartition theorem, the ensemble average

of each of px
∂Hparabolic

∂px
, py

∂Hparabolic

∂py
, and pz

∂Hparabolic

∂pz
is

kBT .
26 Hence taking the ensemble average of the Hamil-

tonian in Eq. 44, one obtains

< Hparabolic >=
3

2
kBT. (45)

The derivative of < Hparabolic > with respect to T gives
the heat capacity as 3

2kB.
Next, the classical semi-Dirac Hamiltonian is given by

HsD =

√

p4x
4m2

+ v2p2y (46)

Taking the derivatives of HsD with respect to px and py
gives, in spite of its complex form, the analogous expres-
sion

HsD =
1

2
px
∂HsD

∂px
+ py

∂HsD

∂py
(47)
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In the same way as before, by the equipartition theorem,
the averages of each of px

∂HsD

∂px
, py

∂HsD

∂py
is kBT . Hence

the ensemble average of HsD is given by

< HsD >=
1

2
kBT + kBT =

3

2
kBT (48)

thus cv = 3
2kB for semi-Dirac dispersion in the high T

limit. This result is exactly that of a three dimensional
non-interacting gas with parabolic dispersion.

This rather unexpected result can also be obtained di-
rectly starting from the Boltzmann distribution. In the
low temperature limit the semi-Dirac heat capacity has
the same T dependence as the non-interacting three di-
mensional parabolic system. In the high temperature end
of the spectrum the heat capacities are identical. Hence a
two dimensional semi-Dirac system effectively behaves as
a three dimensional system so far as heat capacities are
concerned. The appearance of this third degree of free-
dom can have potential technological applications. For
example, a semi-Dirac nanostructure could be used as an
efficient heat sink. More generally, a semi-Dirac system
can function quite differently compared to other two di-
mensional systems for thermal management as well as for
many other applications.

VIII. KLEIN TUNNELING

The Klein paradox is the name given to the phe-
nomenon of the complete transmission of a particle at
selected energies or geometric configurations through a
potential barrier even when the barrier is arbitrarily high.
For the conventional tunneling problem, the probability
of transmission decreases exponentially with the height
and thickness of the barrier. In order for Klein tunneling
to take place, there must be hole states having negative
energies available to promote tunneling. The positive po-
tential in the barrier region raises the hole states, making
them available. For ‘relativistic’ Dirac-Weyl dispersion
(as in graphene) Katsnelson and collaborators27 have
shown that Klein tunneling can occur and that transmis-
sion is unusually robust at near-normal incidence. Klein
tunneling is also possible in conventional (massive) zero-
gap semiconductors including double-layer graphene,27

with an angular behavior that is distinct from that of
graphene. Klein tunneling therefore is expected for parti-
cles with semiDirac dispersion, but there should be many
distinctions. The low-energy Hamiltonian corresponding
to the semiDirac dispersion can be taken as16

H = vp̂yτ3 +
p̂2x
2m

τ1, (49)

where the τ ’s are the Pauli matrices in orbital space and
p̂x(y) are the momentum operators.

I II III

d

a

h

x

y

�

FIG. 3: The top view of the potential barrier is shown. It
extends infinitely in one direction (η̂ direction), but limited

to a spatial length d in the orthogonal direction (ξ̂ direction),
which makes an angle α with the non-relativistic direction.
An electron with energy E is incident normally on the poten-
tial, i.e, along the ξ̂ direction.

A. Rotation of the Frame

The semi-Dirac system is (highly) anisotropic. The po-
tential barrier can be oriented at an arbitrary angle with
respect to the x̂, ŷ axes,after which one might consider
a particle impinging on the barrier from another arbi-
trary angle. This extension from the isotropic systems
of graphene or zero-gap semiconductors leads to a rather
complicated tunneling problem that could form the basis
of a separate study. To keep the algebra and the physical
picture as simple as possible, we consider only the special
case of normal incidence of a semi-Dirac quasi-particle
onto a potential barrier of width d, which is inclined at
an angle π

2 +α with respect to the x(nonrelativistic) axis
as shown in Fig.3. A set of orthogonal axes ξ and η with
respect to the barrier are defined. η̂ is the direction along
which the potential is infinitely extended. The electron is

incident on the potential along ξ̂, which makes an angle
α with respect to the x̂ axis. The barrier has thickness
d along the ξ axis. We work in the regime where the en-
ergy of the incident semi-Dirac particle is small compared
to the barrier potential. There are three real space re-
gions: to the left of the barrier where the potential is zero;
within the barrier with positive potential V ; and to the
right of the barrier where again the potential vanishes.
We refer to these regions as I, II, and III, respectively,
and the wavefunctions are denoted by ΨI , ΨII , ΨIII , re-
spectively. The momentum operators along the x and
the y (relativistic) directions can be written in terms of
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the variables ξ and η as follows:

p̂x = p̂ξ cosα− p̂η sinα (50)

p̂y = p̂ξ sinα+ p̂η cosα,

where p̂ξ(η) are the corresponding momentum operators
given by −i∂/∂ξ(η). Since we are considering incidence
normal to the barrier, it is straightforward to show that
the η degree of freedom can be eliminated from the prob-
lem. The Hamiltonian in Eq. 49 takes the following form:

H = vp̂ξ sinατ3 +
p̂2ξ
2m

cos2 ατ1 (51)

= vαp̂ξτ3 +
p̂2ξ

2mα
τ1.

This transformed kinetic “Hamiltonian” has both linear
(massless) and quadratic (massive) contributions, gov-
erned an increased mass mα = m/cos2α and a decreased
velocity vα = vsinα. Thus the orientation of the barrier
allows the tuning of the relative amounts of linear and
quadratic dispersion. In the limits α = 0 and π/2, the
problem reverts to the problem for zero-gap semiconduc-
tors and for graphene, respectively.
For a value of α between these limits the forward prop-

agating wave, which is of the form eikξ times a spinor, is
still an admissible eigenstate of the Hamiltonian. Oper-
ating on the planewave with the Hamiltonian in Eq. 51
gives an expression that can be written as

Hk = vk sinα[τ3 + τ1 tan θ], (52)

where

tan θ =
cos2 α

sinα

k

2mv
=

k

2mαvα
=

k

pα
. (53)

Thus tanθ reflects the magnitude of the particle mo-
mentum relative to the scaled semi-Dirac momentum
pα = 2mαvα.When k goes to −k as is the case when one
considers the backward propagating wave e−ikξ, aside
from the positive multiplicative factor vk which changes
sign, the Hamiltonian in Eq. 51 changes from τ3+τ1 tan θ
to −[τ3 − τ1 tan θ]. The corresponding eigensystems are
given for quick reference in the Appendix.

B. Derivation of the Resonance Condition

The time independent Schrodinger equation in a given
potential can be written as

hψ = (E − V )ψ, (54)

where h is the part of the Hamiltonian without the po-
tential V . In regions I and III (E − V ) is positive, and
the positive eigenvalue form of the solution as given by
Eq. A2a in the Appendix for the forward propagating
wave and by Eq. A4a for the backward propagating wave

need to be considered in those regions. In region II, V
being much larger than E results in (E − V ) being neg-
ative. Hence the negative eigenvalue solutions as given
by Eq. A2b and Eq. A4b appearing in the appendix are
of importance in that region. Momenta in regions I and
III are equal, denoted by k1, and denoted by k2 in region
II. k1 and k2 are given by

vk1 sinα(cos θ1)
−1 = E, (55a)

vk2 sinα(cos θ2)
−1 = V − E, (55b)

where θ1 and θ2 are given by

tan θ1(2) =
cos2 α

sinα

k1(2)

2mv
=
k1(2)

pα
(56)

Finally, the wave functions in the three regions are

ΨI = eik1ξ

(

cos(θ1/2)
sin(θ1/2)

)

(57)

+ re−ik1ξ

(

sin(θ1/2)
cos(θ1/2)

)

,−∞ < x < 0,

ΨII = t1e
ik2ξ

(

sin(θ2/2)
− cos(θ2/2)

)

+ r1e
−ik2ξ

(

cos(θ2/2)
− sin(θ2/2)

)

, 0 < x < d,

ΨIII = t2e
ik1ξ

(

cos(θ1/2)
sin(θ1/2)

)

, d < x <∞,

where r,t1,r1 and t2 are constants determined by match-
ing. The absolute square of t2 gives the transmission co-
efficient. Matching the wave functions at the boundaries
y = 0 and y = d, one obtains for the transmission

|t2|2 =
(sin θ2 cos θ2 cos θ1)

2

A2 +B2 − 2AB cos k2d
, (58)

where A and B are given by:

A = [sin((θ2 − θ1)/2) cos θ2 (59)

+ sin(θ2 + θ1)/2] cos((θ2 − θ1)/2)

B = sin θ2 sin
2((θ2 + θ1)/2)

It can be shown that when

cos k2d = 1 (60)

the denominator in Eq. 58 becomes equal to the numer-
ator. The resonance condition as given by Eq. 60 implies

k2d = 2nπ;→ k2 = npd (61)

where n is an integer and the characteristic momentum
scale pd = 2π/d has been introduced. From Eq. 55b and
Eq. 61 we obtain the following condition for complete
transmission of an incident wave:

[n2 sin2 α+ n4 cos4 α(
π

mvd
)2]

1
2 = (V −E)d

2πv (62)
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or equivalently in terms of “renormalized” constants

n[1 + n2(
pd
pα

)2]
1
2 =

(V − E)

pdvα
. (63)

Eq. 63 gives the resonance condition, either for resonant
energies En(α, d, V ) or for orientations αn(d, V −E), for
full transmission.

The limiting cases are α → 0 and α → π/2. The lat-
ter limit corresponds to normal incidence of a particle
with ‘relativistic’ Dirac-Weyl dispersion which is treated
in Ref. [27], where it was shown that there is complete
transmission even if the potential barrier is large. The
resonance condition for this limiting case can be obtained
setting α = π/2 in Eq. 63. The α = 0 limit becomes the
case of conventional massive particle tunneling, which
must be treated separately (see the following subsection).
The semi-Dirac system provides for, and interpolates be-
tween smoothly, the two very different limits. Figure 4
provides a schematic illustration where there is a single
resonant orientation of the barrier.

C. Limiting case α = 0

This case corresponds to the potential being perpendic-
ular to x (the non-relativistic direction), so ky=0. The
Hamiltonian admits evanescent as well as propagating
wave solutions only in this case; in a sense the relativis-
tic character dominates the behavior except at α=0. It
is instructive to follow the mixing of the positive and
negative energy components. Operating on propagating
waves e±ikxx the Hamiltonian in Eq. 49 takes the follow-
ing form in the k space:

H =
k2x
2m

τx, (64)

with the conventional massive eigenvalues ± k2
x

2m . For
evanescent waves the eigenvalues are interchanged, re-
sulting in a mixing of positive and negative energy func-
tions in a way that does not occur with non-zero ky.

The energy of the incident particle for both the propa-

gating and the evanescent cases are the same:(E =
k2
x

2m ).
The momenta in regions {I, III} and II are denoted by

k′′1 =
√
2mE and k′′2 =

√

2m|V − E| respectively. The

form of the wave function in the three regions are

ΨI = eik
′′

1 x

(

1
1

)

+ r′′e−ik′′

1 x

(

1
1

)

(65)

+t′′′ek
′′

1 x

(

1
−1

)

,

−∞ < x < −d,

ΨII = t′′1e
ik′′

2 x

(

1
−1

)

+ r′′1 e
−ik′′

2 x

(

1
−1

)

+t′′′1 e
k′′

2 x

(

1
1

)

+ r′′′1 e
−k′′

2 x

(

1
1

)

,

−d < x < d,

ΨIII = t′′2e
ik′′

1 x

(

1
1

)

+ r′′′2 e
−k′′

1 x

(

1
−1

)

,

d < x <∞,

where r′′, t′′′, t′′1 , r
′′
1 , t

′′′
1 , r

′′′
1 , t

′′
2 , r

′′′
2 are constants. In

Eq. 65, for regions I and III the evanescent waves are
constructed in such a way that they don’t diverge when
|x| becomes large. There is no backward traveling wave
in region III. |t′′2 |2 is the transmission coefficient.
Equating the wave function and its derivative at the

boundaries x = 0 and x = d, for the transmission coeffi-
cient we obtain

|t′′2 |2 = | 4ik′′1k
′′
2 e

−ik′′

2 d

e−k′′

2 d(k′′2 + ik′′1 )
2 − ek

′′

2 d(k′′2 − ik′′1 )
2
|2. (66)

Eq. 66 is the same as that given by Katsnelson et al.27

in the context of the tunneling probability for the bilayer
graphene dispersion. k′′2 gets large as the potential V
gets large. Because of the presence of the exponential
factor ek

′′

2 d in the denominator, the transmission coeffi-
cient given by Eq. 66 goes to zero as the potential goes
to infinity. Thus there is no perfect transmission when
the potential is in the non relativistic direction and the
particle is incident normally, as mentioned above.
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FIG. 4: Complete transmission for various orientations of the
potential
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IX. SUMMARY

In this paper several low energy properties of the semi-
Dirac, semi-Weyl degenerate semimetal have been stud-
ied. Whereas some of the properties are intermediate be-
tween the conventional parabolic and the linear “Dirac”
(graphene) dispersion, as is the case for the cyclotron fre-
quency, some other properties can be distinct and rather
unusual. The dependence of the Hall coefficient never-
theless depends on doping level in the usual way, and
we illuminate how this result is related to the form of
the dispersion relation. Results for Klein tunneling for
the case of semi-Dirac dispersion have been obtained for
normal incidence on an arbitrarily oriented barrier in the
2D plane, revealing that an electron can tunnel through
the barrier with probability one, subject to a resonance
condition being met, except for the direction where lin-
ear dispersion does not enter the problem. The extreme
anisotropy of the plasmon frequency is a distinctive fea-
ture of a semi-Dirac system.
Intriguing behavior for the Faraday rotation and the

low- to high-temperature crossover of the heat capacity
have been provided. Finally, we note that the behavior of
the orbital susceptibility is distinct from both quadratic
and linear systems, being strongly dependent on doping
level. Also we remind that our transport results have
been obtained within the semiclassical approximation.
Several properties of graphene require treatment beyond
the semiclassical one28,29 at very low doping, and we an-
ticipate that the semi-Dirac system may be even more
delicate in this limit than is graphene.
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Appendix A: 2×2 eigensystems

I. The eigenvalues λ± and eigenstates Λ± of the 2 by
2 real matrix

τz + tan θτx (A1)

are given by:

λ+ = (cos θ)−1; Λ+ =

(

cos(θ/2)
sin(θ/2)

)

, (A2a)

λ− = −(cos θ)−1; Λ− =

(

sin(θ/2)
− cos(θ/2)

)

. (A2b)

II. For the matrix

−[τz − tan θτx], (A3)
the eigensystems are

λ+ = (cos θ)−1 : Λ+ =

(

sin(θ/2)
cos(θ/2)

)

, (A4a)

λ− = −(cos θ)−1 : Λ− =

(

cos(θ/2)
− sin(θ/2)

)

. (A4b)
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B 82, 153406 (2010).

18 M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
19 I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bost-

wick, E. Rotenberg, T. Seyller, D. van der Marel, A. B.

10



Kuzmenko, Nature Physics 7, 48 (2011).
20 P. B. Allen, W. E. Pickett, and H. Krakauer, Phys. Rev.

B 37, 7482 (1988).
21 N. P. Ong, Phys. Rev. B 43, 193 (1991).
22 S. Das Sarma, E. H. Hwang, Phys. Rev. Lett. 102, 206412

(2009).
23 E. H. Hwang and S. Das Sarma, Physical review B 75,

205418 (2007)
24 H. Fukuyama, Progress of Theoretical Physics 45, 3

(1971).
25 N. W. Ashcroft,N. D. Mermin Solid State Physics

(Brooks/Cole, 1976), p. 47.
26 W. Greiner,L. Neise and H. St”̆cker, Thermodynamics and

Statistical Mechanics (Springer-Verlag, 1995), p. 196.
27 M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nature

Physics 2, 620-625 .
28 T. Ando, Y. Zheng, H. Suzuura, J. Phys. Soc. Jpn 71, 1318

(2002).
29 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys.

Rev. B 73, 125411 (2006).

11


