
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Thermodynamic singularities in the entanglement entropy
at a two-dimensional quantum critical point

Rajiv R. P. Singh, Roger G. Melko, and Jaan Oitmaa
Phys. Rev. B 86, 075106 — Published  6 August 2012

DOI: 10.1103/PhysRevB.86.075106

http://dx.doi.org/10.1103/PhysRevB.86.075106


LR12960BR

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Thermodynamic singularities in the entanglement entropy

at a 2D quantum critical point

Rajiv R. P. Singh,1 Roger G. Melko,2, 3 and Jaan Oitmaa4

1Physics Department, University of California, Davis, CA, 95616
2Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
4School of Physics, University of New South Wales, Sydney 2052, Australia

(Dated: July 23, 2012)

We study the bipartite entanglement entropy of the two-dimensional (2D) transverse-field Ising
model in the thermodynamic limit. Series expansions are developed for the Renyi entropy around
both the small-field and large-field limits, allowing the separate calculation of the entanglement
associated with lines and corners at the boundary between sub-systems. Series extrapolations are
used to extract power laws and logarithmic singularities as the quantum critical point is approached,
giving access to new universal quantities. In 1D, we find excellent agreement with exact results as
well as quantumMonte Carlo simulations. In 2D, we find compelling evidence that the entanglement
at a corner is significantly different from a free boson field theory. These results demonstrate the
power of the series expansion method for calculating entanglement entropy in interacting systems,
a fact that will be particularly useful in searches for exotic quantum criticality in models with and
without the sign problem.

PACS numbers:

I. INTRODUCTION

The study of entanglement properties of ground states
of one-dimensional (1D) statistical systems and free field
theories in arbitrary dimensions is a very mature field.1–3

Many exact results have been established, and numeri-
cal methods such as the Density Matrix Renormalization
Group (DMRG) enable studies of relatively large sys-
tem sizes in 1D.4 In contrast, the study of entanglement
properties for ground states of interacting quantum lat-
tice models in higher dimensions is a subject still in its
infancy.5–8 In particular, although a great potential exists
to connect properties of entanglement to universality at
quantum critical points (QCPs),9 the critical scaling be-
haviors of very few interacting lattice models are known.
Ultimately, the study of entanglement entropies may pro-
vide unique signatures of novel or deconfined QCPs.10

Yet, much work is required before this advance is pos-
sible; little is quantitatively known about the nature of
the singularities and crossovers at a QCP as a function
of system size and other thermodynamic parameters.

Recent developments in Quantum Monte Carlo meth-
ods offer a promising avenue for calculating entangle-
ment properties of higher dimensional quantum lat-
tice models.11,12 Another fruitful approach is the study
of entanglement in suitably parameterized variational
wavefunctions.13,14 DMRG and Matrix Product State
methods provide other powerful variational approaches
to study quantum entanglement in higher dimensional
systems.15–17 However, in contrast to these methods that
require careful scaling analyses of finite-size lattices, se-
ries expansions at T = 0 provide a simple yet powerful
alternative approach to studying ground state entangle-
ment entropy directly in the thermodynamic limit. Cal-
culations are carried out order-by-order in perturbation

theory as a power series in some expansion variable λ,
providing a pedagogically transparent introduction to the
development of entanglement entropy in many-body sys-
tems. These expansions are typically convergent inside a
phase, but become singular as a phase boundary is ap-
proached. Once the expansions are developed to some
order (in practice typically of order 10), series extrapo-
lation methods can be used to approximate the singular
behavior in entanglement near a QCP.
Here, we demonstrate the power and utility of series

expansions by calculating thermodynamic singularities in
the entanglement entropy of the archetypical 2D quan-
tum critical point of the transverse-field Ising model,18

H = −J
∑

〈i,j〉

σz
i σ

z
j − h

∑

i

σx
i , (1)

where the first sum runs over the nearest-neighbor bonds
of the square-lattice and the second over its sites. Both
the limits h = 0 and J = 0 have very simple ground
states, and series expansions can be separately developed
in h/J or J/h. At small h one has two ordered ground
states and the system has spontaneously broken Z2 sym-
metry (called the “ordered” phase). In developing the
series expansion in h/J , we pick one of the two ground
states of the system to expand around. The state at
h = 0 is a simple product state with all the spins pointing
along the z axis. At large h (the “disordered” phase), one
also has a simple product ground state, where every spin
points along the x-axis. Thus both at h = 0 and at J = 0
the ground states have no entanglement between any pair
of sites. A quantum critical point intervenes between the
ordered and disordered phases, which is known to be in
the universality class of the 3D classical Ising model.18

Using series expansion, we provide accurate calculation
of the thermodynamic singularities in the entanglement
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FIG. 1: The infinite square-plane is partitioned into four
quadrants a, b, c and d. The region A could be a half-plane
such as a∪b or a quadrant such as b or c, while the rest of the
square-lattice forms the region B. For the former partition,
several low-order clusters that cross the boundary between A
and B are also shown.

entropy for this universality class, demonstrating in par-
ticular differences from Gaussian free-field universality.

II. SERIES EXPANSION METHODS FOR

RENYI ENTROPIES

From a computational point of view, the Renyi
entropies19 are particularly convenient measures of bi-
partite entanglement. If we divide our system into two
parts A and B, such that each spin belongs to either A
or B, then the ground state of the full system can be
written in the local basis as

|Ψg〉 =
∑

a

∑

b

ψa,b|a〉|b〉, (2)

where a and b refer to basis states for subsystems A and
B respectively. The Renyi entropies are defined as:

Sn =
1

1− n
ln [Tr(ρnA)] , (3)

where, the trace is over all the states of the subsystem A
and the reduced density matrix for the subsystem A is
given by the matrix elements

〈a1|ρA|a2〉 =
∑

b

ψ∗
a1,bψa2,b. (4)

In this paper we will focus attention solely on the sec-
ond Renyi entropy S2. We will divide the infinite system
into two subsystems such that the subsystem A is either
a half-plane or a quadrant (See Fig. 1). We begin with
the case when A is a half-plane. First non-zero terms in
perturbation theory arise when pairs of spins from across
the dividing line get entangled. Because the entropy is
an extensive measure, each such pair contributes equally
to the sum and it leads to an entropy proportional to the
length of the boundary. In the next order either a pair
of spins from one side can be entangled with one spin
from the other side, or a pair of spins from one side can
entangle with a pair of spins from the other side. These

contributions have a natural graphical interpretation in
terms of clusters that go across the boundary separating
A and B (See Fig. 1). The linked cluster method18,20

allows one to separate the entanglement that comes from
a pair of spins versus the additional entanglement that
comes from a larger cluster of spins. One can find the
additional entanglement from a larger cluster (also called
the weight of the clusterW ) by calculating the full entan-
glement for that cluster of spins when the perturbations
are turned on, and then subtracting from it the weight
of all its subclusters,18

W (c) = S2(c)−
∑

s

W (s), (5)

where the sum is over all subclusters of the cluster c. In
the thermodynamic limit, one can use the translational
symmetry along the length of the boundary to write the
entropy per unit length as

s2 = S2/L =
∑

cd

W (cd). (6)

Here the sum is over all translationally distinct clusters
{cd}. Expanding as a power series in λ = h/J or λ = J/h
one obtains

s2 =
∑

n

pnλ
n. (7)

To obtain the corner terms, we need to consider the
case where A is a quadrant (See Fig. 1). In fact, by
considering different choices for the division of the infinite
lattice into A and B it is possible to completely cancel out
the line contributions.21 If we calculate the entanglement
entropy for (i) when A is the quadrant (b) and (ii) when
A is the quadrant (c), then their sum will amount to
entanglement from two 90 degree corners plus two infinite
lines that cut across the lattice. The line contributions
can be subtracted off by subtracting the entanglement
entropies for the cases, where A is the half plane formed
by (i) a ∪ b and (ii) a ∪ c. This subtraction can be done
on a graph by graph basis. Thus series for a corner,
in the thermodynamic limit, can be expressed in terms
of graphs that lie at the intersection of two lines. This
leads to the expansions for the entanglement entropy at
a single corner as

c2 =
∑

n

qnλ
n. (8)

The coefficients pn and qn are calculated to order 14 in
J/h and order 24 in h/J and provided in supplementary
material.22

Note that one of the advantages of the series expan-
sion method is that the line and corner contributions are
obtained separately. In higher dimensions, entropy asso-
ciated with each type of manifold, planes, lines, corners
can also be calculated separately.
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FIG. 2: Entanglement entropy of the transverse-field Ising
chain, for two edges, obtained by series expansions. For com-
parison QMC data on finite systems are also shown. In the or-
dered phase log 2 has been subtracted from the QMC data to
correspond to the fact that series expansions are done around
a single ordered ground state.

III. SERIES ANALYSIS

It is clear from the formalism that the ‘area law’ is
built into the series expansion method, namely that the
entanglement entropy scales with the boundary ‘area’ be-
tween subsystems. As long as the perturbation theory
converges, the ‘area law’ continues to hold. This is consis-
tent with general arguments that gapped phases obey the
area law.3 As one approaches a quantum critical point,
where the gap goes to zero, the series become singular.
One can study whether the area law continues to hold at
the critical point and the nature of the critical singular-
ity by analyzing the limiting behavior of the series using
extrapolation methods.
Series extrapolations can deal with convergent or

divergent power-law singularities by using differential
approximants.23,24 A differential approximant approxi-
mates a function f(λ) by f[m,n,j](λ), the solution to the
differential equation:

Qm(λ)
df[m,n,j](λ)

dλ
+ Pn(λ)f[m,n,j](λ) = Uj(λ). (9)

Here Qm(λ), Pn(λ) and Uj(λ) are polynomials of order
m, n and j, which are constructed such that the firstm+
n+j+2 powers in the series expansion in λ for f[m,n,j](λ)
agree with those for f(λ). A given choice of integers m,
n and j uniquely determines the approximant f[m,n,j](λ)

and its singularities.23,24 Different choices of the integers
m, n and j lead to different approximants. If the location
of the critical point λc is known by some other means,
one can construct biased approximants, whose singularity
arises at λc. Note that the inhomogeneous term Uj(λ) is
essential to allow a non-zero slowly varying background
in addition to a power-law singularity.
In the special case of a log singularity, one can approx-

imate df(λ)
dλ

by a ratio of polynomials (also called Padé

approximants) df
dλ

[m,n]
(λ) = Pn(λ)

Qm(λ) .

First, we discuss the results for the transverse-field
Ising chain for which closed form expressions for the
von Neumann entropy and asymptotic expressions for the
Renyi entropies are available in the literature.2 Our goal
here is not to study the 1D model per se, but to simply
see how well one can estimate the critical properties using
series expansions of the same length that can be done in
any dimension. In Fig. 2, the results of series extrapola-
tion are shown. As a comparison, we also show finite-size
data from Quantum Monte Carlo (QMC) on an L length
chain with periodic boundary conditions, where A and
B are both of length L/2. The QMC was performed us-
ing a T = 0 projector method,25 adapted to calculate
Renyi entropy via the Swap operator11 on a replicated
system.26 The comparison shows that both the series ex-
pansion and QMC results are very accurate, at least until
one gets very close to the critical point, where finite size
effects become large and the QMC data drops away from
the series extrapolation curve.
In 1D, the boundary ‘area’ between subsystems is just

a point or a corner. At the critical point this corner con-
tribution diverges logarithmically leading to a breakdown
of the ‘area law’. The second Renyi entropy associated
with a single boundary is given asymptotically close to
the critical point by the expression,1,2

s2 =
c

8
log ξ, (10)

where the central charge c = 1
2 for this model and the

correlation length ξ diverges as 1/|1−λ| as λ approaches
unity. This means that the coefficient of the logarithmic
singularity in log |1− λ| should equal −0.0625. Our ex-
trapolations give different answers from the expansions in
h/J and J/h. From one side we estimate the coefficient
of the log singularity to be −0.053(1) where as from the
other side we obtain −0.077(2). Here the quoted small
uncertainty is a measure of internal consistency between
different approximants. We also find that using longer
series both terms are changing in the right direction but
only by about 0.001 and 0.002 respectively in each order.
If we make the reasonable assumption that the coefficient
must be the same from both sides and thus average the
two answers, we obtain −0.065(12), which gives a strin-
gent limit on the uncertainty in the calculations.
We now turn to the 2D transverse-field Ising model. In

this case, one expects the corner term to be log divergent
as in 1D.1 However, the singular behavior associated with
the line term should be of the form

s2 = sc2 +A/ξ ∼ sc2 +B(λc − λ)ν , (11)

where ν is the exponent charactering the divergence of
the correlation length ξ. As ξ diverges, the singular part
of s2 goes to zero. In this sense, it is subdominant to
the non-singular non-universal term sc2. In order to an-
alyze this singular behavior, we bias the critical point
to previously determined value of h/J = 3.044.18,27 The
extrapolated line and corner terms for the entanglement
entropy of the 2D model are shown in Fig. 3. Several
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FIG. 3: ‘Area law’ term s2 and corner term c2 of the entan-
glement entropy of the 2D transverse-field Ising model ob-
tained by series expansions in the variables h/J and J/h. In
each case several approximants with critical point biased at
h/J = 3.044 are shown.

approximants are plotted in each case. They can hardly
be distinguished on the scale of the plot, showing the
level of internal consistency in the series extrapolations.
We estimate ν = 0.60(2) and entropy per unit length at
the critical point of sc2 = 0.0324(3) from one side and
ν = 0.66(3) and sc2 = 0.0350(3) from the other side. Av-
eraging these we get, ν = 0.63(3) and sc2 = 0.337(13).
These values are clearly consistent with the known value
of ν = 0.629(2) for the 3D Ising universality class28 and
recent QMC estimate of sc2 = 0.0332(4).29

The corner term is analyzed for a log singularity. We
estimate the coefficient of the logarithm to be 0.0059(3)
from one side and 0.0077(1) from the other side. Aver-
aging the two, we get 0.0068(9). One can convert the
logarithm in the variable |λc − λ| into log(ξ) by dividing
by −ν. Thus, we obtain

c2 = (−0.011± 0.001)log(ξ). (12)

These results are clearly distinct from the free field theory
result of Casini and Huerta who obtain c2 = −0.0062.30

The QMC in Ref. 29 quotes a value of 4c2 = −0.03±0.01,
with large uncertainties that can not be distinguished
from free field theory.

IV. DISCUSSION

We have shown that series expansions can be used to
obtain new universal quantities related to entanglement
at quantum critical points (QCPs). Specifically, we have
calculated thermodynamic singularities in the Renyi en-
tropies with about 10 percent accuracy. We have pro-
vided compelling evidence that the entanglement entropy
produced at a corner in the boundary between subregions
in the 2D transverse field Ising model QCP is different
from that of a free boson field theory.30 Indeed, the trans-
verse field Ising model QCP is in the classical 3D Ising

universality class, which is distinct from the free (Gaus-
sian) universality class. Currently there are no theory re-
sults for the corner log in the transverse field Ising model;
we hope that in the future field theory calculations will
be done, in order to compare to our series predictions
here.

Through our calculations of c2 (and our accurate es-
timate of the exponent ν), we have demonstrated that
series expansions already suffice to distinguish between
different universality classes.30,31 It would be useful to
study a range of models on different lattices to further
consolidate the notion of universality. Given that the nu-
merical values of critical parameters are largely unknown,
comparison between series expansions and QMC data,
where available, would be most useful. Series expansions
can also be developed in higher than two dimensions and
also for other Renyi indices n. These can help address
questions related to upper critical dimensionality, bound-
ary correlation functions and possible singularities as a
function of the Renyi index n.7

A weakness of the series method, as presented here,
is the inability to study topological entanglement en-
tropy. The calculations discussed here are all related to
the boundary between subsystems and in finite orders
of perturbation theory only the degrees of freedom at fi-
nite distance from the boundary get entangled. This can
not address topological entanglement, which is inherently
long-ranged. It would be interesting to explore the pos-
sibility of addressing this through an approach involving
degenerate perturbation theory.32

From a computational point of view, series expansion
methods may be particularly useful in studying interact-
ing Fermion models and frustrated spin models. Quan-
tum critical points are, in principle, accessible to high
temperature series expansions, which might provide a
useful route to studying t− J and Hubbard models. At
T = 0, one should be able to look for exotic critical points
at the boundary of magnetically ordered phases, or at
the boundary between ordered phases and gapped spin
liquids.10,33 Indeed, several recent works15,16 have argued
that a spin liquid state may arise in the frustrated J1−J2
square-lattice Heisenberg model. Investigations of the
entanglement scaling at critical points contained in this
model will be pursued in future.
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