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The spectral-weight distribution in recent neutron scattering experiments on the parent compound
La2CuO4 (LCO), which are limited in energy range to about 450 meV, is studied in the framework of
the Hubbard model on the square lattice with effective nearest-neighbor transfer integral t and on-
site repulsion U . Our study combines a number of numerical and theoretical approaches, including,
in addition to standard treatments, density matrix renormalization group calculations for Hubbard
cylinders and a suitable spinon approach for the spin excitations. The latter spin-1/2 spinons are the
spins of the rotated electrons that singly occupy sites. These rotated electrons are mapped from the
electrons by a uniquely defined unitary transformation, in which rotated-electron single and double
occupancy are good quantum numbers for finite interaction values. Our results confirm that the
U/8t magnitude suitable to LCO corresponds to intermediate U values smaller than the bandwidth
8t, which we estimate to be 8t ≈ 2.36 eV for U/8t ≈ 0.76. This confirms the unsuitability of the
conventional linear spin-wave theory. Our theoretical studies provide evidence for the occurrence
of ground-state d-wave spinon pairing in the half-filled Hubbard model on the square lattice. This
pairing applies only to the rotated-electron spin degrees of freedom, but it could play a role in a
possible electron d-wave pairing formation upon hole doping. We find that the higher-energy spin
spectral weight extends to about 566 meV and is located at and near the momentum [π, π]. The
continuum weight energy-integrated intensity vanishes or is extremely small at momentum [π, 0].
This behavior of this intensity is consistent with that of the spin waves observed in recent high-
energy neutron scattering experiments, which are damped at the momentum [π, 0]. We suggest that
future LCO neutron scattering experiments scan the energies between 450 meV and 566 meV and
momenta around [π, π].

PACS numbers: 78.70.Nx, 74.72.Cj, 71.10.Fd, 71.10.Hf

I. INTRODUCTION

The development of a better understanding of quan-
tum magnetism is important for improving our under-
standing of the high-temperature cuprate superconduc-
tors. Indeed, the parent compounds of the cuprates are
insulating antiferromagnets, and these less complicated
undoped systems can provide valuable information on
which model Hamiltonians quantitatively describe the
cuprates. Improved determination of the model Hamilto-
nians is essential because of the many nearby competing
phases in the doped systems, easily affected by small pa-
rameters, which can now be seen because of continued
improvements in numerical simulations1.

The spectral-weight distribution in recent neu-
tron scattering experiments on the parent compound
La2CuO4 (LCO), which are limited in energy range to
about 450 meV, raise new interesting questions2. In
LCO, antiferromagnetic order occurs with a commensu-
rate wave vector [π, π], where [π, π] is observed to re-
main commensurate for a finite level of doping. A [π, π]
Goldstone mode was predicted by a spin-bag model3. A
decade ago the neutron scattering experiments on LCO of
Coldea, et. al.4 first showed sufficient details of the spin-
wave spectrum to demonstrate that a simple nearest-
neighbor Heisenberg model must be supplemented by a

number of additional terms, including ring exchanges.
These terms arise naturally out of a single band Hub-
bard model with finite U/t, and several detailed studies
showed that the spin-wave data in the available energy
window could be successfully described by the Hubbard
model using a somewhat smaller value of U/t ∼ 6 − 8
than originally thought appropriate4–7. (For the effec-
tive Coulomb repulsion U in units of the bandwidth, 8t,
this refers to intermediate values, U/8t ∼ 0.75− 1.)

Part of the spin spectral weight reported in Ref.4 was
deduced to be outside the energy window. The recent
improved neutron scattering experiments of Ref.2, with
a wider energy window of about 450 meV, have raised a
number of questions. Surprisingly, these studies revealed
that the high-energy spin waves are strongly damped
near momentum [π, 0] and merge into a momentum-
dependent continuum. These results led the authors of
Ref.2 to conclude that “the ground state of La2CuO4 con-
tains additional correlations not captured by the Néel-
SWT [spin-wave theory] picture”.

This raises the important question of whether the more
detailed results can still be described in terms of a sim-
ple Hubbard model. We show that the Hubbard model
does describe the new neutron scattering results. Our
results confirm that the U/t value suitable to LCO is in
the range U/t ∈ (6, 8). Inclusion of second- and third-
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neighbor hopping parameters, t′ and t′′, into the Hubbard
Hamiltonian lead to an interaction strength U/t ≈ 8.
Specifically, the studies of Ref.8 have considered that the
best fits to the ensemble of LCO inelastic neutron scat-
tering points from Ref.4 are reached for U/t ≈ 7.9 if one
includes four independent parameters, t, t′, t′′, U , and for
U/t ≈ 7.1 if one includes only t and U . Furthermore, the
results of Refs.8,9 reveal that as far as the LCO inelastic
neutron scattering is concerned the inclusion of t′ and t′′

does not lead to a better quantitative fit. Accordingly,
the studies of this paper consider the half-filled Hubbard
model on the square lattice with only two independent
effective parameters, t and U .

Our study uses a combination of a number of numer-
ical and theoretical approaches, including, in addition
to standard treatments, density matrix renormalization
group (DMRG) calculations for Hubbard cylinders10–12

and, since conventional linear spin-wave theory is un-
suitable, a new spinon operator approach for the spin
excitations7,13. The spinon operator approach is suitable
for LCO’s intermediate U/t values, and corresponds to a
particular case of a general operator representation that
profits from the recently found model’s extended global
symmetry14.

An exact result valid for the Hubbard model on any bi-
partite lattice is that for onsite interaction U 6= 0 it has
two global SU(2) symmetries15,16, which refer to a global
SO(4) = [SU(2) ⊗ SU(2)]/Z2 symmetry17,18. A recent
study of the problem by one of us and collaborators re-
ported in Ref.14, reveals that an exact extra global c hid-
den U(1) symmetry emerges for U 6= 0, in addition to the
SO(4) symmetry. Specifically, the Hubbard model on a
bipartite lattice, such as the present square lattice, has a
global [SU(2)⊗SU(2)⊗U(1)]/Z2

2 = [SO(4)⊗U(1)]/Z2 =
SO(3)⊗SO(3)⊗U(1) symmetry. The index c in the des-
ignation c hidden symmetry is intended to distinguish it
from the η-spin U(1) symmetry and spin U(1) symme-
try in the corresponding two model’s SU(2) symmetries.
The index c also labels the c fermions, whose occupancy
configurations generate the representations of the global
c hidden U(1) symmetry algebra. That the latter sym-
metry is hidden follows from the fact that except in the
U/t → ∞ limit, its generator does not commute with the
electron - rotated-electron unitary operator. As a result,
for finite U/t values its expression in terms of electron cre-
ation and annihilation operators has an infinite number
of terms. (The generators of the η-spin and spin SU(2)
symmetries commute with that unitary operator.)

The origin of the extended global symmetry is a local
gauge SU(2) ⊗ SU(2) ⊗ U(1) symmetry of the model
Hamiltonian electron-interaction term first identified in
Ref.19. That local symmetry becomes for finite U and
t a group of permissible unitary transformations. The
corresponding local U(1) canonical transformation is not
the ordinary U(1) gauge subgroup of electromagnetism.
It is rather a “nonlinear" transformation19.

For very large U/t values the Hubbard model may be
mapped onto a spin-only problem whose spins are those

of the electrons that singly occupy sites. However, for in-
termediate U/t values this mapping generates many com-
plicated terms in the Hamiltonian, when written in terms
of electron creation and annihilation operators. Here we
address that problem by expressing the Hamiltonian in
terms of the rotated-electron operators, which naturally
emerge from the generators of the model’s symmetries.

In contrast to electrons, for rotated electrons single
and double occupancy are good quantum numbers for
U/t > 0. For large U/t values electrons and rotated elec-
trons are the same objects. Apparently, the Hamiltonian
t/U expansion is formally similar in terms of electron
and rotated-electron operators. However that is only so
for very large U/t values. For instance, there are well-
defined t2/U and t4/U3 terms in the Hamiltonian ex-
pression in terms of rotated-electron operators, which are
identical in form for very large U/t to the corresponding
terms using electron operators. However, for intermedi-
ate U/t ∈ (6, 8), if one expresses the former t2/U and
t4/U3 terms in electron creation and annihilation opera-
tors, one finds many complicated higher order tj/U j−1

terms where for the half-filled case j is an even inte-
ger. Hence the first few terms of the Hamiltonian ex-
pression in terms of rotated-electron operators describe
many higher-order electron processes. For moderate U/t
the rotated-electron operators also generate a much sim-
pler form for the energy eigenstates as well as for com-
plicated processes involving a large number of electrons.
Our spin-1/2 spinons correspond to the spin-1/2 spins
of the rotated electrons that singly occupy sites, so that
they are well defined for U/t > 0.

When one decreases U/t to the intermediate U/t val-
ues suitable for LCO, the above mentioned Hamilto-
nian terms become increasingly important and generate
higher-order spinon processes. Fortunately, those are
simpler than the corresponding electron processes. In-
deed, the use of our operational representation renders
the intermediate U/t quantum problem in terms of ro-
tated electrons similar to the corresponding large-U/t
quantum problem in terms of electrons. The effect of
decreasing U/t is mostly an increase of the energy band-
width of an effective band associated with the spinon oc-
cupancy configurations. The intermediate U/t rotated-
electron processes may be associated with exchange con-
stants describing rotated-electron motion touching pro-
gressively larger number of sites. Within our Hubbard
model’s representation such Hamiltonian terms emerge
naturally upon decreasing the magnitude of U/t.

Our theoretical studies provide evidence of the occur-
rence of ground-state d-wave spinon pairing in the half-
filled Hubbard model on the square lattice. One of the
few exact theorems that applies to the half-filled Hub-
bard model on a bipartite lattice with a finite number
of sites and thus on a square lattice is that its ground
state is a spin-singlet state16. Within our spinon repre-
sentation the ground-state spin-singlet N -spinon configu-
ration corresponds to N/2 independent spin-neutral two-
spinon configurations. Under the spin-triplet excitation
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one of the N/2 spin-singlet spinon pairs is broken. Quan-
titative agreement with the spin-wave spectrum obtained
from our standard many-particle diagrammatic analysis
is reached provided that the broken spinon pair has d-
wave pairing in the initial ground state. Such a pairing
refers only to the rotated-electrons spin degrees of free-
dom. However, it could play a role in a possible d-wave
electron pairing formation upon hole doping.

Applying our approach to the new LCO high-energy
neutron scattering reported in Ref.2, we find that at mo-
mentum [π, 0] the continuum weight energy-integrated
intensity vanishes or is extremely small. Furthermore, we
find that beyond 450 meV, the spectral weight is mostly
located around momentum [π, π] and extends to about
566 meV, suggesting directions for future experiments.

The paper is organized as follows: In Section II the
Hubbard model on the square lattice and the basic quan-
tities of our study are introduced. The description of the
model’s antiferromagnetic long-range order is addressed
in Section III. Section IV presents a random-phase-
approximation (RPA) study of the model’s coherent spin-
wave spectrum and intensity. Quantitative agreement
with that observed in neutron-sattering experiments is
used to find the U and t values suitable to LCO. The
rotated-electron description emerging from the Hubbard
model on the square lattice with extended global sym-
metry is introduced in Section V. This is the only sec-
tion where general electronic densities and spin densities
are considered. The goal of this more general analysis
is the introduction of a spinon representation suitable to
the LCO intermediate values of U/t. In Section VI this
spinon representation is used in the study of the general
spin-triplet spectrum of the half-filled Hubbard model on
the square lattice, which includes both the spin waves and
the incoherent spin-weight continuum distribution. The
comparison of the predicted spectral weights with those
observed in the LCO high-energy neutron scattering is
the goal of Section VII. Finally, Section VIII contains
the concluding remarks.

II. THE MODEL AND THE BASIC

QUANTITIES OF OUR STUDY

Most of our results refer to half-filling, so that the num-
ber of lattice sites, Na, equals the number of electrons N .
The exception is the general analysis reported in Section
V, which considers arbitrary values of the electronic den-
sity n = N/Na. The Hubbard model on a square lat-
tice with Na ≫ 1 sites and periodic boundary conditions
reads,

Ĥ = t T̂ + U V̂D ,

T̂ = = −
∑

〈j,j′〉

∑

σ

(c†~rj ,σ c~rj′ ,σ + c†~rj′ ,σ
c~rj ,σ) ,

V̂D =

N2

a
∑

j=1

(

n̂~rj ,↑ − 1/2
) (

n̂~rj ,↓ − 1/2
)

. (1)

Here T̂ is the kinetic-energy operator in units of t, V̂D

is the on-site repulsion interaction operator in units of

U , c†~rj ,σ and c~rj ,σ are electron creation and annihilation

operators with site index j = 1, ..., Na and spin σ =↑, ↓,
and n̂~rj,σ = c†~rj ,σc~rj ,σ. The on-site repulsion interac-

tion operator V̂D may alternatively be expressed in terms
of the electron double-occupancy operator D̂ or single-
occupancy operator Q̂ given by,

D̂ = (N̂−Q̂)/2 ; Q̂ =

Na
∑

j=1

∑

σ=↑,↓

n̂~rj ,σ (1−n̂~rj ,−σ) , (2)

respectively. The expectation values,

d =
1

Na

Na
∑

j=1

〈GS|n̂~rj ,↑n̂~rj ,↓|GS〉 ,

(1− 2d) =
1

Na

Na
∑

j=1

〈GS|(n̂~rj ,↑ − n̂~rj,↓)
2|GS〉 ,

mAF =
1

Na

Na
∑

j=1

1

2
〈GS|(−1)j(n̂~rj ,↑ − n̂~rj,↓)|GS〉

≈ [1− 2δS]m0
AF , (3)

play an important role in our study, following the strong
evidence that for U > 0 and Na → ∞ the model’s ground
state has antiferromagnetic long-range order20. In the
last expression of Eq. (3) one has that j is an even inte-
ger and an odd integer for each of the two sub-lattices,
respectively. Moreover, in that expression m0

AF stands
for a mean-field sub-lattice magnetization that does not
account for the effect of transverse fluctuations while δS
does account for this effect, its value being estimated be-
low. Specifically, m0

AF is the sub-lattice magnetization
of the spin-density wave (SDW) state obtained in a stan-
dard mean-field treatment of the Hubbard interaction at
zero absolute temperature as given, for instance, in Fig.
3 of Ref.5.

The on-site spin operators involved in our studies read,

ŝx~rj ,s =
1

2
[ŝ+~rj ,s + ŝ−~rj ,s] ; ŝy~rj ,s =

1

2i
[ŝ+~rj ,s − ŝ−~rj ,s] ,

ŝ+~rj ,s = c†~rj ,↓ c~rj ,↑ ; ŝ−~rj ,s = c†~rj,↑ c~rj ,↓ ,

ŝz~rj ,s = −1

2
[n̂~rj ,↑ − n̂~rj ,↓] . (4)

The index s in these operators distinguishes them from
the corresponding local operators associated with the η-
spin SU(2) symmetry algebra considered below in Sec-
tion V.

Our study also involves the spin dynamical structure
factors,

Sαα′

(~k, ω) =
(gµB)

2

Na

Na
∑

j,j′=1

e−i~k(~rj−~rj′ )

×
∫ ∞

−∞

dt eiωt〈GS|ŝα~rj ,s(t)ŝ
α′

~rj′ ,s
(0)|GS〉 , (5)
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Figure 1: Average single-occupancy: approximate expression
[1 + tanh(U/8t)]/2 valid for U/t ≤ 8 (full line), the limiting
U/t ≫ 1 expression [1 − c0(8t/U)2] (dashed line), and from
DMRG numerical results on two different width cylinders.

where α = α′ = x, y, z or α = − and α′ = + and be-
low we consider g = 2. It is straightforward to show

that the sum rules [1/Na]
∑

~k Sαα′

(~k) where Sαα′

(~k) =

[1/2π]
∫∞

−∞ dω Sαα′

(~k, ω) involve the average single occu-

pancy (1− 2d) and read,

1

Na

∑

~k

Sαα′

(~k) =
(gµB)

2

4
[δα,α′ + 2δα,−δα′,+](1− 2d) .

(6)
In an ideal experiment all components are detected

with equal sensitivity. As discussed for instance in Ref.6,
in that case a transfer of spectral weight from the lon-
gitudinal to the transverse part as the energy increases
is observed. Hence independent of the scattering geome-
try, the corresponding effective spin dynamical structure
factor satisfies the sum rule,

1

Na

∑

~k

1

2π

∫ ∞

−∞

dω Sexp(~k, ω) = µ2
B 2(1− 2d) . (7)

That the coefficient involved is 2(1−2d) rather than 3(1−
2d) follows from one mode being perpendicular to the
plane and thus silent in the experiment6.

III. THE HUBBARD MODEL ON THE SQUARE

LATTICE ANTIFERROMAGNETIC

LONG-RANGE ORDER

For the range U/t ∈ (0, 8), the antiferromagnetic long-
range order may be accounted for by a variational ground
state with a SDW initial trial state, such as for instance
a Gutzwiller projected antiferromagnetic state21,

|G〉 = e−gD̂|SDW 〉 , U/t < 8 , (8)

or the following related state,

|GB〉 = e−hT̂/te−gD̂|SDW 〉 , U/t < 8 . (9)

Here |SDW 〉 is the ground state of a simple effective
mean-field Hamiltonian, such as that of Eq. (18) of
Ref.21. For U/t ≫ 1 this order is as well accounted for
by a Baeriswyl variational state,

|B〉 = e−hT̂/t|∞〉 , U/t ≫ 1 , (10)

where |∞〉 is the exact U/t → ∞ ground state21. The
coefficients h and g multiplying the kinetic-energy and
double-occupancy operators, respectively, in the state ex-
pressions given in Eqs. (8)-(10) are variational parame-
ters. The above states involve as well a variational gap
parameter ∆, which is expected to tend to zero as the
trial state approaches the exact ground state. Indeed,
that variational parameter is an infinitesimal symmetry-
breaking field.

Similarly for the trial state |SDW 〉, the relation

4[m0
AF ]

2 = (1− 4d) , (11)

holds for the states |G〉, |GB〉, and |B〉. However, the
corresponding function d = d(U/t) is in general state
dependent. Inversion of the simple relation provided in
Eq. (11) gives,

d =
1

4
[1− 4[m0

AF ]
2] . (12)

This is consistent with d not being affected by transverse
fluctuations.

The evaluation of the ground-state energy for |GB〉
and |B〉 is for Na ≫ 1 an involved problem. Here we re-
sort to an approximation, which corresponds to the sim-
plest expression of the general form,

E/N = T0 qU + Ud ; T0 = − 16

π2
t , (13)

compatible with three requirements. Those are:

1) The relation d = 1
4 [1 − 4[m0

AF ]
2] provided in Eq.

(12) must be fulfilled;

2) The antiferromagnetic long-range order must occur
for the whole U/t > 0 range;

3) The small-U/t expansion of the energy E/N of Eq.
(13) must lack of a linear kinetic-energy term in U for
U/t ≪ 1 (except for the term Ud corresponding to the
on-site repulsion.)

Brinkman and Rice found qU = 8d(1 − 2d) for the
original paramagnetic-state Gutzwiller approximation22,
which is lattice insensitive and thus does not account
for the square-lattice antiferromagnetic long-range order.
The simplest modified form of the quantity qU suitable
to a broken-symmetry ground state such that the above
three conditions are met is,

qU =

(

U

8t

)

a
(+)
1 d

[

(1− 2d)

4[m0
AF ]

2
− a2

]

− a3 . (14)
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Here,

a
(±)
1 = π2 ± 4 ; a2 = (1− [π2/2a

(+)
1 ]) , (15)

and the coefficient a3 is a function a3 = a3(U/t) of U/t
whose approximate limiting behaviors are,

a3 =
a
(−)
1

8

[

1− tanh

(

U

8t
[(4 + a

(+)
1 )/a

(−)
1 ]

)]

, U/t < 8 ,

= −c0[π/2]
2 8t

U
, U/t ≫ 1 , (16)

where,

c0 =
1

2

[

α

4
+

1

8

]

= 0.1462 . (17)

The corresponding estimate α = 0.6696 is that of the
Heisenberg-model studies of Ref.20. Moreover, the quan-
tity 4[m0

AF ]
2 on the right-hand side of Eq. (14) behaves

as 4[m0
AF ]

2 = U/8t for U/t ≪ 1.
Minimization of the ground-state energy defined by

Eqs. (13)-(16) with respect to d leads indeed to d =
1
4 [1 − 4[m0

AF ]
2]. The limiting behaviors of that energy

are,

E/N ≈ T0 + Ud− 1

8π2

U2

t
, U/t ≪ 1 ,

≈ −4c0
8t2

U
, U/t ≫ 1 , (18)

We note that the small-U/t second-order coefficient reads
−[1/8π2] ≈ −0.0127, in agreement with that, ≈ −0.0127,
obtained by second-order perturbation theory23. For
U/t ≫ 1 one recovers the known result E/N =
−4c0[8t

2/U ]20, so that our approximation agrees with
the known limiting behaviors.

The quantity 4[m0
AF ]

2 on the right-hand side of Eq.
(14) behaves as 4[m0

AF ]
2 = U/8t for U/t ≪ 1. However,

its U/t dependence for the range U/t ∈ (0, 8) remains an
open problem. Here we have performed DMRG calcula-
tions of (1−2d), which according to the relation provided
in Eq. (12) is given by (1−2d) = 1

2 (1+4[m0
AF ]

2). Hence

its U/t dependence fully determines that of 4[m0
AF ]

2.
The corresponding DMRG results are shown in Fig. 1.
Specifically, two different circumference cylinders were
simulated as a function U/t, with open boundary condi-
tions in x and periodic in y, and the double occupancy
measured in one of the middle columns. A maximum of
m = 4000 states were kept, with an accuracy of ∼ 10−4

in (1 − 2d) for the 10 × 4 system for the least accurate
smaller U/t values, and about 10−3 for the 10×6 system.
We find that the value of (1− 2d) is relatively insensitive
to cluster size, and these cluster sizes are representative
of 2D behavior24.

We then find that 4[m0
AF ]

2 ≈ tanh(U/8t) gives for the
range U/t ∈ (0, 8) quantitative agreement for the (1 −
2d) dependence on U/t with both our numerical DMRG
calculations (see Fig. 1) and the numerical results for the

states |G〉 and |GB〉 (see Fig. 4 of Ref.6). For U/t ≫ 1

we find the behavior 4[m0
AF ]

2 ≈ e−2c0 (8t/U)2 for the state
|B〉, so that,

(1− 2d) ≈ 1

2

[

1 + tanh

(

U

8t

)]

, U/t < 8 ,

≈ 1− c0

(

8t

U

)2

, U/t ≫ 1 . (19)

Furthermore, the states |SDW 〉 and |G〉 give a sub-
lattice magnetization mAF ≈ m0

AF = 1
2

√
1− 4d, with

an improved U/t dependence, d ≈ 1
4 [1 − tanh(U/8t)],

for the latter, as follows from the corresponding (1− 2d)
expression of Eq. (19). For the state |G〉 the sub-lattice
magnetization is then given by,

m0
AF ≈ 1

2

√

tanh

(

U

8t

)

, U/t < 8 . (20)

On the other hand, we find that the states |GB〉 and
|B〉 have mGB

AF and mB
AF sub-lattice magnetization nu-

merical values very close to those given by the relation
[1− 2δS]m0

AF of Eq. (3) with,

δS ≈ d , U/t < 8 ,

≈ d+
1

2

[

1− mHAF

m0
HAF

]

, U/t ≫ 1 , (21)

respectively. Here m0
HAF = 1/2 and mHAF ≈

0.303 is the Heisenberg-model’s sub-lattice magnetiza-
tion magnitude20, so that δS ≈ d + 0.197 in Eq. (21)
for U/t ≫ 1. Hence one finds,

mGB
AF ≈ 1

4

[

1 + tanh

(

U

8t

)]

√

tanh

(

U

8t

)

, U/t < 8 ,

mB
AF ≈

[

0.303− 0.803× c0

(

8t

U

)2
]

, U/t ≫ 1 . (22)

The magnitudes of the sub-lattice magnetizations m0
AF

and mGB
AF as given in Eqs. (20) and (22) for the states

|G〉 and |GB〉, respectively, are provided in Table I for
several U/t values. In that table the magnitudes of a
sub-lattice magnetization mlower

AF that for U/t > 0 we de-
fine as mlower

AF = (1 − 2d)[mHAF /m
0
HAF ]m

0
AF are also

given. Note that for U/t ≫ 1 the sub-lattice magnetiza-
tion mlower

AF becomes mB
AF . Probably it is closest to the

exact mAF , while mGB
AF is that consistent with our use of

the RPA in the ensuing section, to study the spin-wave
spectrum and corresponding intensity.

IV. COHERENT SPIN-WAVE SPECTRUM AND

INTENSITY AND LCO U AND t VALUES

To study the coherent spin-wave weight distribution
and spectrum, we have calculated the transverse dynam-
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U/t 6.1 6.5 8.0 10.0

m0

AF 0.401 0.410 0.436 (0.436,21) 0.461 (0.4566)

mGB
AF 0.329 0.342 0.384 (0.3921) 0.426

mlower
AF 0.200 0.207 0.233 0.258

Table I: The sub-lattice magnetizations as calculated here for
several U/t values and some results from Refs.6,21.

ical susceptibility,

χ−+(~k, τ) =
(gµB)

2

Na

Na
∑

j,j′=1

e−i~k·(~rj−~r′j)

× 〈ŝ−~rj ,s(τ)ŝ
+
~rj′ ,s

(0)〉 , (23)

in the RPA. Here τ denotes the imaginary time in Mat-
subara formalism and we shall take the zero temperature
limit. Because we deal with the antiferromagnetic order
(Néel state) it is convenient to define two sub-lattices, a
and b, and redefine the susceptibility as a 2×2 tensor χ̃µ,ν

where the greek subscripts denote sub-lattice indices,

χ̃−+
µ,ν (

~k, τ) =
(gµB)

2

(Na/2)

∑

j∈ν,j′∈µ

e−i~k·(~rj−~r′j)

× 〈ŝ−~rj ,s(τ)ŝ
+
~rj′ ,s

(0)〉 . (24)

The original susceptibility in Eq. (23) is then simply
related to this tensor as,

χ(~k, τ) =
1

2
[χ̃aa + χ̃bb + χ̃ab + χ̃ba] . (25)

We define electron field operators for each sub-lattice,

â~kσ and b̂~kσ, as,

ĉ~rj∈a,σ =
1

√

Na/2

∑

~k∈RBZ

ei
~k·~rj â~kσ , (26)

ĉ~rj∈b,σ =
1

√

Na/2

∑

~k∈RBZ

ei
~k·~rj b̂~kσ . (27)

In the momentum summations the reduced Brillouin zone
(RBZ) covers only half of the original Brillouin zone (BZ)
for the square lattice. The effective Hamiltonian that
describes the SDW phase in mean field theory for the
Hubbard interaction can be written as,

Ĥeff =
∑

~k,σ

(

â†~kσ
b̂†~kσ

)

(

ǫσ f(~k)

f(~k) −ǫσ

)(

â~kσ
b̂~kσ

)

, (28)

with,

ǫσ = −U
σ

2
m0

AF ,

f(~k) = −2t [cos(kx) + cos(ky)] . (29)

Using the effective Hamiltonian given in Eq. (28) one

derives from Eq. (24) a susceptibility tensor χ̃
(0)
µ,ν(~k, τ)

at mean field theory level.

Treating the Hubbard interaction futher in the RPA
and Fourier transforming the susceptibility from imag-

inary time τ to (~k, iω) space, the susceptibility tensor
then obeys the Dyson equation,

χ̃RPA = χ̃(0) + Uχ̃(0)χ̃RPA , (30)

which can be recast as,

χ̃RPA = [Î − Uχ̃(0)]−1χ̃(0) . (31)

Here Î stands for the 2× 2 identity matrix. Such a pro-
cedure of treating the interaction in RPA on top of the
mean field solution has been used in previous studies5,25.

χ̃RPA has a pole iω = ω(~k) obtained from the equa-
tion Det [1 − Uχ̃(0)] = 0, which provides the dispersion

relation ω(~k) for the spin waves. It has been shown
in Ref.5 that an excellent agreement with the spin-wave
spectrum from Ref.4 is achieved. In Fig. 2 upper panel
we show a fit to the more recent experimental data of
Ref.2 (full line) along with the results from the s1 fermion
method reported below in Section VI (dashed line) for
U/t = 6.1 and t = 295meV. This corresponds to a band-
width 8t ≈ 2.36 eV.

Importantly, provided that the t magnitude is slightly
increased for increasing values of U/t, agreement with the
LCO spin-weight spectrum and distribution can be ob-
tained for the range U/t ∈ (6, 8) and thus U/8t ∈ (0.75, 1)
in units of the bandwidth 8t. For U/t values smaller than
6 (and larger than 8), the spin-wave dispersion between
[π, 0] and [π/2, π/2] has a too large energy bandwidth
(and is too flat) for any reasonable value of t.

Let |ν, ω(~k)〉 denote the excited energy eigenstates of

energy ω(~k) and momentum ~k that contribute to the
coherent spin-wave spectral weight. In the case of the
−+ spin dynamical structure factor given in Eq. (5) for
α = − and α′ = +, the corresponding coherent spin-wave
spectral weight in units of µ2

B is given by Zd 2(1 − 2d).
The factor Zd in this expression reads,

Zd = 1− 2

Na(1− 2d)

∑

~k

∑

ν′ 6=ν

|〈ν′|ŝ+~k,s|GS〉|2 , (32)

where ŝ+~k,s
is the Fourier transform of the spin operator

ŝ+~rj ,s defined in Eq. (4) and the sum over energy eigen-

states excludes those that generate the coherent spin-

wave weight, |ν〉 = |ν, ω(~k)〉. In the U/t → ∞ limit, Zd

may be identified with the corresponding Zd = Zc Zχ

factor of the Heisenberg model on the square lattice.
According to the results of Ref.26, the factors Zc and
Zχ have magnitudes Zc ≈ 1.18 and Zχ ≈ 0.48, respec-
tively, so that Zd ≈ 0.57. The limiting values Zd = 1 for
U/t → 0 and Zd ≈ 0.57 for U/t → ∞ and the approx-
imate intermediate value6, Zd ≈ 0.65, at U/t = 8 are
recovered as solutions of the equation,

Zd = e
−Zd tanh

(√
U

4πt

)

, (33)
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Figure 2: Upper panel: Spin-wave excitation spectrum along
BZ special directions as specified in Ref.2. Lower panel: Spin-
wave intensity as obtained from the poles of the susceptybility
(see text). Experimental points from Ref.2.

which is used here for finite U/t.
The spin dynamical structure factor measured in the

high-energy inelastic neutron scattering experiments of
Ref.2 includes a Bragg peak associated with its elastic
part. The corresponding elastic spectral weight is in-
cluded in the total spin-weight sum-rule, µ2

B 2(1 − 2d),
of Eq. (7). In the thermodynamic limit the upper-
Hubbard band processes generate nearly no spin weight.
Hence the longitudinal spectral weight within the sum-
rule µ2

B 2(1 − 2d) refers to the elastic contribution. The
elastic weight is given by ≈ µ2

B 4(mAF )
2. The inelastic

spin spectral weight corresponds to the remaining weight
in the spin-weight sum-rule ≈ µ2

B [2(1− 2d)− 4(mAF )
2].

It refers to the −+ spin dynamical structure factor given
in Eq. (5) for α = − and α′ = +. It then follows that
the experimentally determined spin-wave intensity, which
corresponds to the coherent part of the inelastic spin
spectral weight, is in units of µ2

B approximately given
by,

WSW ≈ Zd [2(1− 2d)− 4(mAF )
2] . (34)

The GA+RPA method used in Ref.6 accounts for the
quantum fluctuations that control the longitudinal and
transverse relative weights. Within our description no-
tations, that method is designed to make the inelastic
spin spectral weight µ2

B [2(1−2d)−4(mAF )
2] rather than

µ2
B 2(1−2d). Hence for that GA+RPA method the spin-

wave intensity factor is Zd as defined in Eq. (32).
On the other hand, the RPA used here refers to the −+

spin dynamical structure factor alone. Hence it implic-
itly considers that the total inelastic spin spectral weight
is µ2

B 2(1 − 2d) rather than µ2
B [2(1 − 2d) − 4(mAF )

2].
Therefore, to describe the actual spin-wave intensity mo-
mentum distribution one must use a corresponding ex-
perimentally determined factor Zexp

d < Zd such that,

WSW = Zexp
d 2(1−2d) = Zd [2(1−2d)−4(mAF )

2] . (35)

From the residue of the spin-wave pole the susceptibil-
ity coherent part then reads,

χ−+
co (~k, iω) = Zexp

d

∑

l=±1

Res [χ−+(~k, l ω(~k)]

iω − l ω(~k)
, (36)

with χ−+ obtained in RPA above. The measured inten-
sity is27,

ISW (~k) = π[Sxx(~k) + Syy(~k)] = πS−+(~k) . (37)

In Fig. 2 lower panel, we plot the corresponding RPA
spin-wave intensity,

ISW (~k) = −[π/2]Zexp
d Res [χ−+(~k, ω(~k)] . (38)

The good agreement with the experimental data, spe-
cially near the point M , reproduces the theoretical results
of Ref.2. It is here obtained for the value Zexp

d ≈ 0.49,
which corresponds to the choice mAF = mGB

AF = m0
AF (1−

2d) such that δS ≈ d. The mGB
AF dependence on U/t is

given in Eq. (22) for U/t < 8. As in Ref.2, the spin-
wave intensity shows disagreement around the X point,
which here probably stems from effects not captured by
the RPA.

V. THE ROTATED-ELECTRON DESCRIPTION

EMERGING FROM THE MODEL’S EXTENDED

GLOBAL SYMMETRY

The goal of this section is the introduction of the
general rotated-electron representation from which the
spinon representation used in the ensuing section natu-
rally emerges. In contrast to the remaining sections of
this paper, here we consider arbitrary values of the elec-
tronic density n = N/Na and spin density m = [N↑−N↓].

A. The electron - rotated-electron unitary operator

We denote the spin and η-spin of an energy eigen-
state by Ss and Sη, respectively. The corresponding
spin and η-spin projections read Sz

s = − 1
2 [N↑ −N↓] and

Sz
η = − 1

2 [Na−N ], respectively. The lowest-weight states
(LWSs) of both the η-spin and spin algebras are such that
Sα = −Sz

α where α = η for η-spin and α = s for spin.
The numbers,

nη = Sη −
1

2
(Na −N) = 0, 1, ..., 2Sη ,

ns = Ss −
1

2
(N↑ −N↓) = 0, 1, ..., 2Ss , (39)
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vanish for such a LWS.
Let {|Ψlr,lηs,u〉} be a complete set of 4Na energy,

momentum, η-spin, η-spin projection, spin, and spin-
projection eigenstates for u ≡ U/t > 0. Here lηs is
a short notation for the set of four quantum numbers
[Sη, Ss, nη, ns] and the index lr represents all remaining
quantum numbers, other than those, that are needed to
fully specify an energy eigenstate |Ψlr,lηs,u〉. The energy
eigenstates of that set that are not LWSs are generated
from those as follows,

|Ψlr,lηs,u〉 =
∏

α=η,s

[

1√
Cα

(Ŝ†
α)

nα

]

|Ψlr,l0ηs,u
〉 . (40)

Here,

Cα = 〈Ψl,l0ηs,u
|(Ŝα)

nα(Ŝ†
α)

nα |Ψl,l0ηs,u
〉

= [nα!]

nα
∏

j′=1

[ 2Sα + 1− j′ ] , α = η, s , (41)

for nα = 1, ..., 2Sα are normalization constants, the η-
spin (α = η) and spin (α = s) off-diagonal generators Ŝ†

α

and Ŝα are given in Eq. (A7) of Appendix A, and lηs and
l0ηs stand for [Sη, Ss, nη, ns] and [Sη, Ss, 0, 0], respectively.

Within our notation, l0ηs refers to values of the general
index lηs associated with a LWS such that nη = ns = 0.

For the Hubbard model on the square lattice and also
on the 1D lattice, upon adiabatically increasing U/t from
any finite value to the U/t → ∞ limit, each energy
eigenstate |Ψlr ,lηs,u〉 continuously evolves into a uniquely
defined corresponding energy eigenstate |Ψlr,lηs,∞〉, and
vice versa. We emphasize though that due to the high
degeneracy among different spin sectors as well as η-spin
sectors that occurs in the U/t → ∞ limit, there are in
such a limit many more choices of energy eigenstates sets
than for U/t finite. Accordingly, upon adiabatically de-
creasing U/t most of such U/t → ∞ states do not evolve
into finite-U/t energy eigenstates. Our above procedure
uniquely defines a convenient set of U/t → ∞ energy
eigenstates that upon adiabatically decreasing U/t do
evolve into finite-U/t energy eigenstates.

Both the corresponding sets of 4Na states {|Ψlr,lηs,u〉}
and {|Ψlr,lηs,∞〉}, respectively, are complete and refer to
the same Hilbert space. Hence there is a uniquely defined
unitary transformation connecting the states |Ψlr,lηs,u〉
and |Ψlr,lηs,∞〉. Indeed, since the model’s Hilbert space is
the same for all U/t > 0 values considered here, it follows
from basic quantum-mechanics Hilbert-space and opera-
tor properties that for this choice there exists exactly one
unitary operator V̂ = V̂ (U/t) such that any U/t → ∞
energy eigenstate |Ψlr,lηs,∞〉 is transformed onto the cor-
responding U/t > 0 energy eigenstate |Ψlr,lηs,u〉 as,

|Ψlr,lηs,u〉 = V̂ †|Ψlr,lηs,∞〉 . (42)

The energy eigenstates |Ψlr,lηs,u〉 = V̂ †|Ψlr,lηs,∞〉 (one
for each value of U/t > 0) that are generated from the

same initial U/t → ∞ energy eingenstate |Ψlr,lηs,∞〉 be-
long to the same V tower.

The rotated-electron operators are given by,

c̃†~rj ,σ = V̂ † c†~rj,σ V̂ ; c̃~rj ,σ = V̂ † c~rj ,σ V̂ ,

ñ~rj ,σ = c̃†~rj ,σ c̃~rj ,σ ; V̂ = e−Ŝ . (43)

For U/t > 0 the operator Ŝ appearing here can be ex-
panded in a series of t/U whose leading-order term is
provided in Eq. (A2) of Appendix A.

Since the electron - rotated-electron unitary operator

V̂ commutes with itself, the equalities V̂ = e−Ŝ = Ṽ =

e−S̃ and Ŝ = S̃ hold. Hence both the operators V̂ and
Ŝ have the same expression in terms of electron and
rotated-electron creation and annihilation operators. It
then follows from the expression of the operator Ŝ pro-
vided in Eq. (A2) of Appendix A that the corresponding

rotated operator S̃ has the following leading-order term,

S̃ = − t

U

[

T̃+1 − T̃−1

]

+ ... . (44)

The rotated kinetic operators T̃+1 and T̃−1 appearing

here and the related rotated kinetic operator T̃0 are given
in Eq. (A3) of Appendix A. The expressions of the

corresponding unrotated kinetic operators T̂0, T̂+1, and

T̂−1 are provided in Eq. (A1) of that Appendix.

Note that the equality Ŝ = S̃ refers to the whole ex-
pression of these operators. An important property for
our study is that except in the U/t → ∞ limit the lead-

ing order terms − t
U [T̂+1 − T̂−1] and − t

U [T̃+1 − T̃−1] of

the operators Ŝ and S̃ given in Eq. (A2) of Appendix
A and Eq. (44), respectively, are different operators.

Moreover, except for U/t → ∞ one has that T̂0 6= T̃0,

T̂+1 6= T̃+1, and T̂−1 6= T̃−1. This is behind for interme-
diate U/t values the few first terms of the Hamiltonian
t/U expansion as written in terms of rotated-electron op-
erators containing much more complicated higher-order
terms when expressed in terms of electron creation and
annihilation operators.

The main point here is that for the rotated electrons
that emerge from the unitary transformation of Eq. (43)
single and double occupancy are good quantum numbers
for U/t > 0. Indeed, on any bipartite lattice the number
of rotated-electron singly occupied sites operator,

2S̃c = V̂ † Q̂ V̂ =

Na
∑

j=1

s̃~rj ,c ,

s̃~rj,c = V̂ † ŝ~rj ,c V̂ =
∑

σ=↑,↓

ñ~rj ,σ (1− ñ~rj ,−σ) , (45)

commutes with the Hubbard model Hamiltonian14. Here
Q̂ is the corresponding number of electron singly occu-
pied sites operator given in Eq. (2). This follows in
part from the symmetries of the Hamiltonian electron-
interaction term, which imply that all U/t → ∞ energy
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eigenstates of the set {|Ψlr,lηs,∞〉} are as well eigenstates

of the electron double-occupancy operator D̂ and single-
occupancy operator Q̂ provided in that equation. Hence
in the U/t → ∞ limit the Hilbert space is classified
in subspaces with different numbers of doubly-occupied
sites and each of the states {|Ψlr,lηs,∞〉} is contained in

only one of these subspaces. The same applies to the 4Na

energy eigenstates of the set {|Ψlr,lηs,u〉} for U/t > 0 in
terms of rotated-electron doubly-occupied sites.

The unitary operator V̂ of our formulation is
uniquely defined by its 4Na × 4Na matrix elements,
〈Ψlr,lηs,u|V̂ |Ψl′r ,l

′

ηs,u〉. For U/t > 0 most of these ma-

trix elements vanish. For U/t → ∞ rotated electrons
become electrons so that the matrix representing the
unitary operator V̂ becomes the 4Na × 4Na unit ma-
trix. Hence 〈Ψlr,lηs,∞|V̂ |Ψl′r ,l

′

ηs,∞〉 = δlr,l′rδlηs,l′ηs
. On

the other hand, as justified in Appendix A, the unitary
operator V̂ = V̂ (U/t) commutes with the six generators
of the global η-spin and spin SU(2) symmetries. This
implies that the matrix elements between energy eigen-
states with different values of Sη, Ss, nη, and ns and thus
of lηs vanish. Hence the finite matrix elements are be-
tween states with the same lηs values so that we denote
them by Vlr ,l′r ,

〈Ψlr,lηs,∞|V̂ |Ψl′r ,l
′

ηs,∞〉 = δlηs,l′ηs
Vlr ,l′r , (46)

where,

Vlr ,l′r = 〈Ψlr ,lηs,u|V̂ |Ψl′r,lηs,u〉 = 〈Ψl′r,lηs,∞|V̂ †|Ψlr,lηs,∞〉∗
= 〈Ψlr ,lηs,u|Ψl′r,lηs,∞〉 = 〈Ψl′r,lηs,∞|Ψlr ,lηs,u〉∗ . (47)

Given a complete set of 4Na energy, momentum, η-
spin, η-spin projection, spin, and spin-projection eigen-
states, {|Ψlr,lηs,u〉}, the electron - rotated-electron uni-
tary operator considered here is for U/t > 0 uniquely de-
fined by the matrix elements of Eqs. (46) and (47). This
corresponds to one out of the infinite choices of electron -
rotated-electron unitary operators14. All these operators
and corresponding unitary transformations refer to the
same subspaces with fixed numbers of doubly-occupied
sites, 0, 1, 2, 3, .... They only differ in the choice of basis
states within each of these subspaces. For most of these
unitary operators the states V̂ †|Ψlr,lηs,∞〉 are not energy
eigenstates for finite U/t values. The electron - rotated-
electron unitary transformation considered here has been
constructed to make these states energy eigenstates for
finite U/t values, as given in Eq. (42).

B. The general operational description naturally

emerging from the rotated electrons and symmetry

The electron - rotated-electron unitary transforma-
tion is closely related to the extended global SO(3) ×
SO(3) × U(1) symmetry found in Ref.14 for the Hamil-
tonian given in Eq. (1) on any bipartite lattice. Un-
til recently18 it was believed that the model’s global

symmetry was for finite on-site interaction values only
SO(4) = [SU(2)⊗SU(2)]/Z2. The occurrence of a global
c hidden U(1) symmetry beyond SO(4) in the model’s
global SO(3)⊗ SO(3)⊗U(1) = [SO(4)⊗U(1)]/Z2 sym-
metry must be accounted for in studies of the Hubbard
model on any bipartite lattice. Such a global symme-
try may be rewritten as [SU(2)×SU(2)×U(1)]/Z2

2 and
stems from the U 6= 0 local gauge SU(2)×SU(2)×U(1)
symmetry of the Hubbard model on a bipartite lattice
with vanishing transfer integral, t = 019. The seven local
generators of the corresponding two gauge SU(2) sym-
metries and U(1) symmetry are the three spin local op-
erators ŝl~rj,s provided in Eq. (4) and the three η-spin

local operators ŝl~rj ,η and the local operator ŝ~rj ,c given in

Eqs. (A8) and (A9) of Appendix A, respectively. The
index l in the generators of the two SU(2) symmetries
stand for l = ±, z.

An important point is that although addition of
chemical-potential and magnetic-field operator terms to
the Hubbard model on a square lattice Hamiltonian
given in Eq. (1) lowers its symmetry, these terms com-
mute with it. Therefore, the global symmetry of the
latter Hamiltonian being SO(3) ⊗ SO(3) ⊗ U(1) im-
plies that the set of independent rotated-electron occu-
pancy configurations that generate all 4Na energy eigen-
states, {|Ψlr,lηs,u〉}, generate as well representations of
the global symmetry algebra for all values of electronic
density n and spin density m. It is confirmed in Ref.14

that the number of these independent [SU(2)⊗SU(2)⊗
U(1)]/Z2

2 = SO(3)⊗SO(3)⊗U(1) symmetry algebra rep-
resentations equals for the present model on a bipartite
lattice its Hilbert-space dimension, 4Na.

The generator ŝ~rj ,c of the local gauge U(1) symmetry
given in Eq. (A9) of Appendix A and the alternative
local generator ŝh~rj ,c = (1− ŝ~rj ,c) may be expressed as,

ŝ~rj,c = q̂c~rj ≡ f̂ †
~rj,c

f̂~rj,c ,

ŝh~rj,c = (1− q̂c~rj ) = f̂~rj ,c f̂
†
~rj ,c

. (48)

Here f̂ †
~rj ,c

and f̂~rj ,c stand for the following creation and

annihilation operators, respectively, of suitable spin-less
and η-spin-less fermions,

f̂ †
~rj,c

= c†~rj ,↑ (1 − n̂~rj,↓) + ei~π·~rj c~rj,↑ n̂~rj ,↓ ,

f̂~rj,c = c~rj ,↑ (1 − n̂~rj,↓) + ei~π·~rj c†~rj,↑ n̂~rj ,↓ , (49)

where we used that ei~π·~rj = e−i~π·~rj . Here and throughout
this paper the vector ~π has Cartesian components ~π =
[π, π].

We call c fermions the rotated-electron related ob-

jects whose creation and annihilation operators f †
~rj,c

=

V̂ † f̂ †
~rj ,c

V̂ and f~rj,c = V̂ † f̂~rj,c V̂ , respectively, are gener-

ated from those of the spin-less and η-spin-less fermions
of Eq. (49) by the specific electron - rotated-electron
unitary transformation uniquely defined by the matrix
elements of Eqs. (46) and (47). (No upper index f̃ is
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used onto the (rotated) c fermion operator f~rj ,c.) Hence
these operators read,

f †
~rj,c

= c̃†~rj ,↑ (1− ñ~rj,↓) + ei~π·~rj c̃~rj ,↑ ñ~rj ,↓ ,

f~rj,c = c̃~rj ,↑ (1− ñ~rj,↓) + ei~π·~rj c̃†~rj ,↑ ñ~rj ,↓ . (50)

The rotated-electron creation and annihilation operators
appearing here are generated from corresponding elec-
tron operators by the unitary transformation uniquely
defined above, as given in Eq. (43). The corresponding
c fermion local density operator is given by,

q̃c~rj = f †
~rj,c

f~rj,c . (51)

The c fermions live on a lattice identical to the original
lattice. One can introduce c fermion momentum depen-
dent operators7,13,

f †
~qj ,c

=
1√
Na

Na
∑

j′=1

e+i~qj ·~rj′ f †
~rj′ ,c

; j = 1, ..., Na . (52)

Here the c fermion operators f †
~rj′ ,c

where the index

j′ = 1, ..., Na refers to the sites of the original lattice are
mapped from the rotated-electron operators by an exact
local transformation given in Eq. (50). The c momen-
tum band has Na discrete momentum values ~qj where
j = 1, ..., Na. It has the same shape and momentum area
as the electronic first-BZ.

The generator 2S̃c of the related global c hidden U(1)
symmetry in [SU(2)×SU(2)×U(1)]/Z2

2 found in Ref.14

is the number of rotated-electron singly occupied sites
given in Eq. (45). Hence it involves the site summation
∑Na

j=1 over the rotated local generator s̃~rj ,c rather than
over the corresponding unrotated local operator ŝ~rj ,c of

Eq. (A9) of Appendix A. This is why 2S̃c = V̂ † Q̂ V̂ , as

given in Eq. (45), where the operator Q̂ is that of Eq.

(2). The eigenvalues 2Sc = 0, 1, 2, ... of the generator 2S̃c

are thus the numbers of rotated-electron singly occupied
sites.

The c fermion creation and annihilation operators are
found in Appendix A to obey the anti-commutation rela-
tions given in Eq. (A10) of that Appendix. A straightfor-
ward operator algebra then confirms that the c fermion
local density operator of Eq. (51) is the local operator
s̃~rj ,c appearing in the expression provided in Eq. (45).
Hence the global c hidden U(1) symmetry generator may
be simply rewritten as,

2S̃c =

Na
∑

j=1

q̃c~rj =

Na
∑

j=1

f †
~rj,c

f~rj,c . (53)

One finds that except in the U/t → ∞ limit the

inequality
∑Na

j=1 q̂
c
~rj

6= ∑Na

j=1 q̃
c
~rj

holds. This confirms

that the generator 2S̃c given in Eq. (53) does not com-
mute with the electron - rotated-electron unitary opera-
tor V̂ = Ṽ . On the other hand and as justified in Ap-

pendix A, the three components of the momentum oper-

ator ~̂P , three generators of the global spin SU(2) sym-
metry, and three generators of the global η-spin SU(2)
symmetry commute with that unitary operator. Hence
in contrast to the Hamiltonian and generator 2S̃c, these
operators have the same expression in terms of electron
and rotated-electron creation and annihilation operators,
as given in Eqs. (A6) and (A7) of Appendix A. On the
contrary, the generator of the global c hidden U(1) sym-
metry given in Eq. (45) does not commute with the uni-

tary operator V̂ . This is behind the hidden character of
such a symmetry.

Site summation
∑Na

j=1 over the rotated local operator

provided in Eq. (51) and over the following six rotated
local operators,

s̃z~rj ,η = −1

2
[1− ñ~rj ,↑ − ñ~rj ,↓] ,

s̃+~rj ,η = ei~π·~rj c̃†~rj,↓ c̃
†
~rj ,↑

,

s̃−~rj ,η = e−i~π·~rj c̃~rj,↑ c̃~rj ,↓ ,

s̃z~rj ,s = −1

2
[ñ~rj ,↑ − ñ~rj ,↓] ,

s̃+~rj ,s = c̃†~rj ,↓ c̃~rj,↑ ,

s̃−~rj ,s = c̃†~rj ,↑ c̃~rj,↓ , j = 1, 2, ..., Na , (54)

gives the seven generators of the model’s global SO(3)⊗
SO(3) ⊗ U(1) = [SU(2)⊗ SU(2)⊗ U(1)]/Z2

2 symmetry,
as provided in Eqs. (45) and Eq. (A7) of Appendix A.
However, except in the U/t → ∞ limit the six rotated
local operators given in Eq. (54) and the corresponding
six unrotated local operators provided in Eq. (4) and Eq.
(A8) of Appendix A are different operators.

Interestingly, the η-spin and spin SU(2) symmetries
are within the present representation particular cases of
a general ηs quasi-spin SU(2) symmetry. The corre-
sponding three local ηs quasi-spin operators q̃l~rj such that

l = ±, z obey a SU(2) algebra and have the following ex-
pression in terms of rotated-electron operators,

q̃−~rj = (c̃†~rj ,↑ + ei~π·~rj c̃~rj ,↑) c̃~rj ,↓ ,

q̃+~rj = (q̃−~rj )
† ; q̃z~rj = (ñ~rj ,↓ − 1/2) . (55)

Here q̃±~rj = q̃x~rj ± i q̃y~rj where x, y, z denotes the Cartesian

coordinates. The relation of these ηs quasi-spin operators
to the original electron creation and annihilation opera-
tors involves the unitary transformation of Eq. (43).

Within the present rotated-electron operational formu-
lation, three related elementary objects naturally emerge
that make the model’s global symmetry explicit. The
operators provided in Eq. (50) create and annihilate
spin-less and η-spin-less c fermions whose local density
operator, Eq. (51), is directly related to the generator
of the global c hidden U(1) symmetry, as given in Eq.
(53). The c fermions carry the charges of the rotated
electrons that singly occupy sites. Moreover, the three



11

rotated local spin operators s̃l~rj ,s and the three rotated

local η-spin operators s̃l~rj,η such that l = ±, z given in

Eq. (54) are associated with the spin-1/2 spinons and
η-spin-1/2 η-spinons, respectively, as defined here. The
spin-1/2 spinons carry the spin of the rotated electrons
that singly occupy sites. The c fermion holes describe
the degrees of freedom associated with the c hidden U(1)
symmetry of the sites doubly occupied and unoccupied
by the rotated electrons. The η-spin degrees of freedom
of these sites are described by the η-spin projection −1/2
η-spinons (rotated-electron doubly occupied sites) and η-
spin projection +1/2 η-spinons (rotated-electron unoccu-
pied sites).

Within our representation, the local operators s̃~rj ,c,

s̃h~rj ,c, and s̃l~rj ,α where l = ±, z and α = s, η can be ex-

pressed in terms of only the c fermion local density op-
erator q̃c~rj given in Eq. (51) and three local ηs quasi-spin

operators q̃l~rj of Eq. (55) as follows,

s̃~rj ,c = q̃c~rj ; s̃h~rj ,c = (1− q̃c~rj ) ,

s̃l~rj ,s = q̃c~rj q̃
l
~rj ; s̃l~rj,η = (1 − q̃c~rj ) q̃

l
~rj ,

l = ±, z . (56)

The expressions of the local spinon operators s̃l~rj ,s and

local η-spinon operators s̃l~rj ,η provided here are a con-

firmation that the corresponding spin SU(2) and η-spin
SU(2) symmetries are particular cases of the ηs quasi-
spin SU(2) symmetry. Specifically, they are associated
with the SU(2) algebra representations involving the (i)
spin-up and spin-down rotated-electron singly occupied
sites and (ii) rotated-electron doubly-occupied and un-
occupied sites, respectively. Indeed, the c fermion and
c fermion hole local density operators q̃c~rj and (1 − q̃c~rj )

play in the expressions of these operators provided in Eq.
(56) the role of projectors onto such two sets of lattice-
site rotated-electron occupancies, respectively.

The relations given in Eq. (56) for the operators s̃l~rj ,s
and s̃l~rj ,η are equivalent to the following expression of the

local ηs quasi-spin operators q̃l~rj in terms of those of the

former operators provided in Eq. (54),

q̃l~rj = s̃l~rj ,s + s̃l~rj,η , l = ±, z . (57)

We emphasize that the c fermion operators, Eq. (50),
and the spinon and η-spinon operators defined by Eqs.
(54), (55), and (56) are mapped from the rotated-electron
operators by an exact local unitary transformation that
does not introduce constraints. Given their direct re-
lation to the generators of the model’s extended global
symmetry, their occupancy configurations naturally gen-
erate representations of the corresponding global sym-
metry algebra. Consistent with the lack of constraints
of such a local unitary transformation, inversion of the
relations given in Eqs. (50) and (55) fully defines the
rotated-electron operators in terms of the c fermion and

ηs quasi-spin operators as follows,

c̃†~rj,↑ = f †
~rj,c

(

1

2
− q̃z~rj

)

+ ei~π·~rj f~rj,c

(

1

2
+ q̃z~rj

)

,

c̃†~rj,↓ = (f †
~rj,c

+ ei~π·~rj f~rj,c) q̃
+
~rj
,

c̃~rj,↑ = f~rj,c

(

1

2
− q̃z~rj

)

+ ei~π·~rj f †
~rj,c

(

1

2
+ q̃z~rj

)

,

c̃~rj,↓ = (f~rj,c + ei~π·~rj f †
~rj,c

) q̃−~rj . (58)

As given in Eq. (A11) of Appendix A the c fermion
operators commute with the ηs quasi-spin operators is
behind the form of the expressions given here, whose c
fermion creation and annihilation operators are located
on the left-hand side.

The c fermion operator and ηs quasi-spin operator ex-
pressions in terms of rotated-electron creation and anni-
hilation operators given in Eqs. (50) and (55), respec-
tively, are except for unimportant phase factors similar
to those considered in the studies of Refs.28–30 in terms
of electron creation and annihilation operators. Our op-
erational representation has the advantage of rotated-
electron single and double occupancy being good quan-
tum numbers for all finite interaction values. On the
other hand, the operator expressions provided in Eqs.
(50) and (55) differ from those of Refs.7,13 by unimpor-
tant phase factors.

Since for finite U/t values the Hamiltonian Ĥ of Eq.

(1) does not commute with the unitary operator V̂ =

e−Ŝ, when expressed in terms of the rotated-electron cre-
ation and annihilation operators of Eq. (43) it has an
infinite number of terms,

Ĥ = V̂ H̃ V̂ † = H̃ + [H̃, S̃ ]

+
1

2
[[H̃, S̃ ], S̃ ] + ... . (59)

The commutator [H̃, S̃ ] does not vanish except for U/t →
∞ so that Ĥ 6= H̃ for finite values of U/t.

Provided that both U/t is finite and one accounts for all
higher-order terms on the right-hand-side of Eq. (59), the
corresponding expression refers to the Hubbard model.
This is in contrast to the physical problem studied in
Refs.31–34, for which the rotated creation and annihila-
tion operators of Eq. (43) refer to electrons. Thus ex-
cept for U/t → ∞ within the physical problem studied in
Refs.31–34 the Hamiltonian given in Eq. (59) is not the
Hubbard Hamiltonian. Instead, it is a rotated Hamilto-
nian for which electron double occupancy and single oc-
cupancy are good quantum numbers. On the other hand,
for the alternative physical problem studied here and in
Refs.7,13 the rotated creation and annihilation operators
of Eq. (43) refer to rotated electrons and the Hamilto-
nian provided in Eq. (59) is the Hubbard Hamiltonian.

The latter Hamiltonian may be developed into an ex-
pansion whose terms can be written as products of the
rotated kinetic operators T̃γ given in Eq. (A3) of Ap-
pendix A where γ = 0,±1. The corresponding order of
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a given Hamiltonian term refers to the number of such
rotated kinetic operators T̃γ independently of their type,
γ = 0,±1. To fourth order such an Hamiltonian reads,

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) + Ĥ(3) + Ĥ(4) + ... ,

Ĥ(0) = U ṼD ; Ĥ(1) = t T̃0 ,

Ĥ(2) = − t2

U
T̃−1T̃+1 ,

Ĥ(3) =
t3

U2
[T̃−1T̃0T̃+1 −

1

2
(T̃−1T̃+1T̃0 + T̃0T̃−1T̃+1)]

Ĥ(4) =
t4

U3
[T̃−1T̃0T̃+1T̃0 + T̃0T̃−1T̃0T̃+1

− T̃−1T̃
2
0 T̃+1 −

1

2
T̃ 2
−1T̃

2
+1

+ T̃−1T̃+1T̃−1T̃+1 −
1

2
(T̃−1T̃+1T̃

2
0 + T̃ 2

0 T̃−1T̃+1)

+ θ (2T̃0T̃−1T̃+1T̃0 − T̃−1T̃+1T̃
2
0 − T̃ 2

0 T̃−1T̃+1)] ,

θ − real− number parameter . (60)

Here,

ṼD = V̂ † V̂D V̂

=

N2

a
∑

j=1

(

ñ~rj,↑ − 1/2
) (

ñ~rj ,↓ − 1/2
)

. (61)

is the rotated-electron interaction operator. That it ap-
pears only once in the Hamiltonian expansion whose
leading-order terms are given in Eq. (60) follows from
the derivation of that expansion systematically using the
commutator,

[ṼD, T̃γ ] = γ T̃γ , γ = 0,±1 . (62)

We recall that except for U/t → ∞ one has that

T̂0 6= T̃0, T̂+1 6= T̃+1, and T̂−1 6= T̃−1. Expressing the
Hamiltonina expression of Eq. (60) in terms of electron
creation and annihilation operators gives for large U/t
values a similar expansion. However, for the intermedi-
ate U/t values of interest for our study the few first terms
of the Hamiltonian t/U expansion given in of Eq. (60) in
terms of rotated-electron operators contain much more
complicated higher-order terms when expressed in terms
of electron creation and annihilation operators.

That Hamiltonian expansion may be expressed in
terms of the c fermion and ηs quasi-spin operators. This
is achieved by combining the rotated-electron operator
expressions provided in Eq. (58) with those of the
rotated-electron interaction operator given in Eq. (61)

and three rotated kinetic operators T̃0, T̃−1, and T̃+1 pro-
vided in Eq. (A3) of Appendix A.

If a rotated-electron term of an operator expansion in
terms of rotated-electron creation and annihilation oper-
ators does not preserve the numbers of rotated-electron
singly and doubly occupied sites, we call it off-diagonal.
An interesting technical detail is that up to third order all
diagonal terms of the Hamiltonian expression provided in

Eq. (60) are generated by the leading-order term of the

operator S̃, which is given in Eq. (44). This follows
from when expressed in terms of electron operators the
Hubbard Hamiltonian provided in Eq. (1) not contain-
ing any off-diagonal terms with more than two electron
operators. (In this case the off-diagonal terms are elec-
tron off-diagonal terms, which refer to electron doubly
occupied sites.)

Only the Hamiltonian terms Ĥ(0), Ĥ(1), Ĥ(2), and
Ĥ(3) to third order given in Eq. (60) are universal. In-
deed, the form of the terms of fourth and larger order
is different for each electron - rotated-electron unitary
transformation. For the fourth-order term Ĥ(4) given in
that equation only the real-number parameter θ value is
not universal, being unitary-transformation dependent32.
For instance, the methods of Refs.33 and34 refer to two
different electron - rotated-electron unitary transforma-
tions whose θ values are θ = 0 and θ = 1/4, respec-
tively. Moreover, one of the methods of Ref.32 refers
to an electron - rotated-electron unitary transformation
whose θ value is θ = 1/2. Its value for the electron
- rotated-electron unitary transformation whose unitary
operator is uniquely defined by the matrix elements of
Eqs. (46) and (47) remains an open issue. Fortunately,
these Hamiltonian terms multiplying the parameter θ
vanish at half filling so that this does not affect the en-
suing section studies.

The non-universal Hamiltonian terms are all reducible
with respect to the subspaces with fixed values of rotated-
electron single and double occupancies. That is, they
contain hopping processes that do not originate from ex-
citation between these subspaces, T̃0T̃−1T̃+1T̃0, nor ter-
minate once a rotated-electron or rotated-hole is returned
to a subspace with larger singly-occupancy, for example,
T̃−1T̃+1T̃−1T̃+1. All these processes can be viewed as

arising from the specific transformation V̂ †|Ψlr,lηs,∞〉 of
the U/t → ∞ energy eigenstates within the subspaces
with fixed values of rotated-electron single and double
occupancies. Thus the infinite electron - rotated-electron
unitary transformations differ in the processes within
each subspace with fixed values of these occupancies.

VI. GENERAL Ss = 1 SPIN SPECTRUM

WITHIN THE SPINON REPRESENTATION

As discussed in Section I, the usual spin-wave theory
does not describe the neutron scattering of LCO. Here we
study the Ss = 1 spin-triplet spectrum of the half-filled
Hubbard model on the square lattice by means of the
spinon representation that emerges from the above more
general c fermion and ηs quasi-spin operator formulation,
which is that suitable for the LCO intermediate interac-
tion range U/t ∈ (6, 8). (In units of the bandwidth, 8t,
this gives U/8t ∈ (0.75, 1).)

For very large U/t values the Hubbard model may be
mapped onto a spin-only problem whose spins are those
of the electrons that singly occupy sites. However, for
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intermediate U/t values electron single occupancy is not
a good quantum number so that such a mapping breaks
down. On the other hand, the rotated electrons of our
operator representation have been constructed to make
rotated-electron single and double occupancy good quan-
tum numbers for U/t > 0. This is why our spinons are
well defined for the LCO intermediate interaction range
U/t ∈ (6, 8). Indeed they are the spins of the rotated
electrons that singly occupy sites. In the large-U/t limit
the rotated-electrons become electrons, so that one re-
covers the known standard results.

Within our operator formulation, the Hubbard model
in the vanishing rotated-electron doubly occupied sites
number and unoccupied sites number subspace (VDU
subspace) can be mapped onto a spin-only problem for
all U/t finite values. In the VDU subspace the num-
ber of spin-1/2 spinons equals that of rotated-electrons,
electrons, and sites N = Na. Since there are no rotated-
electron doubly occupied or unoccupied sites there are no
η-spinons. Hence the number of η-spin SU(2) symme-
try algebra representations vanishes and that symmetry
does not play any role. Furthermore, although there are
N = Na c fermions, their c momentum band associated
with the operators of Eq. (52) is full. Hence the degrees
of freedom associated with the c fermion occupancy con-
figurations that generate the c hidden U(1) symmetry al-
gebra representations are frozen and the Hubbard model
in the subspace under consideration may be mapped onto
a spin-only problem, as confirmed below.

For U/t → ∞ the VDU subspace is the only one for fi-
nite excitation energy. For the finite-U/t spin excitations
that preserve the electron number N = Na considered
in the following, it is the only subspace within a finite
excitation-energy window, ω ∈ (0, 2∆MH). Here 2∆MH

is the Mott-Hubbard gap. Below we calculate its U/t
dependence for the LCO intermediate interaction range
U/t ∈ (6, 8) by DMRG. Our goal is to check whether
the relevant spin energy spectrum that emerges from our
VDU subspace spin-only problem is indeed contained in
the excitation-energy domain ω ∈ (0, 2∆MH) for which
it is valid.

A. The energy range of our spin-only quantum

problem

From the interplay of the model’s symmetries with our
operator formulation that makes these symmetries ex-
plicit, one straightforwardly confirms that the minimum
energy for creation of one rotated-electron doubly occu-
pied site or one rotated-electron unoccupied site at fixed
electron number N = Na onto the n = 1 and m = 0
ground state is indeed given by the Mott-Hubbard gap,
2∆MH . Its magnitude is twice that of the single-particle
gap, ∆MH . In order to define the energy range of our
study, here we calculate the Mott-Hubbard gap 2∆MH

dependence on U/t for a domain containing the LCO
range U/t ∈ (6, 8).
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DMRG, 10x4 cylinder
DMRG, 10x6 cylinder
analytical approximation

Figure 3: The Mott-Hubbard gap 2∆MH DMRG numerical
results on two different width cylinders along with the approx-
imate analytical expression of Eq. (63) (full line) as a function
of U/t. The DMRG points seem to be consistent with for the
half-filled Hubbard on the square lattice the Mott-Hubbard
gap being finite for U/t > 0 and vanishing in the U/t → 0
limit.

Our DMRG calculations refer to the single-particle
gap. They have been performed both for 10 × 4 and
10 × 6 Hubbard cylinders. The chemical potential was
set to U/2 and two states were targeted, one with N
particles and the other with N − 1. (Targetting N + 1
electrons would have given the same results.) Both states
were put into the same density matrix in the traditional
multi-state targeting DMRG approach. Thus, the same
truncation error applied to both states, leading to signif-
icant error cancellation. The resulting gap at each sweep
was plotted versus the maximum truncation error in the
sweep, yielding approximately linear behavior, and allow-
ing the extrapolation to zero truncation error. The error
estimate is roughly the size of the extrapolation from the
last point. From 1800 (10× 4 Hubbard cylinder) to 6000
(10× 6 Hubbard cylinder) states were kept.

Here we report the corresponding magnitudes of the
Mott-Hubbard gap 2∆MH . For the range U/t ∈ (4, 20)
we find that,

2∆MH ≈ U

[

tanh

(√

U/γ t√
6 γ +

√

U/γ t

)]2

; γ =
π + 6

6
,

(63)
gives quantitative agreement with our numerical DMRG
calculations for the Mott-Hubbard gap 2∆MH depen-
dence on U/t. The DMRG points for that gap are plotted
in Fig. 3 along with the curve obtained from the approx-
imate analytical expression, Eq. (63).

For instance, our DMRG calculations for 10× 6 Hub-
bard cylinders give 2∆MH ≈ 2.78(4) t for U/t = 6 and
∆MH = 4.30(4) t for U/t = 8. This leads to a range
2∆MH ∈ (816 meV, 1442 meV) for U/t ∈ (6, 8). Here we
used the t magnitudes t ≈ 293 meV and t ≈ 335 meV
for which the model describes the LCO neutron scat-
tering for U/t = 6 and U/t = 8, respectively. For the
U/t = 6.1 value used in some of our calculations, we
find ∆MH ≈ 2.81(0) t from the DMRG analysis, so that
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∆MH ≈ 829 meV for t ≈ 295 meV.
Optical experiments overestimate the charge-transfer

gap magnitudes of the parent insulating compounds35.
On the other hand, by measuring the Hall coefficient RH

in LCO, the studies of Ref.36 have estimated the energy
gap over which the electron and hole carriers are ther-
mally activated, which corresponds to the Mott-Hubbard
gap, to be 2∆MH ≈ 890 meV. Remarkably, this magni-
tude is within the range 2∆MH ∈ (816 meV, 1442 meV)
of our above theoretical predictions for U/t ∈ (6, 8).
Our theoretical approach based on the combination of
our DMRG results with the U and t values for which
agreement with the LCO neutron-scattering agreement
is reached leads to 2∆MH ≈ 890 meV for U/t ≈ 6.3.
Below we consistently confirm that the spin-triplet ex-
citation spectrum calculated for the Hubbard model in
the VDU subspace is contained in the energy window
ω ∈ (0, 2∆MH) found here.

Note that the DMRG points of Fig. 3 seem to be
consistent with for the half-filled Hubbard on the square
lattice the Mott-Hubbard gap being finite for U/t > 0
and vanishing in the U/t → 0 limit.

B. The Hubbard model in the VDU subspace

Let us confirm that within our operator representation
the half-filled Hubbard model on the square lattice in
the VDU subspace can for U/t > 0 be expressed solely
in terms of spinon operators. Indeed, accounting for the
lack of both rotated-electron doubly occupied sites and
unoccupied sites, upon writing the Hamiltonian of Eq.
(60) in the VDU subspace, one finds that all its terms
of odd order vanish and the terms of even order given in
that equation simplify to,

Ĥ(0) = U Ṽ c ,

Ĥ(2) = − t2

U
T̃−1T̃+1 ,

Ĥ(4) =
t4

U3
[T̃−1T̃+1T̃−1T̃+1

− 1

2
T̃ 2
−1T̃

2
+1 − T̃−1T̃

2
0 T̃+1] . (64)

We have then expressed the Hamiltonian terms of even
order as those provided in Eq. (64) in terms of the c
fermion and ηs quasi-spin operators. This has been done
by combining the rotated-electron operator expressions
provided in Eq. (58) with those of the three rotated ki-

netic operators T̃0, T̃−1, and T̃+1 given in Eq. (A3) of
Appendix A. Since the states that span the VDU sub-
space are generated only by rotated-electron singly occu-
pancy configurations, the projectors q̃c~rj and (1− q̃c~rj ) in

the expressions of Eq. (56) can be replaced by the cor-
responding eigenvalues 1 and 0, respectively. One then
finds that s̃l~rj,s = q̃l~rj in the VDU subspace, so that the

η-spinon operators do not play any role. Hence in it the

ηs quasi-spin operators q̃l~rj reduce to the corresponding

spinon operators s̃l~rj,s, where l = ±, z.

Moreover, after some algebra involving the anti-
commutation and commutation relations given in Eqs.
(A10)-(A13) of Appendix A one finds that all contribu-
tions involving the c fermion creation and annihilation
operators can be expressed only in terms of local oper-
ators q̃cj . In the VDU subspace one can then replace
these operators by their eigenvalue 1. Thus the Hamilto-
nian terms of Eq. (64) can be expressed only in terms of
spinon operators. Importantly, this holds as well for the
remaining Hamiltonian terms of higher even order omit-
ted in that equation. Moreover, all Hamiltonian terms
of odd order vanish and the zeroth-order term becomes
a mere constant, Ĥ(0) = [U/4]Na, and may be ignored.
The Hamiltinonian terms of second and fourth order of
Eq. (64) may after some algebra then be rewritten as,

Ĥ(2) =
t2

U

∑

〈j1j2〉

1

2
[~̃s~rj1 ,s · ~̃s~rj2 ,s − 1] , (65)

and

Ĥ(4) = − t4

U3

∑

〈j1j2〉

1

2
[~̃s~rj1 ,s · ~̃s~rj2 ,s − 1]

+
t4

U3

∑

j1,j2,j3

1

2
Dj1,j2Dj2,j3 [~̃s~rj1 ,s · ~̃s~rj3 ,s − 1]

+
t4

U3

∑

j1,j2,j3,j4

1

8
Dj1,j2Dj2,j3Dj3,j4Dj4,j1

× [1− ~̃s~rj1 ,s · ~̃s~rj2 ,s − ~̃s~rj1 ,s · ~̃s~rj3 ,s − ~̃s~rj1 ,s · ~̃s~rj4 ,s
− ~̃s~rj2 ,s · ~̃s~rj3 ,s − ~̃s~rj2 ,s · ~̃s~rj4 ,s − ~̃s~rj3 ,s · ~̃s~rj4 ,s]

+
t4

U3

∑

j1,j2,j3,j4

5

8
Dj1,j2Dj2,j3Dj3,j4Dj4,j1

× [(~̃s~rj1 ,s · ~̃s~rj2 ,s)(~̃s~rj3 ,s · ~̃s~rj4 ,s)
+ (~̃s~rj1 ,s · ~̃s~rj4 ,s)(~̃s~rj2 ,s · ~̃s~rj3 ,s)
− (~̃s~rj1 ,s · ~̃s~rj3 ,s)(~̃s~rj2 ,s · ~̃s~rj4 ,s)] , (66)

respectively. Here the spinon operator ~̃s~rj ,s has opera-

tor Cartesian components s̃x~rj ,s =
1
2 [s̃

+
~rj ,s

+ s̃−~rj ,s], s̃
y
~rj ,s

=
1
2i [s̃

+
~rj ,s

− s̃−~rj ,s], and s̃z~rj ,s and refers to the spin of a ro-

tated electron that singly occupies the site of real-space
coordinate ~rj . The spinon operators s̃z~rj ,s and s̃±~rj,s are

those given in Eq. (54). Furthermore, in the expres-
sions of Eqs. (65) and (66) the summation 〈j1j2〉 runs
over nearest-neighboring sites and Dj,j′ = 1 for the real-
space coordinates ~rj and ~rj′ corresponding to nearest-
neigboring sites and Dj,j′ = 0 otherwise.

For very large U/t values when electron single and dou-
ble occupancy become good quantum numbers and thus
the rotated electrons become electrons the spinon opera-

tors ~̃s~rj ,s become the usual spin operators ~̂s~rj ,s and Eqs.
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(65) and (66) recover the corresponding spin-only Hamil-
tonian terms obtained previously by other authors31. On
the other hand, for the intermediate U/t values of inter-
est for LCO the terms of the Hamiltonian t/U expansion
given in of Eq. (66) in terms of spinon (rotated-electron)
operators contain much more complicated higher-order
terms when expressed in terms of electron creation and
annihilation operators.

C. The absolute ground state of the Hubbard

model on the square lattice

The antiferromagnetic long-range order of the half-
filled Hubbard model on the square lattice ground state
follows from a spontaneous symmetry breaking mecha-
nism that occurs in the thermodynamic limit Na → ∞.
It involves a whole tower of low-lying energy eigenstates
of the finite system. They collapse in that limit onto the
ground state.

Importantly, both that ground state and the excited
energy eigenstates that collapse onto it as Na → ∞ be-
long to the VDU subspace. One may investigate which
energy eigenstates couple to the exact finite Na ≫ 1 and
n = 1 and m = 0 ground state |GS〉 via the operator,

m̂l
s =

1

Na

Na
∑

j=1

(−1)j ŝl~rj ,s , l = ±, z . (67)

We insert the complete set of energy eigenstates as fol-
lows,

〈GS|(m̂l
s)

2|GS〉 =
∑

lr,lηs

〈GS|m̂l
s|Ψlr,lηs,u〉

× 〈Ψlr,lηs,u|m̂l
s|ΨGS〉

=
∑

lr ,lηs

|〈GS|m̂l
s|Ψlr,lηs,u〉|2 ; l = ±, x3 . (68)

Only energy eigenstates |Ψlr,lηs,u〉 with excitation mo-

mentum ~k = ~π and quantum numbers Sη = 0, 2Sc =
Na = N , Ss = 1, and Sz

s = 0,±1 contribute to the sum
of Eq. (68). We recall that the quantum numbers Sη = 0
and 2Sc = Na = N remain unchanged and thus are the
same as those of the ground state |GS〉. We denote by

|Ψ1T 〉 the Ss = 1, Sη = 0, 2Sc = Na = N , and ~k = [π, π]
lowest spin-triplet state whose excitation energy behaves
as 1/Na for finite Na ≫ 1. For the range U/t > 4 of
interest for our studies the contribution from this lowest
spin triplet state is by far the largest. For instance, for
the related spin-1/2 Heisenberg model on the square lat-
tice the matrix-element square |〈GS|m̂l

s|Ψ1T 〉|2 exhausts
the sum in Eq. (68) by more than 98.7%37. A similar be-
havior is expected for the Hubbard model on the square
lattice, at least provided that U/t > 4.

The special properties with respect to the lattice sym-
metry group of the lowest energy eigenstates contribut-
ing to the linear Goldstone modes of the corresponding

Ss = 1 spin-wave spectrum reveal the space-symmetry
breaking of the Na → ∞ ground state. In the present
case of the half-filled Hubbard model on the square lat-
tice the translation symmetry is broken. Hence as found

here both the ~k = [0, 0] and ~k = [π, π] excitation mo-
menta appear among the lowest energy eigenstates con-
tributing to the linear Goldstone modes of the Ss = 1
spin-wave spectrum. However, that the transitions to the

lowest spin-triplet state |Ψ1T 〉 of momentum ~k = [π, π]
nearly exhaust the sum in Eq. (68) is consistent with the
first-moment sum rules of an isotropic antiferromagnet,
such that no weight is generated by states of momentum
~k = [0, 0].

One of the few exact theorems that apply to the half-
filled Hubbard model on a bipartite lattice and thus on
a square lattice is that for a finite number of lattice sites
Na its ground state is a spin-singlet state16. The stud-
ies of Refs.7,13 use an operator representation that dif-
fers from that used here only by unimportant phase fac-
tors. Such studies provide evidence that the n = 1 and
m = 0 ground state is the only model’s ground state that
is invariant under the electron - rotated-electron unitary
transformation. For Na ≫ 1 the results of those refer-
ences reveal that its spin-singlet configurations refer to
Na/2 = N/2 independent spin-singlet two-spinon pairs.
Most of the weight of these spin-singlet two-spinon pairs
stems from spinons at nearest-neighboring sites yet they
have finite contributions as well from spinons located at
larger distances.

Our spinon representation has been constructed to
make such N/2 spin-singlet spinon pairs correspond to
spin-neutral objects that obey a hard-core bosonic alge-
bra. One can then perform an extended Jordan-Wigner
transformation that maps them onto N/2 s1 fermions13.
(In the index s1 the number 1 refers to one spin-singlet
spinon pair.) The corresponding s1 fermion momentum
band is full for the n = 1 and m = 0 absolute ground
state. It has a momentum area 2π2 and coincides with
an antiferromagnetic RBZ whose momentum ~q compo-
nents obey the inequality,

|qx|+ |qy| ≤ π . (69)

As a result of its invariance under the electron -
rotated-electron unitary transformation, the n = 1 and
m = 0 absolute ground state is the only ground state that
for U/t > 0 belongs to a single V tower. Hence both for
it and its spin-triplet excited states that belong to the
VDU subspace the s1 boundary-line momenta ~qBs1 are
independent of U/4t. Consistent with Eq. (69), their
Cartesian components qBs1x and qBs1y obey the equa-
tions,

qBs1x ± qBs1y = π ,

or qBs1x ± qBs1y = −π . (70)

Hence the s1 boundary line refers to the lines connecting
[±π, 0] and [0,±π].
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D. The spin excitations and the ground-state

spinon d-wave pairing

Within our spinon operator representation the Ss = 1
spin-triplet excitations relative to the n = 1 and m = 0
absolute ground state involve creation of two holes in the
s1 band along with a shift ~π/Na of all discrete momentum
values of the full c band. Under such an excitation one
of the Na/2 = N/2 spin-singlet spinon pairs is broken.
This gives rise to two unbound spinons in the excited
state whose three occupancy configurations generate the
three spin-triplet states of spin projection Sz

s = 0,±1.
In the case of such spin-triplet excitations the occupancy
configurations of the two holes arising in the s1 fermion
momentum band may simulate the motion of the two
unbound spinons relative to a background of N/2 − 1
spinon pairs, or vice versa.

The general spin-triplet spectrum has within the
present spinon representation the following form,

ω(~k) = −ǫs1(~q)− ǫs1(~q
′) ,

~k = ~π − ~q − ~q ′ , (71)

where ~π = ±[π,±π], ~q and ~q ′ are the momentum values
of the emerging two s1 fermion holes, and ǫs1(~q) is the
corresponding s1 fermion energy dispersion. Indeed, the
results of Ref.13 provide evidence that for the Hubbard
model on the square lattice in the VDU subspace the
s1 fermion momentum ~q is a good quantum number, so
that one can define a corresponding energy dispersion.
However, in contrast to 1D this property does not hold
for the more general problem of that model in its full
Hilbert space13.

The Hubbard model on the also bipartite 1D lattice has
the same extended global symmetry than on the square
lattice. Hence for it an operator representation similar
to that used here may be introduced. The exact Bethe-
anstaz solution then implicitly performs the summation
of all Hamiltonian terms of even order whose leading-
order terms are given in Eqs. (65) and (66). This leads
to a s1 fermion band ǫs1(q) that in the U/t → 0 limit
equals the occupied part of the electron non-interacting
dispersion38,39. The main effect of increasing the U/t
value is decreasing the s1 fermion band ǫs1(q) energy
bandwidth. It decreases from 2t as U/t → 0 to zero for
U/t → ∞.

As discussed above, expression of the Hamiltonian in
terms of rotated-electron operators leads for the interme-
diate U/t ∈ (6, 8) range to a quantum problem in terms
of rotated-electron processes similar to the correspond-
ing large-U/t quantum problem in terms of electron pro-
cesses. At half filling the main effect of decreasing U/t
is the increase of the energy bandwidth of an effective
band associated with the spinon occupancy configura-
tions. Such an effective band is the s1 energy dispersion.
Consistent with and partially motivated by the exact 1D
results yet accounting both for the corresponding com-
mon global symmetry and different physics, the rotated-
electron studies of Refs.7,13 provide evidence that for the

Figure 4: The energy-momentum space limits of the spin Ss =
1 excited states spectrum for U/t = 6.1, t = 295meV, and kx
and ky in units of 2π. States whose energy is for a given k

lower than that of the intermediate spin-wave sheet as well as
those of any energy and equivalent momenta [0, 0] = [0, 2π] =
[2π, 0] = [2π, 2π] do not contribute to the spin spectral weight.

model on the square lattice the effective s1 energy dis-
persion ǫs1(~q) involves an auxiliary dispersion,

ǫ0s1(~q) = −W 0
s1

2
[cos qx + cos qy] . (72)

In the U/t → 0 limit such an auxiliary dispersion reaches
its maximum energy bandwidth. Similarly to 1D, in that
limit it is expected to become the occupied part of the
electron non-interacting dispersion. The main effect of
increasing U/t is to decrease the energy bandwidth of
that dispersion and thus the magnitude of the energy
scale W 0

s1 in Eq. (72), so that for half filling it changes
from W 0

s1 = 4t as U/t → 0 to W 0
s1 = 0 for U/t → ∞.

However, the n = 1 and m = 0 ground state of the 1D
half-filled Hubbard model has no antiferromagnetic long
range order as Na → ∞. In the presence of that order,
provided that U/t is not too small so that one can ignore
the amplitude fluctuations of the corresponding order pa-
rameter, the problem can be handled for the model on
the square lattice by a suitable mean-field theory. Within
it the occurrence of that order is described by a s1 energy
dispersion of the general form7,13,

ǫs1(~q) = −
√

|ǫ0s1(~q)|2 + |∆s1(~q)|2 . (73)

Here ǫ0s1(~q) is the auxiliary dispersion given in Eq. (73)
and the gap function |∆s1(~q)| is to be determined from
comparison with the spin-triplet spectrum obtained from
the standard formalism of many-body physics by sum-
ming up an infinite number of ladder diagrams. (We
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note that as explicitly shown in Ref.5 the RPA studies
of Section IV are equivalent to summing up an infinite
number of such diagrams.)

We profit from symmetry and limit our analysis of the
spin spectrum of Eq. (71) to the sector kx ∈ (0, π) and

ky ∈ (0, kx) of the (~k, ω) space. Surprisingly, quantitative
agreement with the results obtained from summing up an
infinite number of diagrams is reached provided that the
s1 dispersion gap function refers to a d-wave s1 fermion
spin-singlet spinon pairing,

|∆s1(~q)| =
µ0

2

| cos qx − cos qy|
2

. (74)

Moreover, from comparison with many-body physics re-
sults one finds that the inelastic coherent spin-wave spec-
trum is generated by processes where ~q points in the
nodal direction and ~q ′ belongs to the boundary of the
s1 band reduced zone. The remaining choices of ~q and ~q ′

either generate the inelastic incoherent continuum spec-
tral weight or vanishing weight, respectively.

For this choice of the momenta of the two emerging s1
fermion holes one finds from the use of Eqs. (72)-(74)
that the general spin spectrum of Eq. (71) corresponds
to a surface of energy and momentum given by,

ω(~k) =
µ0

2

∣

∣

∣

∣

sin

(

kx + ky
2

)∣

∣

∣

∣

+W 0
s1

∣

∣

∣

∣

sin

(

kx − ky
2

)∣

∣

∣

∣

,

~k = ~π − ~q − ~q ′ . (75)

This is a particular case of that general spin spectrum,
which refers to the following choices of the momenta ~π,
~q, and ~q ′,

~π = [π,−π] ,

~q =

[

π

2
− (kx + ky)

2
,−π

2
− (kx + ky)

2

]

,

~q ′ =

[

π

2
− (kx − ky)

2
,−π

2
+

(kx − ky)

2

]

, (76)

for the sub-sector such that kx ∈ (0, π), ky ∈ (0, kx) for
kx ≤ π/2, and ky ∈ (0, π − kx) for kx ≥ π/2. Moreover,
for the sub-sector such that ky ∈ (0, π), kx ∈ (π − ky, π)
for ky ≤ π/2, and kx ∈ (ky , π) for ky ≥ π/2, respectively,
it corresponds to the following choices of the momenta ~π,
~q, and ~q ′,

~π = [π, π] ,

~q =

[

π

2
− (kx + ky)

2
,
3π

2
− (kx + ky)

2

]

,

~q ′ =

[

π

2
− (kx − ky)

2
,−π

2
+

(kx − ky)

2

]

. (77)

Note that the components of the s1 band momenta ~q
appearing in Eqs. (76) and (77) are such that qx − qy =
−π and thus belong to the half-filling s1 boundary line
defined by Eq. (70), whereas those of the momenta ~q ′ in

the same equations obey the relation q′x = −q′y so that
point in the nodal directions.

For the values U/t = 6.1 and t = 295 meV used in Sec-
tion IV in our study of the LCO spin spectrum one finds
that W 0

s1 ≈ t/5.95 and µ0 ≈ t/0.5216 in the expressions
of Eqs. (72), (74), and (75), so that W 0

s1 ≈ 49.6 meV and
µ0 ≈ 565.6 meV. The spin-wave spectrum of Eq. (75) cal-
culated for these W 0

s1 and µ0 values refers to the middle
surface plotted in Fig. 4. Its expressions corresponding
to the high symmetry directions in the BZ are given in
Appendix B. The corresponding curves are plotted in
the upper panel of Fig. 2, along with those obtained
from the many-body physics by summing up an infinite
number of ladder diagrams and the LCO experimental
points of Ref.2. In Fig. 5 of Appendix B the same curves
are plotted together with the LCO experimental points
of Ref.4. We emphasize that the intermediate sheet plot-
ted in Fig.4, which corresponds to the general spin-wave
spectrum of Eq. (75), also fully agrees with the results
of the experimental studies reported in Refs.2,4.

The studies of Ref.7 are limited to the spin-wave spec-
trum. Following the agreement of the spin-wave spec-
trum of Eq. (75) obtained from the general spin spec-
trum of Eq. (71) with both results from the many-body
physics and LCO neutron-scattering experimental points
of Refs.2,4 here we consider it for all choices of the s1
fermion hole momenta ~q and ~q ′. The corresponding
energy-momentum space domain of the spin Ss = 1 ex-
cited states whose spectrum is provided in Eq. (71) is
represented in Fig. 4 for U/t = 6.1 and t = 295 meV.
A similar spectrum is obtained for the values U/t = 8.0
and t = 335meV of Ref.6.

The largest energy of the general spin spectrum of the
half-filled Hubbard model on the square lattice in the
VDU subspace represented in Fig. 4 is 566 meV. Hence
the whole spin spectrum of Eq. (71) represented in that
figure is contained in the energy window ω ∈ (0, 2∆MH)
of the corresponding VDU subspace. Indeed, from com-
bination of the results of our DMRG calculations with
the t magnitudes that lead to agreement with the spin-
wave spectrum of LCO we have found that 2∆MH ∈ (816
meV, 1442 meV) for U/t ∈ (6, 8).

As mentioned above, the intermediate sheet of the
general spin spectrum represented in Fig. 4 refers to
the spin-wave spectrum. For each excitation momen-

tum ~k, states of energy lower than the latter spectrum
do not contribute to the form-factor weight. Further-
more and consistent with the first-moment sum rules of
an isotropic antiferromagnet, no and nearly no weight
is generated by states of any energy and momentum
[0, 0] = [0, 2π] = [2π, 0] = [2π, 2π] and near it, respec-
tively.

Unfortunately, in its present form our spinon-operator
method does not provide the detailed continuum weight
intensity distribution. However, it is expected that, simi-
larly to the Heisenberg model case6, its energy-integrated
intensity follows the same trend as the spin-wave inten-
sity. Analysis of Fig. 4 reveals that for momentum [π, 0]
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there are no excited states of energy higher than the spin
waves. Thus at momentum [π, 0], the continuum weight
distribution energy-integrated intensity vanishes or is ex-
tremely small, due to s1 band four-hole processes. Given
the expected common trend of both intensities, this is
consistent with a damping of the spin-wave intensity at
momentum [π, 0], as observed in the recent high-energy
inelastic neutron scattering experiments of Ref.2 but not
captured by the Fig. 2 RPA intensity. Since we find
that for the half-filled Hubbard model on the square lat-
tice the continuum weight distribution energy-integrated
intensity vanishes or is extremely small at momentum
[π, 0], we predict that for it the corresponding spin-wave
intensity at momentum [π, 0] is also damped. Hence we
expect that such a behavior is absent in Fig. 2 due to the
RPA used in the calculation of the spin-wave intensity.
However, for all other momentum values the RPA results
are expected to be a quite good estimate of the model’s
spin-wave intensity.

The d-wave spin-singlet spinon pairing that follows
from the energy gap Eq. (74) emerged here from im-
posing quantitative agreement with the spin-wave spec-
trum obtained from summing up an infinite number of
diagrams. We emphasize that such a type of spinon
pairing is not inconsistent with the ground-state anti-
ferromagnetic order provided that the weights of the cor-
responding spinon pairs fall off as a power law of the
spinon distance whose negative exponent has absolute
value smaller than 5. This was confirmed in Ref.40 for
spins associated with electrons yet holds as well for the
present spinons, which refer to the spins of the rotated-
electrons that singly occupy sites. We emphasize that
such a pairing does not refer to electrons or rotated elec-
trons. For the n = 1 and m = 0 absolute ground state it
corresponds to N/2 spinon pairs, which describe the spin
degrees of freedom of the N rotated electrons. Indeed,
for that ground state all rotated electrons singly occupy
sites.

VII. COMPARISON OF THE PREDICTED

SPECTRAL WEIGHTS WITH THOSE IN THE

LCO HIGH-ENERGY NEUTRON SCATTERING

As discussed in Section IV, the total spin-weight sum-
rule, µ2

B 2(1−2d), of Eq. (7) can in units of µ2
B be written

as,

WT = 2(1− 2d) ≈ WSW +WCO + 4(mGB
AF )

2 . (78)

Here WSW = Zd [2(1− 2d)− 4(mAF )
2] is the integrated

spectral weight associated with the spin-wave intensity,
Eqs. (34) and (35), WSW = (1−Zd) [2(1−2d)−4(mAF )

2]
that of the remaining inelastic spin spectral weight as-
sociated with the continuum distribution, and 4(mGB

AF )
2

refers to the Bragg-peak elastic part of the spin spectral
weight.

In Table II we provide the results of our calculations
for several integrated spin spectral weights (in units of

U/t 6.1 6.5 8.0 10.0

WT 1.643 1.671 1.762 (1.7786) 1.848 (1.8466)

WSW 0.808 0.799 0.761 0.714

W<450 1.571 1.593 1.663 1.730

W>450 0.072 0.078 0.099 0.118

Table II: Several spectral weights in units of µ2

B as defined in
the text for several U/t values and some results from Refs.6,21.

µ2
B). This includes the total spin spectral weight WT and

the spin-wave intensity coherent spectral weight WSW .
In addition, in the table we provide the estimated mag-
nitudes of the total spin spectral weight for excitation
energy ~ω ≤450 meV, W<450 = WSW /0.71 + 4(mGB

AF )
2,

and the total spin spectral weight for excitation energy
~ω > 450 meV, W>450 = [WT − W<450]. The magni-
tude of the spin spectral weight for excitation energy
~ω ≤450 meV, W<450, is derived by combining our theo-
retical expressions with the observations of Ref.2 that for
the energy range up to about 450 meV, 71% and 29% of
the weight corresponding to the inelastic response comes
from the coherent spin-wave weight and incoherent con-
tinuum weight, respectively.

Our prediction for the magnitude of the spin spectral
weight for excitation energy ~ω ≤450 meV, W<450, varies
between 1.6µ2

B for U/t ≈ 6.1 and 1.7µ2
B for U/t ≈ 8.0,

in agreement with the experimental value 1.9 ± 0.3µ2
B

reported in Ref.2.
From our above analysis, the amount of spin spec-

tral weight for excitation energy ~ω > 450 meV is small,
W>450 ≈ 0.1µ2

B. By combining our spectral-weight re-
sults with the boundaries of the spin-triplet spectrum
plotted in Fig. 4, such a small spin spectral weight is
expected to extend to about 566 meV, mostly at and
around the momentum [π, π].

VIII. CONCLUDING REMARKS

In this paper we have studied by means of the half-
filled Hubbard model on the square lattice several open
issues raised by the recent LCO neutron scattering data
reported in Ref.2. Our studies combined standard meth-
ods such as RPA techniques involving a broken symmetry
ground state with DMRG calculations on Hubbard cylin-
ders and a spinon representation suitable to the LCO
intermediate interaction range U/t ∈ (6, 8). The latter
emerges from a rotated-electron operator representation
that has been constructed to ensure that rotated-electron
single and double occupancy are good quantum numbers
for U/t > 0. This assures that our spinons are well de-
fined for the LCO intermediate U/t range. Indeed these
spinons are the spins of the rotated electrons that singly
occupy sites. In the large-U/t limit the rotated-electrons
become electrons, so that one recovers the usual picture.

Within this operator formulation, the Hubbard model
in the VDU subspace considered here can be mapped
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onto a spin-only problem for the U/t range of interest for
our studies. The spin excitations preserve the electron
number. At fixed electron number the VDU subspace
is the only one within a finite excitation-energy window,
ω ∈ (0, 2∆MH). Here 2∆MH is the Mott-Hubbard gap,
whose U/t dependence we have calculated by DMRG.
We have found that 2∆MH ∈ (816 meV, 1442 meV) for
U/t ∈ (6, 8). Correspondingly, the largest energy of the
general spin spectrum of the half-filled Hubbard model
on the square lattice in the VDU subspace represented
in Fig. 4 is 566 meV, so that it is fully contained in this
energy window.

The coherent part of the spin spectrum, which corre-
sponds to the spin-wave spectrum, was complementar-
ily studied by a RPA analysis involving a broken sym-
metry ground state and the spinon operator represen-
tation. The former method was also used to calculate
the spin-wave intensity momentum distribution. Quanti-
tative agreement with both the spin-wave spectrum ob-
tained by summing up an infinite number of ladder dia-
grams and that observed in LCO neutron scattering ex-
perimental studies is reached by the spinon method pro-
vided that the initial n = 1 and m = 0 ground state
has d-wave spinon pairing. For that ground state such a
pairing refers only to the rotated-electron spin degrees of
freedom. Whether upon hole doping such a pre-formed
d-wave spinon pairing could lead to rotated-electron d-
wave pairing or even related electron d-wave pairing is
an issue that deserves further investigations.

Following the good quantitative agreement with the
spin-wave spectrum, the spinon representation was used
to derive the full Ss = 1 spin-triplet spectrum represented
in Fig. 4 for the U and t values suitable for LCO. From
analysis of that figure we have found that for the mo-
mentum [π, 0] there are no excited states of energy higher
than the spin waves. Thus at momentum [π, 0], the con-
tinuum weight distribution energy-integrated intensity
vanishes or is extremely small. Such an intensity is ex-
pected to follow the same trend as that of the spin waves.
Hence this behavior is consistent with a corresponding
damping of the spin-wave intensity at [π, 0] observed in
the recent high-energy inelastic neutron-scattering exper-
iments of Ref.2.

On the other hand, a resonant-inelastic x-ray scatter-
ing study of insulating and doped La2−xSrxCuO4 found
a mode at 500 meV, at a momentum transfer [π, 0]41.
This 500 meV mode is only observed when the incident
x-ray polarization is normal to the CuO planes. It could
be a d-d crystal-field excitation42,43, rather than a spin
excitation. In case it is a spin excitation, one possible
explanation given in Ref.41 is that it involves two spin-
flip processes, created on adjacent copper-oxide planes.
Since our present study relies on the Hubbard model on
a single square-lattice plane, that mechanism would be
beyond our theoretical approach.

We recall that for each excitation momentum ~k, states

in the (~k, ω) domain of Fig. 4 whose energy is lower than
that of the spin-wave spectrum intermediate sheet gen-

erate no spectral weight and thus do not contribute to
the spin dynamical structure factor. Furthermore, con-
sistent with the first-moment sum rules of an isotropic
antiferromagnet, no and nearly no weight is generated
by states of any energy and momentum [0, 0] = [0, 2π] =
[2π, 0] = [2π, 2π] and near it, respectively. That to-
gether with the small amount of spin spectral weight
reported in Table II for energies between 450 meV and
566 meV indicates that in that energy window there
is nearly no spin spectral weight near the momentum
[0, 0] = [0, 2π] = [2π, 0] = [2π, 2π] (see Fig. 4).

In addition to the Mott-Hubbard gap magnitude de-
pendence on U/t, DMRG calculations were performed
to derive the U/t dependence of the ground-state elec-
tron single occupancy expectation value (1 − d). That
quantity plays an important role in our study, in that
it controls several spin-weight sum rules. Our prediction
for the amount of total spin spectral weight in the energy
range ω ∈ (0 meV, 450 meV) quantitatively agrees with
that observed in the recent high-energy inelastic neutron
scattering studies of Ref.2, which were limited to that
energy window.

Moreover, as reported in Table II we predict that there
is a small amount of extra weight ≈ 0.1µ2

B above 450
meV, which extends to about 566 meV. Since at and near
the momentum [0, 0] = [0, 2π] = [2π, 0] = [2π, 2π] there
is nearly no spin spectral weight, analysis of Fig. 4 re-
veals that for energies between 450 meV and 566 meV
the small amount of extra spin spectral weight is located
at and around the momentum [π, π]. Thus we suggest
that future LCO neutron scattering experiments scan the
energies between 450 meV and 566 meV and momenta
around [π, π].
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Appendix A: Useful operators algebra

Here we justify why the six generators of the global η-
spin and spin SU(2) symmetries commute with the elec-
tron - rotated-electron unitary operator. Moreover, we
address the problem of the c fermion operator, spinon
operator, and η-spinon operator algebras.

To achieve our first goal, it is useful to express the
kinetic-energy operator T̂ given in Eq. (1) as T̂ = T̂0 +



20

T̂+1 + T̂−1. Here,

T̂γ = −
∑

〈j,j′〉

T̂γ;,j,j′ , γ = 0,±1 ,

T̂0;j,j′ =
∑

σ

[n̂~rj ,−σ c
†
~rj ,σ

c~rj′ ,σ n̂~rj′ ,−σ

+ (1− n̂~rj ,−σ) c
†
~rj ,σ

c~rj′ ,σ (1− n̂~rj′ ,−σ) + c.c.] ,

T̂+1;j,j′ =
∑

σ

[n̂~rj ,−σ c
†
~rj ,σ

c~rj′ ,σ (1 − n̂~rj′ ,−σ)

+ n̂~rj′ ,−σ c
†
~rj′ ,σ

c~rj ,σ (1− n̂~rj ,−σ)] ,

T̂−1;j,j′ =
∑

σ

[(1− n̂~rj ,−σ) c
†
~rj ,σ

c~rj′ ,σ n̂~rj′ ,−σ

+ (1− n̂~rj′ ,−σ) c
†
~rj′ ,σ

c~rj ,σ n̂~rj ,−σ] . (A1)

While the operator T̂0 does not change electron double
occupancy, the operators T̂+1 and T̂−1 change it by +1
and −1, respectively.

For U/t > 0 the operator Ŝ in the expression V̂ = e−Ŝ

given in Eq. (43) can be expanded in a series of t/U ,

Ŝ = − t

U

[

T̂+1 − T̂−1

]

+O(t2/U2) . (A2)

Although as discussed in Ref.14 there are infinite choices

for the operators V̂ = e−Ŝ and Ŝ, they share two im-
portant properties14,31,32: (i) To leading order in t/U all

read − t
U [T̂+1− T̂−1], as given in Eq. (A2); (ii) Their op-

erational expressions involve only the kinetic operators
T̂0, T̂+1, and T̂−1 of Eq. (A1). Such properties apply to
the specific electron - rotated-electron unitary operator
V̂ uniquely defined in this paper.

The rotated kinetic operators T̃0, T̃+1, and T̃−1 such

that T̃γ = V̂ † T̂γ V̂ for γ = 0,±1 are given by,

T̃γ = −
∑

〈j,j′〉

T̃γ;,j,j′ , γ = 0,±1 ,

T̃0;j,j′ =
∑

σ

[ñ~rj ,−σ c̃
†
~rj ,σ

c̃~rj′ ,σ ñ~rj′ ,−σ

+ (1− ñ~rj ,−σ) c̃
†
~rj ,σ

c̃~rj′ ,σ (1− ñ~rj′ ,−σ) + c.c.] ,

T̃+1;j,j′ =
∑

σ

[ñ~rj ,−σ c̃
†
~rj ,σ

c̃~rj′ ,σ (1 − ñ~rj′ ,−σ)

+ ñ~rj′ ,−σ c̃
†
~rj′ ,σ

c̃~rj ,σ (1− ñ~rj ,−σ)] ,

T̃−1;j,j′ =
∑

σ

[(1− ñ~rj ,−σ) c̃
†
~rj ,σ

c̃~rj′ ,σ ñ~rj′ ,−σ

+ (1− ñ~rj′ ,−σ) c̃
†
~rj′ ,σ

c̃~rj ,σ ñ~rj ,−σ] . (A3)

To confirm that the three generators of the spin SU(2)
symmetry, three generators of the η-spin SU(2) symme-

try, and also the momentum operator P̂ commute with
the electron - rotated-electron unitary operator V̂ = Ṽ ,
one uses the exact result that the unitary operator V̂ can
be solely expressed in terms of the three kinetic operators

given in Eq. (A1)14,31. In Ref.14 the following twenty one
commutators were found to vanish,

[P̂ , T̂γ ] = [Ŝz
α, T̂γ ] = [Ŝ†

α, T̂γ ] = [Ŝα, T̂γ ] = 0 ,

α = η, s , γ = 0,±1 . (A4)

Although the algebra involved in their derivation is cum-
bersome, it is straightforward. The vanishing of the com-
mutators given in Eq. (A4) then implies that the mo-
mentum operator and the six generators of the η-spin
and spin algebras commute with the unitary operator V̂ ,

[P̂ , V̂ ] = [Ŝz
α, V̂ ] = [Ŝ†

α, V̂ ] = [Ŝα, V̂ ] = 0 ,

α = η, s , l = 0,±1 . (A5)

Hence the above operators have the same expression
in terms of electron and rotated-electron creation and
annihilation operators, so that the momentum operator
reads,

~̂P =
∑

σ=↑,↓

∑

~k

~k c†~k,σ
c~k,σ =

∑

σ=↑,↓

∑

~k

~k c̃†~k,σ
c̃~k,σ . (A6)

Furthermore, the above-mentioned six generators are
given by,

Ŝz
η =

Na
∑

j=1

ŝz~rj ,η =

Na
∑

j=1

s̃z~rj ,η ,

Ŝ†
η =

Na
∑

j=1

ŝ+~rj ,η =

Na
∑

j=1

s̃+~rj ,η ,

Ŝη =

Na
∑

j=1

ŝ−~rj ,η =

Na
∑

j=1

s̃−~rj ,η ,

Ŝz
s =

Na
∑

j=1

ŝz~rj ,s =

Na
∑

j=1

s̃z~rj ,s ,

Ŝ†
s =

Na
∑

j=1

ŝ+~rj ,s =

Na
∑

j=1

s̃+~rj ,s ,

Ŝs =

Na
∑

j=1

ŝ−~rj ,s =

Na
∑

j=1

s̃−~rj ,s . (A7)

Those of the unrotated local operators appearing here
associated with the η-spin algebra read,

ŝz~rj,η = −1

2
[1− n̂~rj,↑ − n̂~rj,↓] ,

ŝ+~rj,η = ei~π·~rj c†~rj ,↓ c
†
~rj ,↑

,

ŝ−~rj,η = e−i~π·~rj c~rj ,↑ c~rj,↓ , j = 1, 2, ..., Na , (A8)

whereas those associated with the spin algebra are given
in Eq. (4). On the other hand, the rotated local opera-
tors appearing in the alternative expressions of Eq. (A7)
are provided in Eq. (54).
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The six local operators given in Eqs. (4) and (A8)
together with the local operator,

ŝ~rj ,c =
∑

σ=↑,↓

n̂~rj ,σ (1− n̂~rj ,−σ) , j = 1, 2, ..., Na , (A9)

are the seven generators of the U 6= 0 local gauge
SU(2)× SU(2)× U(1) symmetry of the Hubbard model
on a bipartite lattice with vanishing transfer integral,
t = 019.

Since the electron - rotated-electron transformation
generated by the operator V̂ is unitary, the rotated-

electron operators c̃†~rj ,σ and c̃~rj ,σ of Eq. (43) have the

same anticommutation relations as the corresponding

electron operators c†~rj,σ and c~rj ,σ, respectively. Similarly,

the local c fermion operators of Eq. (50) and three lo-
cal spinon operators and three local η-spinon operators
of Eq. (54) have the same algebra as the corresponding
unrotated spin-less and η-spin-less fermion operators of
Eq. (49) and and three local spin operators of Eq. (4)
and three local η-spin operators of Eq. (A8), respectively.
The former operators play a major role in the finite-U/t
physics of the model. The latter operators are a limit-
ing case of the former operators reached for U/t ≫ 1.
Hence without loss in generality in the following we pro-
vide the algebra of the local c fermion operators of Eq.
(50) and three ηs quasi-spin operators of Eq. (55). The
SU(2) algebra of the latter three operators fully deter-
mines those of the three local spinon operators and three
local η-spinon operators of Eq. (54).

Straightforward manipulations based on Eqs. (50)-
(55) lead to the following algebra for the c fermion oper-
ators,

{f †
~rj,c

, f~rj′ ,c} = δj,j′ ,

{f †
~rj,c

, f †
~rj′ ,c

} = {f~rj,c , f~rj′ ,c} = 0 , (A10)

and the c fermion operators and the local ηs quasi-spin
operators,

[

f †
~rj ,c

, q̃l~rj′

]

=
[

f~rj,c , q̃
l
~rj′

]

= 0 ,
[

f †
~rj ,c

, s̃l~rj′ ,α

]

=
[

f~rj,c , s̃
l
~rj′ ,α

]

= 0 ,

l = ±, x3 , α = η, s . (A11)

The SU(2) algebra obeyed by the local ηs quasi-spin
operators q̃l~rj where l = x3,±, such that q̃±~rj = q̃x~rj ± i q̃y~rj ,

and corresponding η-spinon (α = η) and spinon (α = s)
operators s̃l~rj,α is,

[

q̃+~rj , q̃
−
~rj′

]

= δj,j′ 2 q̃
x3

~rj
;
[

q̃±~rj , q̃
x3

~rj′

]

= ∓δj,j′ q̃
±
~rj
, (A12)

and
[

s̃+~rj ,α, s̃
−
~rj′ ,α

′

]

= δj,j′δα,α′ 2 s̃x3

~rj,α
,

[

s̃±~rj ,α, s̃
x3

~rj′ ,α
′

]

= ∓δj,j′δα,α′ s̃±~rj,α ,

α, α′ = η, s , (A13)

respectively. Moreover, one has obviously that
[q̃l~rj , q̃

l
~rj′

] = 0 and [s̃l~rj,α, s̃
l
~rj′ ,α

′ ] = 0 where l = 0,± and

α, α′ = η, s. While the c fermion and ηs quasi-spin op-
erator algebras refer to the whole Hilbert space, those
of the η-spinon and spinon operators correspond to well-
defined subspaces spanned by states whose value of the
number 2Sc of rotated-electron singly occupied sites is
fixed. This assures that the value of the corresponding
η-spinon number Mη = [Na − 2Sc] and spinon number
Ms = 2Sc is fixed as well.

The relations given in Eqs. (A10)-(A13) confirm that
when acting onto the model’s Hilbert space the c fermions
associated with the global c hidden U(1) symmetry are
η-spinless and spinless fermionic objects. They are con-
sistent as well with the spinons and η-spinons being spin-
1/2 and η-spin-1/2 objects, respectively, whose local op-
erators obey the usual corresponding SU(2) algebras.

Appendix B: Spin-wave spectrum in the high

symmetry directions

In this Appendix we study the spin-wave spectrum of
Eq. (75) in the BZ high symmetry directions. These di-
rections correspond to those measured by high-resolution
inelastic neutron scattering in LCO, as plotted for in-
stance in Fig. 3 (A) of Ref.4. (Our theoretical spin-wave
spectrum curves are plotted along with the more recent
LCO high-energy neutron scattering points of Ref.2 in
Fig. 2.)
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Figure 5: The theoretical spin spectra, Eqs. (B1)-(B9), (solid
lines) plotted in the second BZ for U/t ≈ 6.1 and t ≈ 0.295
eV and thus µ0 = 565.6 meV and W 0

s1 = 49.6 meV and the
experimental data of Ref.4 (circles) in meV. The momentum
is given in units of 2π. From Ref.7.

We denote such symmetry directions by MO, ΓO,
XM , ΓX , and XO. They connect the momentum-space
points M = [π, π], O = [π/2, π/2], Γ = [0, 0], and
X = [π, 0] of the general spin-wave spectrum provided
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in Eq. (75). The use of that equation reveals that the
spin-wave excitation spectrum is in such symmetry di-
rections given by,

ωΓO(~k) =
µ0

2
sin(ki) ,

~k = [π,−π]− ~q − ~q ′

= [ki, ki] , ki = kx = ky ∈ (0, π/2) , (B1)

for s1 fermion hole momenta,

~q = [π/2− ki,−π/2− ki] , ki ∈ (0, π/2) ,

~q ′ = [π/2,−π/2] , (B2)

ωMO(~k) =
µ0

2
sin(ki) ,

~k = [π, π]− ~q − ~q ′

= [ki, ki] , ki = kx = ky ∈ (π/2, π) , (B3)

for s1 fermion hole momenta,

~q = [π/2− ki, 3π/2− ki] , ki ∈ (π/2, π) ,

~q ′ = [π/2,−π/2] , (B4)

ωΓX(~k) =

[

µ0

2
+W 0

s1

]

sin(kx/2) ,

~k = [π,−π]− ~q − ~q ′

= [kx, 0] , kx ∈ (0, π) , (B5)

for s1 fermion hole momenta,

~q = [π/2− kx/2,−π/2− kx/2] , kx ∈ (0, π) ,

~q ′ = [π/2− kx/2,−π/2 + kx/2] , kx ∈ (0, π) ,(B6)

ωXM (~k) =

[

µ0

2
+W 0

s1

]

cos(ky/2) ,

~k = [π, π]− ~q − ~q ′

= [π, ky] , ky ∈ (0, π) , (B7)

for s1 fermion hole momenta,

~q = [−ky/2, π − ky/2] , ky ∈ (0, π) ,

~q ′ = [ky/2,−ky/2] , ky ∈ (0, π) , (B8)

and,

ωXO(~k) =
µ0

2
−W 0

s1 cos(kx)

=
µ0

2
+W 0

s1 cos(ky) ,

~k = [π,−π]− ~q − ~q ′

= [π, π] − ~q ′′ − ~q ′′′

= [kx, π − kx] , kx ∈ (π/2, π)

= [π − ky, ky] , ky ∈ (0, π/2) , (B9)
for s1 fermion hole momenta,

~q = [0,−π] ,

~q ′ = [π − kx,−π + kx] , kx ∈ (π/2, π) , (B10)

or,

~q ′′ = [0, π] ,

~q ′′′ = [ky,−ky] , ky ∈ (0, π/2) , (B11)

respectively.

The theoretical spin excitation spectra, Eqs. (B1)-
(B9), are plotted in Fig. 5 (solid line) for U/t ≈ 6.1 and
t ≈ 0.295 eV together with the experimental results of
Ref.4 (circles) for T = 10 K. Such U/t and t magnitudes
correspond to µ0 = 565.6 meV and W 0

s1 = 49.6 meV in
the above energy spectra. The spin-spectrum expressions
provided in Eqs. (B1)-(B9) refer to the first BZ. In Fig.
5 they are plotted in the second BZ, alike in Fig. 3 (A)
of Ref.4. An excellent quantitative agreement is reached
for the above magnitudes of the involved energy scales.
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