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Magnetic systems are an exciting realm of study that is being explored on smaller and smaller scales. One
extremely interesting magnetic state that has gained momentum in recent years is the skyrmionic state. It is
characterized by a vortex where the edge magnetic moments point opposite to the core. Although skyrmions
have many possible realizations, in practice, creating them in a lab is a difficult task to accomplish. In this work,
new methods for skyrmion generation and customization are suggested. Skyrmionic behavior was numerically
observed in minimally customized simulations of spheres, hemisphere, ellipsoids, and hemi-ellipsoids, for typ-
ical Cobalt parameters, in a range from approximately 40 nm to 120 nm in diameter simply by applying a
field.

I. INTRODUCTION

A skyrmion, theorized first by Skyrme in 19621, is a state
with a vectorial order parameter which is aligned at the sys-
tem boundary at an opposite direction to what the order pa-
rameter assumes at the origin. Skyrmions may appear in di-
verse arenas, such as elementary particles1–5, liquid crystals6,
Bose-Einstein condensates7–9, thin magnetic films10, quantum
Hall systems11–14, and potentially vortex lattices in type II
superconductors15,16. Being able to experimentally observe
or generate skyrmions is a current research thrust1–19.

In the arena of magnetic systems that we will focus on in
this work, earlier works examined large scale skyrmions20 in-
cluding large scale textures in patterned vortices as in, e.g.,
the last figure of Kisielewski et al.21(where interesting tex-
tures are seen in the figure yet not noted to be skyrmionic).
These earlier works did not focus on the ubiqutuous role of
demagnetization energy in creating skyrmions nor examined
the topological character of such created states. The effect
that we advance in this work constitutes a general way of gen-
erating skyrmions. Skyrmions may be simply generated by
merely applying a field. This way of creating skyrmions is far
simpler than considerations presented in other recent works.

In this work we demonstrate via micromagnetic simulations
that achieving a skyrmion is as simple as creating a nanopar-
ticle of many possible geometries, which is large enough to
support a single vortex but small enough to prevent multiple
vortices. The demagnetization energy allows for the forma-
tion of a vortex at zero-field. We find that as the field increases
such that it lies in a direction opposite to the core, the mag-
netization at the edges may realign itself parallel to the field
direction more readily than the magnetization next to the core.
Immediately prior to annihilation of the vortex (i.e., the flip-
ping of the magnetization at the system core to become paral-
lel to the applied field direction), the skyrmionic state is most
notable. We observed this, relatively ubiquitous, effect in sys-
tems with disparate geometries- spheres, hemispheres, ellip-
soids, and hemi-ellipsoids. It may be possible to generalize
this process so as to experimentally synthesize a skyrmion lat-
tice by simply creating an array of nanoparticles with tunable
size and spacing, such as by self-organzation22,23. Prelimi-

nary simulations of a two-by-two grid of Cobalt hemispheres
of radius 20 nm with varying inter-hemisphere separation in-
dicate that beyond a threshold distance of twice the radius, an
array of skyrmions is formed. As the center to center separa-
tion is steadily increased, the skyrmionic state becomes more
lucid. For small separations, interactions partially thwart the
creation of the individual skyrmions.

As is well known, we can quantify a skyrmionic state by
calculating the Pontryagin index (also known as a winding
number) that is given by24

Q =
1

8π

∫
d2xεijM̂ · (∂iM̂ × ∂jM̂). (1)

In this expression, εij is the two dimensional anti-
symmetric tensor and M̂ is the normalized magnetization.
For a single skyrmion, this winding number (or topological
charge) is equal to unity. Skyrmions are characterized by the
non-trivial homotopy class π2(S2). This homotopy class is
characterized by an integer that, for this case, is the Pontrya-
gin index. States with different integer skyrmion number (the
Pontryagin index) cannot be continuously deformed into one
another.

In the current context, the skyrmionic state resides on a two
dimensional plane. On each spatial point of the plane, there is
a three dimensional order parameter which, in our case, is the
magnetization ~M . Topologically, a skyrmion is a magnetic
state such that when it is mapped onto a sphere (via stereo-
graphic projection) resembles a monopole or hairy ball. This
means that on mapping from a flat space to the surface of a
sphere, the individual magnetic moments will always point
perpendicular to the surface of the sphere, much like a mag-
netic monopole.

The above topological classification is valid for an “ideal”
skyrmion on an infinite two-dimensional plane or disk with
the condition that the local moment ~M(~r) at spatial infinity
(irrespective of the location ~r on the infinite disk) all orient in
the same direction: limr→∞ M̂(~r) = M̂0. In such a case M̂0

corresponds to the magnetization at the “point at infinity”. On
applying a stereographic projection of the infinite plane onto
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a unit sphere, M̂0 maps onto the magnetization at the north
pole of the unit sphere while the oppositely oriented M̂ at the
origin corresponds to the magnetization at the south pole. In
such a case, the winding number is identically equal (in abso-
lute value) to unity. In many physically pertinent geometries,
including the systems simulated in this work, there are finite
size limits which only allow the magnetization ~M to exhibit
the trend of approaching a uniform value ~M0 as one moves
away from the center of the system. In this case, the integral
in Eq. 1 is not an integer. However, it is clear that, in the
limit of infinite planar size, these states would become ideal
skyrmions and the winding number Q would approach an in-
teger value.

The remainder of this article is organized as follows. In
Section II, we provide necessary background. We briefly de-
scribe the simulations employed in this work and discuss ener-
getic considerations. Section III reports on our central result-
the numerical observation of skyrmions. We discuss a higher
dimensional generalization and the possibility of generating
skyrmion lattices. We conclude in section IV with a summary
of our results.

II. THEORY

A. Simulation Theory

In this work of simulating magnetic states of nanoparticles,
the Object Oriented Micromagnetic Framework (OOMMF)
1.2a distribution as provided from NIST was utilized25. The
OOMMF code numerically solves the Landau-Lifshitz Ordi-
nary Differential Equation given by,

d ~M

dt
= −|γ̄| ~M × ~Heff −

|γ̄|α̃
Ms

~M ×
(
~M × ~Heff

)
(2)

where ~M is the magnetization, γ̄ is the Landau-Lifshitz gy-
romagnetic ratio, Ms is the saturation magnetization, α̃ is the
damping coefficient, and Heff is the effective field given by
derivatives of the Gibbs free energy. The Gibbs free energy,
in this case, is given by26,

G =

∫
(
1

2
C

[(
~∇α
)2

+
(
~∇β
)2

+
(
~∇γ
)2]

+ wa

−1

2
~M · ~H ′ − ~M · ~H0)dV (3)

where α, β, and γ are the directional cosines, C is propor-
tional to the exchange stiffness constant and depends on the
crystal structure, wa is the crystalline anisotropy term, ~H ′ is
the demagnetization field, and ~H0 is the external magnetic
field. The crystalline anisotropy term can be expressed in
terms of anisotropy constants, K1 and K2, and directional
cosines as,

wa = K1

(
α2β2 + β2γ2 + γ2α2

)
+K2α

2β2γ2. (4)

parameter value used in this work
Exchange Stiffness Constant (A) 2.5 × 10−11 J

m

Saturation Magnetization (Ms) 1.4 × 106 A
m

Damping Constant (α̃) 0.5

Landau-Lifshitz Gyromagnetic Ratio (γ̄) 2.21 × 105 m
A·s

Stopping Torque ( dm
dt

) 0.19 deg
ns

TABLE I. Table of parameters used in the simulations of particles
in this work. The exchange stiffness constant, saturation magnetiza-
tion, and crystalline anisotropy constant are material specific and are
chosen for Cobalt. The damping constant, Landau-Lifshitz-Giblert
gyromagnetic ratio, and stopping torque are material independent pa-
rameters.

In the simulations, a metastable state was determined to
have been reached when the maximum torque experienced by
any one magnetic moment, measured in degrees

ns , dropped be-
low 0.2. Once this level of torque was reached, the magnetic
state data were saved to a file along with the other proper-
ties of the system, including but not limited to, the energies
associated with each contribution, overall magnetization, and
number of iterations. The magnetic field was then changed
to the next value and the iterations continued until saturation
of the magnetization was obtained. The magnetic field steps
were chosen such that half the steps (typically, a few hundred)
were during the increasing field portion and the other half in
the decreasing field portion. The data stored in the file were
used later to generate the hysteresis plots, track the energy
changes associated with the field variations, and the spatial
orientations of the magnetic moments. Unless specified oth-
erwise, the parameters chosen in the simulations correspond
to those for Cobalt, as shown in Table I.

B. Energy Considerations

In our simulations, we considered field, demagnetization,
and exchange energies. For simplicity, we neglected crys-
talline anisotropy effects. The field tries to align the local
magnetic moments parallel to it while exchange effects fa-
vor an alignment of the magnetic moments with their near-
est neighbors. The (universally geometry borne) demagneti-
zation energy directly relates to dipole-dipole interactions26.
Demagnetization energy is often the dominant term for long
range behaviors while exchange effects tend to dominate at
short spatial scales.

As is well known, the competition between the long range
and the short range energy contributions leads to the creation
of domain walls. The demagnetization favors oppositely ori-
ented moments at the expense of exchange effects that favor
slow variations amongst neighbors. Ultimately, this tradeoff
gives rise to domain walls in micromagnetic systems.

The potential energy from demagnetization of a system is
given by

EM = −1

2

∑
i

~mi · ~h′i, (5)
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where ~h′i is the effective field at position i that originates from
all other dipoles. This field can be written as

~h′i = ~H ′ +
4

3
π ~M + ~h′′i , (6)

where ~H ′ is the megascopic field from the poles due to ~M
outside of a physically small sphere around site i. The second
term subtracts the effective field inside an arbitrary small re-
gion (or sphere) centered about point i, and ~h′′i is the field at
site i created by dipoles inside this region. In general, ~h′′i de-
pends on the crystal lattice structure. In the continuum limit,
the sum becomes an integral of the form,

EM = −1

2

∫
~M · ( ~H ′ + 4

3
π ~M + Λ · ~M)dV. (7)

The tensor Λ in the third term depends only on the crystal
structure and local magnetization and can grouped with crys-
talline anisotropy. This tensor also vanishes for cubic crystals
identically. The second term in this expression is a constant
proportional to M2

s and can be ignored leaving,

EM = −1

2

∫
~M · ~H ′dV . (8)

The demagnetization field, ~H ′, can equivalently be derived
from Maxwell’s equations. It can be expressed as the negative
gradient of a potential, U that satisfies the equations,

∇2Uin = γB ~∇ · ~M (9)
∇2Uout = 0, (10)

with the surface boundary conditions,

Uin = Uout (11)
∂Uin
∂n
− ∂Uout

∂n
= γB ~M · ~n. (12)

where the constant γB is, in our units, 4π.
Lastly, the potential needs to be regular at infinity, such that

|rU | and |r2U | are bounded as r → ∞. Our simulations
directly capture the demagnetization field effects.

From the standpoint of energy, for a skyrmion to be pos-
sible, the dimensions of the ellipsoid must be larger than the
critical dimensions at which vortices can nucleate in a given
system. For example, for the hemispherical geometry, with
the typical values of Table I, the critical radius was found to
be 19 nm. For larger radii, vortices are the preferred state be-
fore reaching zero field. The vortex will nucleate such that
the core is parallel to the field and the remainder of the vor-
tex lies in the plane perpendicular to the field. Once the field
begins to oppose the direction of the moments at the core, the
energy cost of eliminating the core is significantly higher than
allowing the outer magnetic moments to align more with the

field. When the exchange energy cost of the skyrmionic state
becomes greater than the demagnetization energy for a uni-
form magnetization, the core flips, annihilating the skyrmion,
and the magnetization saturates. Immediately, prior to this,
though, a skyrmionic state can be achieved.

Ezawa20 raised the specter of a skyrmionic state in thin
films via the computation of the energy of such assumed varia-
tional states within a field theoretic framework of a non-linear
sigma model. Dipole-dipole interactions may stabilize such a
state below a critical field. Our exact numerical calculations
for the evolution of the magnetic states demonstrate that not
only are skyrmionic states viable structures, but are actually
the precise lowest energy state for slices of hemispheres and
other general structures.

III. RESULTS AND DISCUSSION

A. Observation of a Skyrmion

As our numerical simulations vividly illustrate, just prior to
the annihilation of the vortex, the magnetic moments at the
edge of the system start to orient themselves in a direction
opposite to that in the core. On increasing the radius of the
simulated hemispheres and spheres, the configurations next to
the basal plane better conformed to the full skyrmion topology
(i.e., that on an infinite plane).t should be noted here, that as
the radius of a hemisphere increases, the crossover to a double
vortex state will eventually occur, but if one vortex is main-
tained, in the limit of large radii, a full skyrmion would be
expected. This may be possible in materials with large ex-
change constant and small saturation magnetization. In what
follows, we will employ the typical values appearing in Table
I. The skyrmion state for the bottom layer (basal plane) of a
hemisphere of radius 24 nm is shown in Figure 1.

FIG. 1. Vector plot of the skyrmion state for the bottom slice of a
hemisphere of radius 24 nm. Not all local magnetic moments are
shown for the sake of clarity.

A similar configuration was observed in simulation runs for
nanospheres. For a sphere, symmetry does not favor any par-
ticular direction, but that symmetry is broken once a field is
applied. Skyrmions were observed in runs of spheres large
enough to support a vortex which corresponds to a radius of
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≈ 15nm. As the radius of the sphere increases, the edge mag-
netic moments and the core magnetic moments become more
antiparallel. A skyrmion in a sphere of radius 59nm is shown
in Figure 2.

FIG. 2. Vector plot of the skyrmion state in a sphere of radius 59nm.
The slice is along the equator of the sphere. Only a subset of local
magnetic moments is shown for clarity.

Once skyrmions were observed in these systems, it begged
the question, “Do these occur in ellipsoids and hemi-
ellipsoids?” Upon examining this, indeed skyrmions can be
observed in oblate ellipsoids and hemi-ellipsoids as shown in
Figures 3 and 4.

FIG. 3. Vector plot of the skyrmion state in an ellipsoid with major
axis of 20nm and minor axis of 15nm. The slice is along the equator
of the ellipsoid. Only a subset of local magnetic moments is shown
for clarity.

To verify that these are structures approach those of
skyrmions and to quantitively monitor their deviations from
an ideal skyrmionic state (for which the Pontryfin index is
unity),we computed the Pontryagin index at different cross
sections of the hemisphere. These cross sections were those
of the hemisphere with planes parallel to the basal plane(i.e.,
that at the base of the hemisphere). For a hemisphere with ra-
dius 30 nm, we calculated the skyrmion number Q for thirty
individual parallel layers vertically separated by 1nm. We nu-
merically evaluated the integral of Eq. 1 for all of these layers
and examined how it changes as the field increases from 0 to
0.6 T . These data are shown in Figure 5.

FIG. 4. Vector plot of the skyrmion state in a hemi-ellipsoid with
major axis of 20nm and minor axis of 15 nm. The slice is along the
base of the hemi-ellipsoid. Only a subset of local magnetic moments
is shown for clarity.

FIG. 5. Plot of the Pontryagin index versus the z-coordinate of the
slice taken from the hemisphere of radius 30 nm. These are shown
for increasing field from zero field (dark blue dot-dash line), 0.2 T
(green dotted line), 0.4T (red dashed line), and 0.6T (teal solid line).

Visualizing this in the geometry of the hemisphere specifi-
cally, one can look at how the Pontryagin index varies along
various planes of a hemisphere, starting from the equator and
moving to the pole. It can be clearly seen that the skyrmionic
behavior exists for most of the height of the hemisphere and
only the cap deviates from the rest of the system. The size
of this cap depends on the given field strength as can be seen
in the case of 0 field (Figure 6(a)) and with a field of 0.6 T
(Figure 6(b)). At higher fields, prior to the annihilation of the
vortex, the Pontryagin index approaches an integer value, as
expected for an ideal skyrmionic state.

Performing similar analysis on the hemi-ellipsoids and vi-
sualizing the Pontryagin index and its variance with height, it
can be seen that the same behavior exists in a less extreme way
than the hemispheres. This behavior can be seen in Figure 7
for hemi-ellipsoids of fixed 30nm major axis and varying mi-
nor axis.

In examining the hysteresis behavior of the hemi-ellipsoids,
one can see a trend as the z-dimension goes from the hemi-
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(a) (b)

FIG. 6. Three dimensional plots of the Pontryagin index for a hemisphere of radius 30 nm at (a) zero field and (b) 0.6 T

sphere radius (20 nm) to the minimum simulated size of
5 nm. This trend shows a movement from extensive vortex
and skyrmionic behavior in the more hemispheric geometries
and less vortex and skyrmionic behavior in the more ellip-
soidal geometries.

Although it will not be considered in this work, crystalline
anisotropy could influence the formation of skyrmions in a
number of ways. In the case of a single crystal, the vortex state
would be more difficult to nucleate and thus the skyrmionic
state is less energetically favorable. When many crystalline
grains are present, the results discussed here are valid as the
large number or randomly oriented crystals will, on average,
not favor any direction, and thus will not favor any one direc-
tion.

B. Generalization to a Hedgehog

These results lead to the question of whether this can be
generalized to more than two dimensions. The natural gen-
eralization from the two-dimensional skyrmion to a three-
dimensional magnetic state would be the hedgehog. The
hedgehog resides in three spatial dimensions coupled with a
three dimensional order parameter. The canonical example
of a hedgehog is ~M = Msr̂ where the magnetization always
points outwards. A skyrmion is related to a hedgehog via a
stereographic projection from the sphere onto a plane where
the south pole of the hedgehog projects to the core of the
skyrmion on the plane and the north pole of the hedgehog
projects to the points at infinity on the plane. Calculating the
demagnetizing field for this state in a sphere gives rise to a
potential and field equal to

U(r) = γBMs(r −R), (13)
~H = −γBMsr̂, (14)

where r is the radial coordinate and R is the radius of the
hedgehog.

Plugging this into Equation 8, one finds the energy of the
hedgehog to be 2πM2

s (4π/3)R3. Comparing this to the en-
ergy of the uniformly magnetized state, (1/2)(4π/3)2M2

sR
3,

it can easily be seen that the hedgehog has three times the en-
ergy of the uniform state. This, combined with the fact that
the exchange energy and the field energy will favor the uni-
form state, the hedgehog state will not be possible in a sphere.

If one were to continuously deform the hedgehog by ro-
tating the local magnetic moments by π/2 such that ~M =

Msf(z)φ̂ where f(z) is a function that goes to 0 as z → 0
such that the exchange energy does not diverge, one would
find the demagnetization energy of that state to be identically
0. The field energy in this system is also 0 for a field that
is applied along the z-axis. The exchange energy is given by
(4π/3)RC where C is the exchange stiffness constant. The
total energy of this state is equal to the exchange energy, and
comparing this to the uniform state, a hedgehog of this form
is favorable for,

R ≥
√

C
2πµ0M2

3 −MH0

. (15)

For C = 2.5 × 10−11J/m and Ms = 1.4 × 106A/m as it
is for Cobalt, at 0 field, this radius works out to be ≈ 3.5µm.

C. Skyrmion Array

It is illuminating to consider the possibility of an array of
skyrmions. As briefly discussed below, we find that effective
particle interactions may thwart the creation of a skyrmion lat-
tice when these particles are not far separated. However, for
sufficiently large center to center separations, a Skryme lat-
tice may be achieved. In preliminary simulations of arrays of
nanoparticle arrays, simulations of a two-by-two grid of hemi-
spheres of radius 20 nm with a variable separation show that
a center to center separation of four times the radius is close
enough that the nanoparticles still interact magnetically and
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Plots of the Pontryagin index and how it varies with height inside hemi-ellipsoids of 30 nm radius major axis as the minor axis varies
from 15 nm (a) to 10 nm (c) to 5 nm (e). This is shown for (a) field equal to 0.2 T pointing in the negative z-direction (perpendicular to the
face of the hemi-ellipsoids). As will be noted, the existence of skyrmionic behavior is not prevalent in the more flattened hemiellipsoinds and
vanishes at this field between minor axis 15 nm and 10 nm. The associated partial hysteresis loops for each of these hemi-ellipsoid runs are
shown in Figs. (b), (d), and (f), respectively.

prevent the formation of an array of skyrmions. As expected,
further separation should approach the the single particle re-
sult of skyrmions, as we briefly discuss next.

The transition from the array of particles which support in-
dividual vortices to the array of particles that are clearly in-
teracting with each other can be seen in Figure 9. In this fig-
ure, the annihilation of the vortices can be seen as the par-

ticles realign their magnetization to form a state where the
local magnetization orients in the counterclockwise direction
from particle to particle, yet within each particle, when mov-
ing in the counterclockwise direction, the local magnetization
changes from oriented in the negative z-direction to the posi-
tive z-direction.

In repeating these simulations for a 3x3 array of hemispher-
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FIG. 8. Plot of critical field at which skyrmions are no longer ener-
getically favorable versus the center-to-center separation.

ical nanoparticles as shown in Fig 10, the same behavior was
observed. This array was similar to the 2x2 array in that it had
nanoparticles with diameters of 40 nm and center to center
separation of 80nm. The annihilation of the vortices occurred
at a slightly larger field (0.08T rather than 0.1T).

The stability of the skyrmion state depends on the separa-
tion distance between the nanoparticles. Existence of these
states has been studied at a range of center-to-center separa-
tions spanning 50nm to 200nm, and the critical field at which
the skyrmions are no longer energetically favorable is plotted

versus the center-to-center separation in Fig 8.

IV. CONCLUSION

We conclude with a brief synopsis of our findings. We
carried a systematic numerical study of the magnetization of
small nanoparticles in the presence of an external magnetic
field. These systems were simulated for different sizes and
geometry (sphere, hemisphere, ellipsoids). Our analysis ig-
nored anisotropy (crystalline, strain, etc.) effects. We find
that, as has been widely reported in the literature27,28, beyond
a critical diameter, the particles enter into a single vortex state
under zero external field; multiple vortices are possible for
much larger particles. Our key new result concerns the cre-
ation of skyrmions in the single vortex state. As the field is
increased, vortex annihilation is accompanied by the forma-
tion of a skyrmionic state wherein the magnetization of the
vortex core points to a direction opposite to that at the edge
of the nanoparticle. Our result illustrates how geometry plays
a pivotal role. Spheres and hemispheres more readily achieve
skyrmionic states than higher eccentricity ellipsoids. Our pre-
liminary results suggested that for center to center separations
larger than twice the particle diameters, an array of skyrmions
may be realized. More detailed studies of skyrmion lattices
for such particle arrays are planned for the future.

Acknowledgements. Work at Washington University was
partially supported by NSF grants DMR-1106293 and DMR-
0856707, and by the Center for Materials Innovation (CMI) of
Washington University. Work at the university of Tennessee
was partially supported by NSF DMR-0856707.

∗ E-mail at: zohar@wuphys.wustl.edu
1 T. Skyrme, Nuclear Physics 31, 556 (1962).
2 M. Atiyah and N. Manton, Physics Letters B 222, 438 (1989).
3 C. J. Houghton, N. S. Manton, and P. M. Sutcliffe, Nuclear

Physics B 510, 507 (1998).
4 R. A. Battye and P. M. Sutcliffe, Phys. Rev. Lett. 79, 363 (1997).
5 S. M. H. Wong, (2002), arXiv:hep-ph/0202250.
6 D. C. Wright and N. D. Mermin, Rev. Mod. Phys. 61, 385 (1989).
7 U. A. Khawaja and H. Stoof, Nature 411, 918 (2001).
8 K.-P. Marzlin, W. Zhang, and B. C. Sanders, Phys. Rev. A 62,

013602 (2000).
9 H. Zhai, W. Q. Chen, Z. Xu, and L. Chang, Phys. Rev. A 68,

043602 (2003).
10 N. S. Kiselev, A. N. Bogdanov, R. Schafer, and U. K. Rosler,

Journal of Physics D: Applied Physics 44, 392001 (2011).
11 S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi,

Phys. Rev. B 47, 16419 (1993).
12 L. Brey, H. A. Fertig, R. Côté, and A. H. MacDonald, Phys. Rev.
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(a)

(b)

FIG. 9. Vector plot of a 2x2 array of hemispheres with radius 20 nm and center to center separation 80 nm at fields of 0.12 T pointing in
the negative z-direction (a) and 0.1 T pointing in the negative z-direction (b). Colorscale corresponds to z-component of the local magnetic
moment in units of A/m.
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(a)

(b)

FIG. 10. Vector plot of a 3x3 array of hemispheres with radius 20 nm and center to center separation 80 nm at fields of 0.1 T pointing in
the negative z-direction (a) and 0.08 T pointing in the negative z-direction (b). Colorscale corresponds to z-component of the local magnetic
moment in units of A/m.


