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We use projector Quantum Monte Carlo methods to study the doublet ground states of two-
dimensional S = 1/2 antiferromagnets on L × L square lattices with L odd. We compute the
ground state spin texture Φz(~r) = 〈Sz(~r)〉↑ in the ground state |G〉↑ with Sz

tot = 1/2, and relate
nz, the thermodynamic limit of the staggered component of Φz(~r), to m, the thermodynamic limit
of the magnitude of the staggered magnetization vector in the singlet ground state of the same
system with L even. If the direction of the staggered magnetization in |G〉↑ were fully pinned along
the ẑ axis in the thermodynamic limit, then we would expect nz/m = 1. By studying several
different deformations of the square lattice Heisenberg antiferromagnet, we find instead that nz/m
is a universal function of m, independent of the microscopic details of the Hamiltonian, and well
approximated by nz/m ≈ 0.266 + 0.288m − 0.306m2 for S = 1/2 antiferromagnets. We define nz

and m analogously for spin-S antiferromagnets, and explore this universal relationship using spin-
wave theory, a simple mean-field theory written in terms of the total spin of each sublattice, and a
rotor model for the dynamics of the staggered magnetization vector. We find that spin-wave theory
predicts nz/m ≈ (0.987 − 1.003/S) + 0.0.13m/S to leading order in 1/S, while the sublattice-spin
mean-field theory and the rotor model both give nz/m = S/(S+1) for spin-S antiferromagnets. We
argue that this latter relationship becomes asymptotically exact in the limit of infinitely long-range
unfrustrated exchange interactions.

PACS numbers: 75.10.Jm 05.30.Jp 71.27.+a

I. INTRODUCTION AND OVERVIEW

Computational studies of strongly correlated systems
necessarily involve an extrapolation to the thermody-
namic limit from a sequence of finite sizes at which calcu-
lations are feasible. A detailed understanding1 of these
finite-size corrections is essential for obtaining accurate
estimates of various quantities in the thermodynamic
limit. For instance, the best estimates of m, the mag-
nitude of the ground state Néel order parameter in the
thermodynamic limit of the two-dimensional S = 1/2
square lattice Heisenberg antiferromagnet, are obtained
by extrapolating to the thermodynamic limit from a se-
quence of periodic Lx × Ly systems with even length Lx

(Ly) in the x (y) direction.2,3 Other studies suggest4 that
it is sometimes advantageous to use “cylindrical” sam-
ples with periodic boundary conditions in one direction
and pinned boundary conditions in the other direction,
whereby spins are held fixed by the use of pinning fields
on one pair of edges—this choice also allows for a very
accurate determination of ground-state parameters such
as m for specific values4 of the aspect ratio Ly/Lx.

All these approaches focus on systems with an even

number of spin-half variables; this choice allows the
ground-state of the finite system to lie in the sin-
glet sector favoured by unfrustrated antiferromagnetic
interactions.5 Although not commonly used, another
choice is certainly possible: Namely, one could in princi-
ple consider antiferromagnets on a L × L square lattice
with an odd number Ntot = L2 of spin-half moments. By
the Lieb-Mattis theorem5, such a system is expected to
have a doublet ground state with total spin Stot = 1/2.
Focusing on the Sz

tot = 1/2 member |G〉↑ of this doublet,

one could examine the ground state spin texture defined
by Φz(~r) ≡ 〈Sz

~r 〉↑ (where 〈. . . 〉↑ refers to expectation val-
ues in |G〉↑), and use the antiferromagnetic component
of this spin texture, defined as

nz = lim
Ntot→∞

1

Ntot

∑

~r

η~r〈Sz
~r 〉↑, (1)

to obtain information about the antiferromagnetic order-
ing in the system (here η~r = +1 on the A sublattice and
−1 on the B sublattice).
Clearly, nz provides a measure of antiferromagnetic

order that is quite distinct from the conventional order
parameter m, which can be defined via

m2 = lim
Ntot→∞

1

Ntot

∑

~r~r
′

η~rη~r′ 〈~S~r · ~S~r′ 〉0, (2)

where 〈. . . 〉0 denotes averages in the singlet ground states
that obtain for Ntot even. The relationship between nz

and m is a fundamental aspect of the spontaneously bro-
ken SU(2) symmetry of the Néel state. However, not
much is known about it beyond the fact that nz is signif-
icantly smaller than m for the nearest neighbour Heisen-
berg antiferromagnet on ths square lattice.6

Here, we provide a more detailed characterization of
this relationship by studing three deformations of the
nearest neighbour S = 1/2 square lattice Heisenberg
antiferromagnet using projector Quantum Monte Carlo
(QMC) methods. Our basic result is that the QMC data
for nz/m for these three models, when plotted against
m, falls on a single curve which defines a universal func-
tion that is insensitive to the microscopic details of the
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model Hamiltonian. We find that this universal func-
tion is well-approximated by a polynomial interpolation
formula

nz/m ≈ 0.266 + 0.288m− 0.306m2 . (3)

We also find that Φ̃z(~q), the Fourier transform of the
full spin texture Φz(~r), is peaked around the antiferro-
magnetic wave-vector Q = (π, π), with the shape of the
peak at Q again being independent of microscopic details
of the Hamiltonian.
Since the spin-length S at each site determines (via the

Lieb-Mattis theorem) the representation of SU(2) carried
by the ground state multiplet of any suitably deformed
spin-S Heisenberg antiferromagnet on the square lattice,
these universal relationships are expected to depend sen-
sitively on the value of S.
More precisely, although the ground state for L even is

always a singlet for any S, the ground state for L odd is
in the total spin S sector for any (unfrustrated or weakly
frustrated) deformation of the spin-S Heisenberg antifer-
romagnet that continues to respect the Lieb-Mattis the-
orem. In this more general case, we may define Φz(~r) as
the expectation value of Sz(~r) in the Stot = S, Sz

tot = S
ground state of an L × L system with L odd, and nz as
the thermodynamic limit of the antiferromagnetic part
of Φz(~r).
In this more general setting, our basic prediction is

that nz/m is a universal function of m that is insensitive
to the microscopic details of the model Hamiltonian, but
depends sensitively on S. In addition, we expect Φ̃z(~q)
to have a universal peak around the antiferromagnetic
vector Q = (π, π), with the shape of the peak depending
sensitively on S.
By studying two quite different deformations of the

spin-S square lattice Heisenberg antiferromagnet using
spin-wave theory, we show that this universality of the
peak at Q is captured by spin-wave theory to leading
order in 1/S. In addition, spin-wave theory yields the
following prediction for the universal function nz/m:

nz/m = (1 − α− β/S) + (α/S)m+O(S−2), (4)

with α ≈ 0.013 and β ≈ 1.003. Thus, although lead-
ing order spin-wave theory captures qualitative features
of the physics correctly, it is not a quantitatively good
approximation to the S = 1/2 case.
Therefore, we explore two other ways of thinking about

the universal function defined by nz/m for general S.
One of them is a mean field theory formulated in terms
of the total spin of each sublattice, while the other ap-
proach is in terms of a quantum rotor Hamiltonian for n̂,
the direction of the Néel vector of a system with an odd
number of sites. Both these give

nz/m =
S

S + 1
(5)

for spin-S antiferromagnets, which, in the S = 1/2 case,
is close to the observed relationship, but not exactly
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FIG. 1. An illustration of the interactions present in the JJ ′

(left panel) and JJ2 (right panel) model Hamiltonians. In this
illustration, black bonds denote exchange interaction strength
of J , while a red bond represents exchange strength of J ′ (J2)
in the left (right) panel

right. We argue that this latter estimate (Eqn. 5) will be-
come asymptotically exact for a spin-S antiferromagnet
in the limit of infinitely long-range unfrustrated exchange
interactions. In this limit, we also expect m → S, since
the antiferromagnetic order is expected to be perfect in
this limit. With this in mind, our polynomial fit to the
S = 1/2 QMC data (Eqn. 3) for nz/m was constrained
to ensure that nz/m → 1/3 when m → 1/2—in other
words, our polynomial fit used only two independent co-
efficients.
The outline of the rest of the paper is as follows: In Sec-

tion II we define various deformations of the square lat-
tice S = 1/2 Heisenberg antiferromagnet. In Section III,
we outline the projector quantum Monte Carlo (QMC)
method used in this study, and then discuss in some de-
tail our QMC results for nz as well as the full spin tex-
ture Φz(~r), focusing on the universal properties alluded
to earlier. In Section IV, we outline three analytical (but
approximate) approaches to the relationship between nz

and m. The first is a large-S spin-wave expansion. The
second is a mean-field theory formulated in terms of the
total spin of each sublattice. And the third approach is in
terms of a quantum rotor Hamiltonian which is expected
to correctly describe the low-energy tower of states for
odd Ntot. In Section V, we conclude with some specu-
lations about a possible effective field theory approach
to the calculation of Φz(~r). Some technical details are
relegated to the appendix so as to not interrupt the flow
of our presentation.

II. MODELS

We consider four deformations of the square lattice
S = 1/2 nearest neighbour Heisenberg antiferromagnet;
all four retain the full SU(2) spin rotation symmetry of
the original model.
The first of these models is the coupled-dimer antifer-

romagnet, in which there are two kinds of nearest neigh-
bour interactions J and J ′, as shown in Fig. 1 (left panel),
where the ratio α = J ′/J can be tuned from α = 1 to
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FIG. 2. Bond and plaquette operators in JQ model Hamil-
tonians. A thick bond denotes a bipartrite projector acting
on that bond. All possible orientations of these bond and
plaquette operators are allowed.

α = αc ≈ 1.90 at which collinear antiferromagnetic order
is lost.7 The Hamiltonian for this system reads:

HJJ′ = J
∑

〈ij〉

Si · Sj + J ′
∑

〈ij〉′

Si · Sj , (6)

where 〈ij〉 (〈ij〉′) denotes a pair of nearest neighbour sites
connected by a black (red) bond (see Fig. 1). Another
deformation of the Heisenberg model, the JJ2 model, has
additional next nearest neighbour Heisenberg exchange
interactions J2, as shown in Fig. 1 (right panel). The
Hamiltonian reads

HJJ2
= J

∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj , (7)

where 〈〈ij〉〉 denotes a pair of next nearest neighbour
sites. Both these are amenable to straightforward spin-
wave theory analyses, and the coupled dimer model can
also be studied numerically at large sizes using unbiased
and extremely accurate QMC methods due to the ab-
sence of any sign problems. However, exact numerical re-
sults on the JJ2 model are restricted to small sizes since
QMC methods encounter a sign problem when dealing
with next-nearest neighbour interactions on the square
lattice.
In addition, we study two generalizations that involve

additional multispin interactions; the “JQ” models.8,9 Of
these, the JQ2 model has 4-spin interactions in addition
to the usual Heisenberg exchange terms, and is defined
by the Hamiltonian

HJQ2
= −J

∑

〈ij〉

Pij −Q2

∑

〈ij,kl〉

PijPkl, (8)

where the plaquette interaction Q2 involves two adjacent
parallel bonds on the square lattice as shown in Fig. 2
(middle panel) and

Pij =
1

4
− Si · Sj (9)

is a bipartite singlet projector. Note that the first term in
Eqn. 8 is just the standard antiferromagnetic Heisenberg
exchange term (apart from a constant). Similarly, the
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FIG. 3. An illustrative example of finite size corrections of nz

and m2, observed in the antiferromagnetic phase of the JJ ′

model(J ′ = 1.8). Note the non-monotonic behaviour of finite
size corrections for nz, which is fitted to a cubic polynomial.
In contrast, finite size data for m2 is well described by a linear
dependence on 1/L.
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FIG. 4. Another illustrative example of finite size corrections
of nz and m2, observed in the antiferromagnetic phase of JQ2

model at Q2 = 1.0. Again, note the non-monotonic behaviour
of finite size corrections for nz, which is fitted to a cubic
polynomial (only L > 20 data used in the fit). In contrast,
finite size data for m2 is well described by a linear dependence
on 1/L.

JQ3 model has 6-spin interactions and is defined by the
Hamiltonian

HJQ3
= −J

∑

〈ij〉

Pij −Q3

∑

〈ij,kl,nm〉

PijPklPnm, (10)

where the plaquette interactions now involve three ad-
jacent parallel bonds on the square lattice, as shown in
Fig. 2 (right panel). The products of singlet projectors
making up the Q2 and Q3 terms tend to reduce the Néel
order of the ground state, and, when sufficiently strong,
lead to a quantum phase transition into a valence-bond-
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FIG. 5. Extrapolated thermodynamic values of nz for three
different models of antiferromagnets on an open lattice, plot-
ted as function of staggered magnetisation m for the same
models on periodic lattices. The former is clearly an uni-
versal function of the later. This universal function can be
well approximated by a polynomial fit constrained to en-
sure that nz(m) → m/3 in the limit of m → 1

2
: nz ≈

(1/3 − a/2 − b/4)m + am2 + bm3, with a ≈ 0.288 and
b ≈ −0.306.

solid state.8,9 Here we stay within the Néel state in both
models, and study universal aspects of this state as the
Néel order is weakened.

III. PROJECTOR QMC STUDIES

We use the Stot = 1/2 sector generalization10 of the
valence-bond basis projector QMC method11,12 to study
L×L samples with L odd and free boundary conditions.
We compute Φz(~r) and nz in such samples for the JJ ′

model and JQ models in their antiferromagnetic phase.
We also study the same models on L×L lattices with L
even and periodic bondary conditions using the original
singlet sector valence bond projector QMC method.11,12

In both cases we use the most recent formulation with
very efficient loop updates.10,12 Our system sizes range
from L = 11 to L = 101, and projection power scales as
L3 to ensure convergence to the ground state. We per-
form & 105 equilibration steps followed by & 106 Monte
Carlo measurements to ensure that statistical and sys-
tematic errors are small.
Data for nz from a sequence of L× L systems with L

odd shows that nz extrapolates to a finite value in the
L → ∞ limit as long as the system is in the antiferro-
magnetic phase. However, we find that the approach of
this observable to the thermodynamic limit has a non-
monotonic behaviour. To obtain accurate extrapolations
to infinite size, it is therefore necessary to fit the finite size
data to a third-order polynomial in 1/L. We find that the
coefficient for the leading 1/L term in this polynomial is
rather small; this is true for all the models studied here,

as long as they remain in the antiferromagnetic phase.
In Fig.. 3 and Fig. 4, we show examples of this behaviour
of the finite size corrections in nz. In these figures, we
also show the approach to the thermodynamic limit for
m, as measured in a sequence of periodic L× L systems
with L even. In contrast to the behaviour of nz, m ex-
trapoloates monotonically to the thermodynamic limit,
with a dominant 1/L dependence—this is consistent with
previous studies of the structure factor in square lattice
antiferromagnets12 (however, with spatially anisotropic
couplings, one can also observe strong non-monotonicity
in m13).
The non-zero value of nz in the large L limit clearly

reflects the long-range antiferromagnetic order present in
the system. For periodic systems with even L, the same
long range antiferromagnetic order is captured by the
non-zero value of m in the large L limit. One can view
m as the magnitude of the Néel vector in the thermody-
namic limit. From this perspective, nz/m is a measure
of the extent to which the Néel vector is “pinned” in
the thermodynamic limit to lie along the +ẑ axis in the
Sz
tot = 1/2 ground state of a system with odd L. Thus,

the ratio nz/m is a fundamental aspect of the sponta-
neous symmetry breaking in the antiferromagnetic state.
It is therefore interesting to ask: What is the relationship
between these two measures of antiferromagnetic order?
Our numerical data are unequivocal as far as this rela-
tionship is concerned, as is clear from Fig. 5, which shows
a plot of nz/m versus m in the thermodynamic limit of
the JJ ′, JQ2 and JQ3 models. Here each point repre-
sents the result of a careful extrapolation similar to the
examples shown in Fig. 3 and Fig. 4, and provides an
accurate estimate of the corresponding thermodynamic
limits for nz and m. From this figure, it is clear that
nz/m is a universal function of m independent of the mi-
croscopic structure of the Hamiltonian. To model this
universal function, we use a polynomial fit that is con-
strained to ensure that nz → m

3 when m→ 1
2 ; the ratio-

nale for this constraint will become clear in Sec. IV. We
find (Fig. 5) that the QMC results for the dependence of
nz/m on m are fit well by the following functional form:

nz/m = (
1

3
− a

2
− b

4
) + am+ bm2 , (11)

with a ≈ 0.288 and b ≈ −0.306.
If one views this universal relationship as being a prop-

erty of the low energy effective field theory of the anti-
ferromagnetic phase, one is led to expect that the full
spatial structure of the spin texture Φz(~r) should also be
universal in some sense. More precisely, one is led to ex-
pect that Φ̃z(~q), the Fourier transform of Φz(~r), should
be peaked at the antiferromagnetic vector Q = (π, π),
with a universal shape in the vicinity of this peak.
To test this, we compare our data for Φ̃z(~q) in the

JJ ′ model and the JQ3 model, choosing the strengths
of the J ′ interaction and the Q3 interaction so that
both have the same value of m, and therefore the same
value of nz. This is shown in Fig. 6, which shows that
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FIG. 6. QMC Results: Fourier transform (with antiperiodic boundary conditions assumed for convenience) of the QMC results
for Φz(~r) (for JJ ′ and JQ3 model with L = 65, S = 1/2 ) along cuts passing through the antiferromagnetic wavevector
Q = (π, π). Note the universality of the results in the neighbourhood of the antiferromagnetic wavevector, which in any case
accounts for most of the weight in Fourier space.

these very different microscopic Hamiltonians have spin-
textures whose Fourier transform falls on top of each
other at and around the antiferromagnetic wavevector.

IV. ANALYTICAL APPROXIMATIONS

We now present three analytical approaches aimed at
understanding these numerical results presented in the
previous section: First, we develop a spin-wave expansion
that becomes asymptotically exact for large S14. Sec-
ond, we explore a mean-field theory written in terms of
the total spin of each sublattice. Finally, we describe an
alternative approach in which the low-energy antiferro-
magnetic tower of states of a spin-1/2 antiferromagnet is
described by a phenomenological rotor model17 adapted
to the case of a system with odd Ntot.

A. Spin-wave expansion

The leading order spin-wave calculation proceeds as
usual by using an approximate representation of spin
operators in terms of Holstein-Primakoff bosons. The
resulting bosonic Hamiltonian is truncated to leading
(quadratic) order in boson operators to obtain the first
quantum corrections to the classical energy of the system.

As is standard in the spin-wave theory of Néel ordered
states, we start with the classical Néel ordered config-
uration with the Néel vector pointing along the ẑ axis,
which corresponds to Sz

~r = η~rS. We then represent the
spin operators at a site ~r of the square lattice in terms
of canonical bosons to leading order in S as follows: For

sites ~r belonging to the A sublattice we write

S+
~r =

√
2Sb~r ; Sz

~r = S − b†~rb~r , (12)

while on sites ~r belonging to the B sublattice we write

S−
~r =

√
2Sb~r ; Sz

~r = −S + b†~rb~r . (13)

The number of bosons at each site thus represents the
effect of quantum fluctuations away from the classical
Néel ordered configuration.
To quadratic order in the boson operators, this ex-

pansion yields the following spin-wave Hamiltonian in
the general case (with arbitrary two-spin exchange cou-
plings):

Hsw = ǫclS
2 +

S

2
b†Mb , with

M~r~r′ =
(

A~r~r′ B~r~r′

B~r~r′ A~r~r′

)

b~r =
(

b~r

b
†

~r

)

. (14)

Here ǫclS
2 is the classical energy of the Néel state, M

in the first line is a 2Ntot dimensional matrix specified
in terms of Ntot dimensional blocks A and B, and b is
a 2Ntot dimensional column vector as indicated above.
Elements of A and B can be written explicitly as

A~r~r′ = (ZU
~r − ZF

~r )δ~r~r′ + JF
~r~r′ , (15)

B~r~r′ = JU
~r~r′ . (16)

In the above, JF
~r~r′ are Heisenberg exchange couplings be-

tween two sites ~r and ~r′ belonging to the same sublattice,
JU
~r~r′ are the Heisenberg exchange couplings between sites
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belonging to different sublattices, and

ZU
~r =

∑

~r′

JU
~r~r′ , (17)

ZF
~r =

∑

~r′

JF
~r~r′ . (18)

The effects of quantum fluctuations on the classical
Néel state can now be calculated by diagonalizing this
Hamiltonian by a canonical Bogoliubov transformation.
For periodic L×L samples with L even, it is possible to
exploit the translational invariance of the problem and
work in Fourier space to obtain these spin-wave modes
and their wavefunctions and use this information to cal-
culate m by noting that

m = S − lim
Ntot→∞

1

Ntot

∑

~r

〈b†~rb~r〉pbc (19)

where the expectation value is taken in the ground state
of the quadratic Hamiltonian Hsw with periodic bound-
ary conditions, and the limit is taken from a sequence of
sizes with even Ntot. In the thermodynamic limit, this
gives the leading order spin-wave results for m

m = S −∆
′

(20)

As these results are standard and well-known,15 we do
not provide further details here.
To obtain the spin-wave expansion result for nz, we

need to repeat the same calculation for L × L samples
with free boundary conditions and L odd (i.e., and take
the thermodynamic limit:

nz = S − lim
Ntot→∞

1

Ntot

∑

~r

〈b†~rb~r〉obc (21)

where the expectation value is taken in the ground state
of the quadratic Hamiltonian Hsw with open boundary

conditions, and the limit is taken from a sequence of sam-
ples with odd Ntot (i.e. with NA, the number of A sub-
lattice sites, exceeding NB, the number of B sublattice
sites by one: NA = NB + 1). Results for the spin-wave
modes for such samples do not seem to be available in
the literature. We therefore discuss the corresponding
analysis in detail in the Appendix A.
In the thermodynamic limit, this analysis finally yields

the result

nz = S −∆ (22)

where ∆ represents the leading spin-wave correction to
the classical value for nz . In order to obtain nz reliably
in this manner, it is important to understand the finite
size corrections to ∆ for various values of J

′

/J in the
striped interaction model and J2/J in the model with
next-nearest neighbour interactions, and use this under-
standing to reliably extrapolate to the thermodynamic
limit. This analysis of finite-size corrections is detailed
in the Appendix B.
Using such finite-size extrapolations to the thermody-

namic limit, we obtain ∆ for various values of J2/J and

J
′

/J , and then compare the results with those for ∆′ ob-
tained directly in the thermodynamic limit by standard
analytical techniques. Specifically, we ask if the univer-
sality seen in our QMC results is reflected in these lead-
ing order spin-wave corrections to nz and m. The answer
is provided by Fig. 7, which shows that the numerically
obtained spin-wave corrections apparently satisfy a uni-
versal linear relationship

∆−∆′ ≈ 1.003 + 0.013∆′ (23)

as one deforms away from the pure square lattice anti-
ferromagnet in various ways.
What does this imply for the ratio nz/m to leading

order in 1/S? To answer this, we note that

nz

m
= 1− ∆−∆′

S
+O(S−2) (24)

Using our numerically established universal relationship
between ∆ −∆′ and ∆′ and the formula for m in terms
of ∆′, we obtain the universal relationship

nz = αm+ βm2 (25)

with α ≈ 0.987− 1.003/S and β ≈ 0.013/S. Thus, spin-
wave theory correctly predicts that nz/m is a universal
function of m that depends sensitively on the value of
spin-length S at each site. However, being a large-S ex-
pansion, it is unable to give a quantitatively correct pre-
diction for the form of this universal function at S = 1/2
case.
Finally, we use our spin-wave predictions for the

ground-state spin texture to look at the Fourier trans-
form of the spin-texture for various deformations of the
pure antiferromagnet. The results are shown in Fig. 8,
which demonstrates that spin-wave theory also predicts
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that the Fourier transform of the spin-texture near the
antiferromagnetic wave-vector is a universal function of
the wavevector; this provides some rationalization for the
observed universality of the Fourier transformed spin tex-
ture seen in our QMC numerics.

B. Sublattice-spin mean-field theory

We now turn to a simple mean-field picture in terms

of the dynamics of the total spins ~LA and ~LB of the
A and B sublattices respectively for an antiferromagnet
composed of spin-S moments at each site. The idea of
this mean-field theory is to approximate the true low-
energy spectrum of the spin-S antiferromagnet by that
of a model in which the NA A-sublattice spins form a gi-

ant moment ~LA that couples antiferromagnetically with a

similar giant moment ~LB formed by the NB B-sublattice

spins.
When NA = NB + 1, it is clearly appropriate to set

the total spin quantum number of ~LB to SB ≡ SNB and

the total spin quantum number of ~LA to SA ≡ SNA =
SB + S. In this mean-field treatment, we assume that

the dynamics of ~LA and ~LB is described a low-energy
effective Hamiltonian

HMF = JMF
~LA · ~LB (26)

with JMF > 0. Within this mean-field treatment, the
Stot = S ground state multiplet expected from the Lieb-
Mattis theorem is thus modeled by the Stot = S multiplet
obtained by the quantum mechanical addition of angular
momenta SB ≡ SNB and SA = SB + S. Within this
mean-field theory, nz is modeled in terms of the expec-
tation value of Lz

A − Lz
B in the Sz

tot = S state of this
multiplet:

nz = lim
Ntot→∞

1

Ntot
〈Stot = S , Sz

tot = S ; SB , SA|(Lz
A − Lz

B)|Stot = S , Sz
tot = S ; SB , SA〉 . (27)

Using the standard result for the minimum angular momentum state obtained by the quantum mechanical addition
of two angular momenta, this can be written as:

nz = lim
NB→∞

2S + 1

2NB + 1

SA
∑

m=−(SB−S)

(2m− S)Γ(2SB + 1)Γ(SA +m+ 1)

Γ(2SA + 2)Γ(SB +m+ 1− S)
(28)

Perhaps surprisingly, this sum can be carried out in
closed form, to give the result

nz = lim
NB→∞

1

2NB + 1
(S +

2S

S + 1
SB) (29)

On the other hand, we may also calculate m2 defined
within this approach as

m2 = lim
Ntot→∞

1

N2
tot

〈(~LA − ~LB)
2〉singlet (30)

where the average is taken in the Stot = 0 singlet state

obtained by the quantum mechanical addition of ~LA and
~LB where the two sublattice angular momenta are now
equal: SB = SA = SNtot/2 for a sample with an even
number of sites Ntot. This gives

m = lim
Ntot→∞

1

Ntot
2
√

SB(SB + 1) . (31)

From these results for nz and m, we obtain the following
prediction for their ratio nz/m in the thermodynamic
limit:

nz/m =
S

S + 1
(32)

Is there a limit in which this sublattice-spin mean-field
theory is expected to give exact results? To answer this,

we note that the sublattice-spin mean-field theory gives
the exact spectrum of an infinite-range model with spin-
S moments at each site in which every A-sublattice spin
interacts with every B-sublattice spin via a constant (in-
dependent of distance) antiferromagnetic exchange cou-
pling JMF .
Thus, our mean-field theory is expected to become

asymptotically exact in the limit of infinitely long-range
unfrustrated couplings. In this limit, we expect m → S
and nz → S2/(S + 1)—in other words, we expect nz/m
to equal S/S + 1 when m tends to S. This is the con-
straint (with S set equal to 1/2) that we built into our
choice of polynomial fit of our QMC data for nz/m in
Sec. III.

C. Quantum rotor Hamiltonian

When any continuous symmetry is broken, the corre-
sponding order parameter variable becomes very “heavy”
in a well-defined sense.14 The long-time, slow dynamics
of this heavy nearly classical variable is controlled by
an effective “mass” that diverges in the thermodynamic
limit.
For a Néel ordered magnet, the slow degree of freedom

is n̂, the direction of the Néel vector in spin space. In the
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FIG. 8. Fourier transform (with antiperiodic boundary conditions assumed for convenience) of the spin-wave result for Φz(~r)
(assuming S = 3/2 and calculated using L = 75 for JJ2 and JJ ′ model) along cuts passing through the antiferromagnetic
wavevector (π, π). Note the nearly universal nature of the results in the neighbourhood of the antiferromagnetic wavevector,
which in any case accounts for most of the weight of the transformed signal.

usual case of an antiferromagnet with an even number of
S = 1/2 moments, the low-energy effective Hamiltonian
that controls this slow orientational dynamics of the Néel
vector is

Hrotor =
~L · ~L

2χNtot
(33)

where ~L is the angular momentum conjugate to the
“quantum rotor” coordinate n̂, χ is the uniform suscep-
tibility per spin, and Ntot is the total number of sites.
Here, we generalize this to the case with NA = NB +1

and Ntot = 2NB+1. To identify the appropriate general-
ization, we follow earlier work on quantum rotor descrip-
tions of insulating antiferromagnets doped with a sin-
gle mobile charge-carrier.17 By analogy to this case, we
postulate that the correct rotor description of our prob-

lem is in terms of a rotor Hamiltonian in which ~L is re-
placed by the angular momentum operator ~L′ conjugate
to a quantum rotor coordinate n̂ that now parametrizes a
unit-sphere with a magnetic monopole of dimensionaless
strength S at its origin.18 In other words, we postulate a
low-energy effective Hamiltonian

H
(S)
rotor =

~L
′ · ~L′

2χNtot
(34)

where the superscript reminds us that the lowest allowed
angular momentum quantum number l of the modified

angular momentum operator ~L
′

is l = S.
In the notation of Ref 18, the angular wavefunction of

the l = S, ml = S ground state of this modified rotor
Hamiltonian is the monopole harmonic Y−S,S,S(θ, φ). To
model nz/m, we must compute the expectation value of

n̂z ≡ cos(θ) in this monopole harmonic wavefunction on
the unit sphere. Since

|Y−S,S,±S(θ, φ)|2 ∝ (1 ± cos(θ))2S , (35)

we obtain

nz/m =
S

S + 1
. (36)

Thus, this apparently more general phenomenology,
which ignores non-zero wavevector modes as well as am-
plitude fluctuations of the Néel order parameter, but
makes no assumptions about long-range interactions, re-
produces the results of the sublattice-spin mean-field the-
ory that is exact in the limit of infinite-range unfrus-
trated interactions. This is perhaps not entirely surpris-
ing given that Anderson’s original analysis14 of the low
energy tower of states in an antiferromagnet used a pic-
ture in terms of the total spin of each sublattice to arrive
at a rotor description.
In any case, since our QMC data for S = 1/2 show

clear deviations from the prediction nz/m = S/(S+1) in
the S = 1/2 case, we conclude that non-zero wavevector
modes of the Néel order parameter are essential for a
correct calculation of the universal function nz/m within
a quantum rotor model of the antiferromagnetic phase.

V. DISCUSSION

A natural question that arises from our results is
whether the universal ground state spin texture we have
found here can be successfully described using an effective
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field theory approach of the type used recently by Eggert
and collaborators for studying universal aspects of the
alternating order induced by missing spins in two dimen-
sional S = 1/2 antiferromagnets.19 This approach uses
a non-linear sigma-model description of the local anti-
ferromagnetic order parameter, with lattice scale physics
only entering via the values of the stiffness constant ρs
and the transverse susceptibility χ⊥, and the presence of
the vacancy captured by a local term in the action. An
analogous treatment for our situation would need two
things—one is a way of restricting attention to averages
in the Stot = 1/2 component |G〉↑ of the ground state
doublet, and the other is an understanding of the right
boundary conditions or boundary terms in the action,
so as to correctly reflect that fact that our finite sample
has open boundaries. We leave this as an interesting di-
rection for future work, which may shed some light on
the role of non-zero wavevector modes that were left out
of the rotor description of the earlier section. Finally, we
note that it might be quite interesting to analyze the lead-
ing order spin-wave theory results for nz/m more deeply
to understand exactly how the spin-wave theory result
for nz/m ends up being universal despite the fact that it
most likely receives significant contributions from modes
away from the extreme long-wavelength limit.
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Appendix A: Spin-wave theory with open boundary

conditions and odd Ntot

The effects of quantum fluctuations on the classi-
cal Néel state can be calculated by diagonalizing the
quadratic spin-wave Hamiltonian by a canonical Bo-
goliubov transformation S which relates the Holstein-
Primakoff bosons b to the bosonic operators γ corre-
sponding to spin-wave eigenstates

b = SΓ, Γµ =

(

γµ
γ†µ

)

, (A1)

where S is a 2Ntot dimensional matrix that transforms
from b which creates and destroys bosons at specific lat-
tice sites ~r to Γ which creates and destroys spin-wave
quanta in specific spin-wave modes µ. Naturally, we must

require that Hsw be diagonal in this new basis. We rep-
resent this diagonal form as

Hsw = ǫclS
2 +

S

2
Γ†DΓ , (A2)

where

D =

(

Λ 0
0 Λ

)

, (A3)

with Λ denoting the diagonal matrix with the Ntot posi-
tive spin-wave frequencies λµ on its diagonal.
To construct a S that diagonalizes Hsw in the Γ basis,

we look for 2Ntot dimensional column vectors

yµ =

(

uµ

vµ

)

, (A4)

which satisfy the equation

Myµ = ǫµIyµ (A5)

with positive values of ǫµ equal to the positive spin-wave
frequencies λµ for µ = 1, 2, 3 . . .Ntot. Here u

µ and vµ are
Ntot dimensional vectors,

I =

(

1 0

0 −1

)

, (A6)

and 1 is the Ntot × Ntot identity matrix. With these
yµ in hand, one may obtain Ntot additional solutions
to Eqn. A5, this time with negative ǫNtot+µ = −λµ by
interchanging the roles of the Ntot dimensional vectors
uµ and vµ in this construction. In other words, we have

yNtot+µ =

(

vµ

uµ

)

, (A7)

with µ = 1, 2, 3 . . .Ntot.
We now construct S by using these yµ (with µ =

1, 2, 3 . . .2Ntot) as its 2Ntot columns:

S =
(

y1, y2, y3 . . . y2Ntot

)

. (A8)

Clearly, this choice of S satisfies the equation

MS = ISID (A9)

Furthermore, the requirement that the Bogoliubov trans-
formed operators γ obey the same canonical bosonic com-
mutation relations as the b operators implies that S must
satisfy

S
†IS = I , (A10)

This constraint is equivalent to “symplectic” orthonor-
malization conditions:

(uµ)†uν − (vµ)†vν = δµν , (A11)

(uµ)†vν − (vµ)†uν = 0 ,
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for µ, ν = 1, 2, 3 . . .Ntot. It is now easy to see that
Eqn A9 and Eqn A10 guarantee that Hsw is indeed di-
agonal in the new basis, since

b†Mb = Γ†
S
†MSΓ = Γ†

S
†ISIDΓ = Γ†DΓ . (A12)

Next, we note that the non-zero entries in A only con-
nect two sites belonging to the same sublattice, while
those in B always connect sites belonging to opposite
sublattices. As a result of this, the solutions to the equa-
tion for yµ can also be expressed in terms of a single
function fµ(~r) defined on sites of the lattice. To see this,
we consider an auxillary problem of finding ǫ̃µ such that
the operator A − B − ǫ̃µη~r has a zero mode fµ(~r) (as
before, η~r is +1 for sites belonging to the A sublattice,
and −1 for sites belonging to the B sublattice).
This auxillary problem has Ntot solutions correspond-

ing to the Ntot roots ǫ̃µ of the polynomial equation
det(A−B− ǫ̃µη~r) = 0; these ǫ̃µ can be of either sign. To
make the correspondence with the positive ǫµ solutions
(uµ, vµ) (with µ = 1, 2...Ntot) of the original equation
Myµ = ǫµIyµ, we now note that

〈fµ|A−B|fµ〉 = ǫ̃µNµ (A13)

where

Nµ ≡
∑

rA

|fµ(rA)|2 −
∑

rB

|fµ(rB)|2. (A14)

Since A−B is a positive (but not positive definite) oper-
ator, this implies that ǫ̃µ has the same sign as Nµ for all
non-zero ǫ̃µ. To make the correspondence with the pos-
itive ǫµ ≡ λµ solutions (µ = 1, 2 . . .Ntot) of the original
problem, we can therefore make the ansatz

uµ~rA = fµ(rA)/
√

Nµ, u
µ
rB

= 0 (A15)

vµrB = −fµ(rB)/
√

Nµ, v
µ
rA

= 0

if Nµ > 0, or the alternative ansatz

uµrB = −fµ(rB)/
√

−Nµ, u
µ
rA

= 0 (A16)

vµrA = fµ(rA)/
√

−Nµ, v
µ
rB

= 0

if Nµ < 0. Here, rA (rB) denotes sites belonging to
the A (B) sublattice of the square lattice. This ansatz
clearly ensures that the yµ (with µ = 1, 2..Ntot) obtained
in this manner satisfy the original equation with positive
ǫµ ≡ λµ and are appropriately normalized.
Atlhough this approach is not the one we use in our ac-

tual computations (see below), it provides a useful frame-
work within which we may discuss possible zero frequency
spin-wave modes, i.e λµ0

= 0 for some µ0: A mode µ0

with λµ0
= 0 clearly corresponds to a putative zero eigen-

value of the operator A − B. From the specific form of
A−B in our problem, it is clear that such a zero eigen-
value does indeed exist, and fµ0

(~r), the corresponding
eigenvector of A−B, can be written down explicitly as

fµ0
(~r) = 1 (A17)

Since this corresponds to the root ǫ̃µ0
= 0 of the auxillary

problem, it can in principle be used to obtain a pair of
zero frequency modes ǫµ0

and ǫµ0+Ntot
for the original

problem of finding ǫµ and yµ that satisfy Myµ = ǫµIyµ.
However, we need to ensure that the symplectic or-

thonormalization conditions (Eqn. A12) are satisfied by
our construction of the corresponding yµ0 and yµ0+Ntot .
This is where the parity of Ntot = L2 becomes impor-
tant and we now restrict attention to odd Ntot. When
Ntot is odd, i.e. when NA = NB + 1, we have Nµ0

=
NA −NB = 1. Thus, we are in a position to write down
properly normalized zero-mode wavefunctions:

uµ0

~rA
= fµ0

(rA), u
µ0

rB
= 0 (A18)

vµ0

rB
= −fµ0

(rB), v
µ0

rA
= 0 ,

and

uNtot+µ0

r = vµ0

r , (A19)

vNtot+µ0

r = uµ0

r .

[Parenthetically, we note that the question of zero fre-
quency spin-wave modes for the more familiar case with
NA = NB and periodic boundary conditions has been
discussed earlier in the literature.14]
Thus, the equation Myµ = ǫµIyµ has a pair of zero

modes related to each other by interchange of the u and
v components of the mode, and it becomes necessary to
regulate intermediate steps of the calculation with a stag-
gered magnetic field ẑǫhη~r with infinitesimal magnitude
ǫh > 0 in the ẑ direction. Denoting the corresponding A
by Aǫh , we see that Aǫh − B is now a positive definite
operator and does not have a zero eigenvalue. Indeed,
it is easy to see from the foregoing that the correspond-
ing eigenvalue now becomes non-zero, yielding a positive
spin-wave frequency λǫhµ0

= Ntotǫh. One can also calcu-
late the O(ǫh) term of f ǫh

µ0
(~r) and check that f ǫh

µ0
tends

to fµ0
(~r) in a non-singular way as ǫh → 0, from which

one can obtain the corresponding yµ0(ǫh) analytically in
this limit. Thus, the contribution of the zero mode to all
physical quantities can be obtained in the presence of a
small ǫh > 0, and the ǫh → 0 limit of this contribution
can then be taken smoothly and analytically at the end
of the calculation.
In our actual calculations, we use this analytical under-

standing of the zero frequency spin-wave mode to analyti-
cally obtain the properly regularized zero mode contribu-
tion to various physical quantities, while using a compu-
tationally convenient approach to numerically calculate
the contribution of the non-zero spin-wave modes. To do
this, we rewrite Eqn. A5 for µ = 1, 2, 3 . . .Ntot as

(A+B)φµ = λµψ
µ (A20)

(A−B)ψµ = λµφ
µ

where

φµ = uµ + vµ (A21)

ψµ = uµ − vµ.
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This implies

(A−B)(A +B)φµ = λµ(A−B)ψµ = λ2µφ
µ (A22)

(A+B)(A−B)ψµ = λµ(A+B)φµ = λ2µψµ (A23)

We now decompose

A−B = K†K. (A24)

where

K =
√
ωU. (A25)

with ω the diagonal matrix with diagonal entries given
by eigenvalues of the real symmetric matrix A−B, and U
the matrix whose rows are made up of the corresponding
eigenvectors.
With this decomposition, we multiply Eqn A23 by K

from the left to obtain

K(A+B)K†χµ = λ2µχ
µ. (A26)

with χµ = Kψµ. From the solution to this equation, we
may obtain the φ as

φµ = (K†)χµ/λµ. (A27)

and thence obtain ψµ using Eqn A21. In order to en-
sure the correct normalization of the resulting uµ, vµ, we
impose the normalization condition

(χµ)†χµ = λµ. (A28)

Thus our computational strategy consists of obtaining
eigenvalues of the symmetric operator K(A+B)K†, and
using this information to calculate the yµ and thence
the Bogoliubov transform matrix S. Notwithstanding
the normalization used in Eqn A28, the zero mode with
λµ0

= 0 causes no difficulties in this approach, since we
work in practice with the projection of K(A + B)K† in
the space orthogonal to the zero mode. This is possible
because we already have an analytic expression correct
to O(ǫh) for yµ0(ǫh) and yNtot+µ0(ǫh) corresponding to
this zero mode, and do not need to determine these two
columns of S by this computational method.
We use this procedure to calculate the zero tempera-

ture boson density as

〈b†~rb~r〉 = lim
ǫh→0

Ntot
∑

µ=1

(

vµ~r (ǫh)
)2
. (A29)

In this expression, one may use the numerical procedure
outlined above to obtain the contribution of all µ 6= µ0

directly at ǫh = 0, while being careful to use our analyti-
cal results for vµ0(ǫh) to obtain the limiting value of the
contribution from µ = µ0. This gives

〈b†~rAb~rA〉 =
∑

µ6=µ0

(vµ~rA)
2 (A30)

〈b†iBbiB〉 = 1 +
∑

µ6=µ0

(vµ~rB )
2 (A31)

Here, the distinction between sites on the A and
B sublattices arises in this final result because
limǫh→0 v

µ0

~r (ǫh) = −1 for ~r belonging to the B sublat-
tice, while limǫh→0 v

µ0

~r (ǫh) = 0 for ~r belonging to the A
sublattice. Knowing the average boson number at each
site gives us the first quantum corrections to the ground
state expectation value 〈Sz(~r)〉, as discussed in the main
text.

Appendix B: Finite-size corrections to ∆

In order to reliably extrapolate to the thermodynamic
limit and obtain ∆, we need to study the finite-size cor-
rection to ∆. In Fig. 9, we show a typical example of
this size dependence. As is clear from this figure, we find
that ∆ has a non monotonic dependence on L: ∆(L)
initially increases rapidly with size, and, after a certain
crossover size L∗, it starts decreasing slowly to finally
saturate to its asymptotic value, which we denote as ∆.
This non-monotonic behaviour is qualitatively similar to
that observed in the finite size extrapolations of nz from
our QMC data earlier. To explore this unusual size de-
pendence further and reliably extrapolate to the ther-
modynamic limit, we analyze the contributions to the
finite-size ∆(L) from the spin-wave spectrum in the fol-
lowing way: We note that there is always a monotonically
and rapidly convergent O(1) contribution to ∆(L) from
the lowest frequency spin-wave mode, whose spin-wave
frequency scales to zero as 1/Ntot (for any finite Ntot,
this is not an exact zero mode of the system). We dub
this the ‘delta-function contribution’, and note that it
is easy to reliably extrapolate this contribution to the
thermodynamic limit. In addition, there is a ‘continuum
contribution’ coming from all the other spin-wave modes,
each of which contributes an amount of order O(1/Ntot).
This contribution converges less rapidly to the thermo-
dynamic limit, and also happens to be non-monotonic:
it first increases quickly with increasing size, and then
starts decreasing slowly to finally saturate to the ther-
modynamic limit.
The delta-function contribution can be fit best to a

functional form

Fδ(L) = bδ +
cδ
L

− aδ
L2

+
dδ
L3
, (B1)

with the dominant 1/L2 term accounting for the mono-
tonic increase with L, while the continuum contribution
is fit to

Fc(L) = bc +
cc
L

− ac
L2

+
dc
L3
, (B2)

whereby the size dependence is predominantly deter-
mined by the competition between the term proportional
to 1/L which decreases with increasing L, and the term
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FIG. 9. A typical example of the finite-size corrections
to the delta-function and continuum contributions to ∆.
Note the monotonically increasing size dependence of the
delta-function contribution, and the non-monotonic and more
slowly converging nature of the continuum contribution. Due
to this difference in their behaviour, we find it more accurate
to separately fit each of these contributions to a polynomial
in 1/L and use this to obtain ∆ in the thermodynamic limit.
Here Fδ/c(L) = bδ/c+ cδ/c/L−aδ/c/L

2 +dδ/c/L
3. In the last

figure a, b, c and d are obtained by a = aδ + ac, b = bδ + bc,
c = cδ + cc and d = dδ + dc.

proportional to 1/L2 which increases with increasing L.
This gives rise to non-monotonic behaviour whereby the
continuum contribution first increases rapidly and then
decreases slowly beyond a crossover length L∗ to finally
saturate to its infinite volume limit. We also find that the
length L∗ gets larger as we deform away from the pure
square lattice antiferromagnet, making it harder to ob-
tain reliable extrapolations to the thermodynamic limit.
Nevertheless, for all data shown in the main text, we
have gone to large enough L to be fairly confident of
the extrapolation to the thermodynamic limit, and the
systematic errors associated with this extrapolation are
estimated to be small enough to not affect our conclu-
sions.
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