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We have studied the properties of the giant Keplerate molecular magnet Mo72Fe30, as a function of
applied magnetic field, using the correlator product state (CPS) tensor network ansatz. The magnet
is modeled with an S = 5/2 antiferromagnetic Heisenberg Hamiltonian on the 30-site icosidodec-
ahedron lattice, a model for which exact diagonalization is infeasible. The CPS ansatz produces
significant improvements in variational energies relative to previous studies using the density matrix
renormalization group, a result of its superior ability to handle strong correlation in two dimensional
spin systems. The CPS results reaffirm that the ground state energies adhere qualitatively to the
parabolic progression of the rotational band model (RBM), but show important deviations near 1/3
of the saturation field. These deviations predict anomalous behavior in the differential magnetiza-
tion and heat capacity that cannot be explained by the RBM alone. Finally, we show that these
energetic deviations originate from a qualitative change in the ground state that resembles a finite
size analogue of a phase transition.

PACS numbers:

I. INTRODUCTION

Molecular magnets are classic examples of chemical systems containing a large number of localized, strongly cor-
related electrons. Their study has been motivated both from potential applications in storage and quantum comput-
ing, as well as by the fundamental challenges associated with their chemical synthesis and their physical magnetic
properties1–6. In recent years, using polyoxometalate chemistry7, some very large molecular magnets have been
synthesized8,9. These so-called giant Keplerate magnets earn their name from the geometric arrangement of the ions,
which lie at the vertices of regular solids. The largest such magnet made to date is based on the icosidodecahedron,
and consists of corner sharing triangles arranged around pentagons (see Figure 1). The metal species can be varied,
and magnets including V, Cr, and Fe ions have been made, although the Fe based Keplerate magnet has been the
most studied so far10–18. The corner sharing triangle geometry leads to magnetic frustration and unusual magnetic
properties6 which are of interest in this work.
The theoretical description of magnetism in the Keplerate magnets is extremely challenging. The basic reason is

the size of the Hilbert space associated with the magnetic centers. In the case of the Fe30-Keplerate, each Fe center is
a 3+ ion with 5 unpaired spins in a near perfect octahedral coordination, and we can view each center as effectively
an S = 5/2 spin13. Arranging the spins on the vertices of the icosidodecahedron (see Figures 1 and 2), we model their
interactions using the Heisenberg Hamiltonian,

H = J
∑

〈ij〉

Si · Sj (1)

where 〈ij〉 represents a summation over nearest neighbors. Since there are 30 S = 5/2 spins, the corresponding Hilbert
space is of dimension 630, or roughly 1023, a mole of quantum states! This is far too large to treat using the exact
diagonalization methods that are usually employed for molecular magnets19.
In this work, we use a variational methodology based on correlator product states (CPS)20,21, in conjunction with

the Heisenberg Hamiltonian, to model the low-lying states of the Fe30-Keplerate magnet. Correlator product states,
also known as entangled plaquette states22,23 or complete graph tensor networks24, provide a simple approximation
to the quantum wavefunction amplitude for a large number of spins as a product of amplitudes of smaller overlapping
subsets of spins. The term correlator refers to the amplitudes on the subsets of spins. The CPS approximation derives
from an attempt to generalize the density matrix renormalization group (DMRG)25, a powerful method for strongly
correlated electrons that has been applied both to realistic quantum chemical problems26–31 as well as many model
condensed matter Hamiltonians32–34. Exler and Schnack previously used the DMRG to study the Fe30-Keplerate
magnet10, providing a qualitative demonstration of the existence of a quantum rotational band. However, the DMRG
has difficulty in accurately treating large systems where correlations are not ordered in a one-dimensional fashion.
Unlike the DMRG, the CPS is not biased towards one-dimensional correlations, and thus in principle can be an
efficient ansatz for the correlations present in the Keplerate magnets. Here we will compare our CPS calculations
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not only to the available experimental measurements, but also to the earlier theoretical DMRG work of Exler and
Schnack, demonstrating the improved ability of the CPS to describe correlations in general systems.
The structure of our study is as follows. We first give an overview of the theoretical and experimental results

for magnetism in the giant Keplerate magnets and discuss, in particular, features related to magnetic frustration
in the icosidodecahedron (Section II). We then describe the general theory behind the CPS wavefunction (Section
IIIA), how it is optimized via variational Monte Carlo (Section III B), and the specific form of the wavefunction we
use in this work (Section III C). We next present the results of our calculations in light of experimental and earlier
theoretical work on the magnet. In particular, we present total energies (Section IVA), low temperature properties
(Section IVB), spin correlations (Section IVC), and an analysis of possible phase transition behavior (Section IVD).
Finally, we conclude with some perspectives for further work on the Keplerate systems, and ways to generalize the
CPS approach to other complex molecular systems (Section V).

II. MAGNETISM IN THE GIANT KEPLERATES

Keplerate systems are interesting from the viewpoint of quantum magnetism due to the presence of frustration
effects6. One way to define a frustrated magnet is one where the classical Ising model, whose spins only assume up
(u) and down (d) orientations, has a large degeneracy. This is the case for triangles, where the uud, udu, and duu
configurations are all degenerate. In the classical Heisenberg model, where spins can point in any orientation, the
spin triangle has a continuous manifold of degenerate ground states. In these states, the three spins are coplanar and
rotated 120◦ from each other, and it is the orientation of the plane that creates the continuous degeneracy.
While a single spin triangle already shows some frustration effects, such effects become even more pronounced in

the case of corner sharing triangles6. This is the motif underlying the icosidodecahedron, whose surface consists of
corner sharing triangles arranged around pentagons. In fact, the icosidodecahedron is the largest member of a family
of Platonic solids, which also includes the cuboctahedron and the truncated tetrahedron, whose surfaces are built
from corner sharing triangles. The quantum Ising model on these lattices is highly frustrated. These zero dimensional
systems are especially important as they exist as finite size surrogates for their bulk planar counterparts, such as the
two dimensional Kagome lattice35, which are believed to underlie exotic magnetism in solids. Because of their small
size, the Platonic solid models allow the effects of corner sharing triangle frustration to be studied in an experimentally
realizable system that is also accessible to many theoretical approaches.
We now give a brief overview of some of the interesting properties that can arise from spin frustration in corner

sharing triangle systems. One class of frustration effects is the presence of anomalies that occur at applied magnetic
field strengths close to 1/3 of the saturation field Bsat. (The saturation field is the field strength above which the
ground-state has all spins aligned with the field). It has been observed both experimentally11,12 and theoretically11,12,36

that the differential susceptibility dM/dB (the rate of change of the total system magnetization with respect to field
strength) displays a depression near field strengths of Bsat/3. A rough understanding of this is that near Bsat/3, the
magnetically stiff uud states of the spin triangles become energetically competitive with the usual ground-state, but
this alone only gives a qualitative accounting of the experimental data. In Keplerate systems, a more quantitative
match12 to the observed dM/dB depression was achieved under the assumption of random variations in the spin
couplings within the classical Heisenberg model. Note that the Bsat/3 anomaly does not only appear in the differential
susceptibility, but also shows up, for example, in zero temperature magnetization predictions13, in the heat capacity36,
and as a phase transition in the classical Heisenberg model on the Kagome lattice36,37.
Another interesting aspect of frustrated spin systems is the possibility of unusually low-lying singlet excited states.

Although these states will not be treated in this study, they have attracted a great deal of interest13,14,38 and are
implicated as a means to explain puzzling experimental neutron scattering data15,16 in the giant Keplerate magnets.
To a first approximation (although see Ref.12) magnetism in these systems can be described by an isotropic Heisen-

berg model, with the M ion coupled antiferromagnetically via the Mo-O bridges. The M ions are believed to lie in
near perfect Oh coordination with the oxygens, and the V, Cr, and Fe giant Keplerates can be thought of as S = 1/2,
3/2, and 5/2 spin centers. Most experimental work has focused on characterizing the S = 5/2 Fe system, and it is
the corresponding S = 5/2 Heisenberg model on the icosidodecahedron to which we apply the CPS wavefunction.
The essential problem in studying the icosidodecahedron Heisenberg model is the very large Hilbert space that

needs to be considered, which is 230, 430, 630 for the V, Cr, Fe species. Exact (full) diagonalization of the Heisenberg
Hamiltonian has been carried out in the S = 1/2 case of the V30 magnet39 but is impossible for the other magnets.
Nonetheless, many of the qualitative features of these systems appear to be well described by a rather simple model
known as the quantum rotational band model. The Keplerate magnets are tripartite (see Figure 2), and we can
consider therefore a family of spins living on the A, B, C sub-lattices. The quantum rotational band model (RBM)17

asserts that the energies of the states can be modeled as arising from the couplings of total spins on the A and B and
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C lattice as an effective triangle and is given by the Hamiltonian

Hband = J
D

N

[

~S2 − γ
(

~S2
A + ~S2

B + ~S2
C

)]

, (2)

where N is the number of spins, D and γ are free parameters, ~S is the net lattice spin, and ~SA, ~SB, and ~SC are the
net spins on each sublattice. The eigenstates of this Hamiltonian have energies

E(S, SA, SB, SC) = J
D

N
[S(S + 1)− γ (SA(SA + 1) + SB(SB + 1) + SC(SC + 1))] , (3)

with degeneracies given by the number of ways a given total spin S can be made up from the sublattice spins via spin
coupling rules. As will be discussed in the results below, the RBM has been successful at qualitatively reproducing
experimental magnetizations17 as well as the total energies of some higher level theoretical treatments10. It has
also been successfully applied to explain the Mo72Fe30 magnet’s NMR relaxation dynamics40. However, as we will
demonstrate in the case of differential susceptibility, it fails to predict the peculiar properties of the Mo72Fe30 Keplerate
magnet related to the Bsat/3 anomaly. For these effects we need to consider all the spin degrees of freedom, for which
we need explicit approximations for the quantum wavefunction.

III. CORRELATOR PRODUCT STATES

A. General Theory

Consider a set of k spins s1 . . . sk. In an S = 5/2 system, such as in the Fe30-Keplerate magnet, each s varies over
the 6 ms levels of each iron center. The quantum wavefunction written in the complete spin Hilbert space is

|Ψ〉 =
∑

s1s2...sk

Ψs1s2...sk |s1s2...sk〉 (4)

=
∑

s

Ψs|s〉

where s denotes the vector of spin configurations s1s2 . . . sk.
The amplitude Ψs1s2...sk is infeasible to obtain exactly for a system as large as the Fe30-Keplerate magnet. Correlator

product states provide an approximation for the full amplitude in terms of simpler objects known as correlators. In
spin systems, a correlator defines a set of amplitudes over a subset (domain) of the spin sites. For example, a correlator
on sites i, j defines a set of amplitudes csisj . Correlators can be constructed to act on an arbitrary number of sites
(see Figure 1). Such a general correlator is written as csλ where sλ denotes the spin configuration of the subset of
sites λ. To obtain the CPS, we approximate the wavefunction amplitudes Ψs in Eq. (4) as a product of correlator
amplitudes over the different subsets of sites λ,

Ψs =
∏

λ

csλ (5)

Note that the domains λ of the different correlators will usually contain overlapping sites. For example, a CPS
wavefunction for a one-dimensional arrangement of spins with “nearest neighbor” correlators, would be written as

Ψs1s2...sk = cs1s2cs2s3 . . . csk−1sk (6)

By using correlators that cover increasingly larger numbers of sites, we can make the CPS approximation arbitrarily
exact.

B. Monte Carlo Optimization

We use the variational Monte Carlo algorithm to optimize the CPS wavefunction to obtain approximate ground-
states of the Keplerate magnet. (We have shown elsewhere that the CPS wavefunction can also be used with non-
stochastic algorithms21, although these are not employed here). In variational Monte Carlo, the energy is written
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as

E =
〈Ψ|H |Ψ〉

〈Ψ|Ψ〉
(7)

=
∑

s

|Ψs|
2

〈Ψ|Ψ〉
EL(s)

where the local energy EL(s) is defined by

EL(s) =
∑

s
′

Ψs
′

Ψs

〈s|Ĥ |s′〉. (8)

As long as Ψs can be evaluated efficiently, which is the case for the CPS wavefunctions, a Markov chain can be used
to sample the probability distribution |Ψs|

2/〈Ψ|Ψ〉 and efficiently compute the overall energy as an average of the
sampled local energies. The energy is then variationally minimized using stochastic estimates for the gradient with
respect to the correlator amplitudes. Note that it is easy to constrain the Monte Carlo sampling over s, for example in
Eq. (7), to only those configurations with a given value of Sz, and this allows us to obtain approximate ground-states
in different Sz sectors. Once the wavefunctions are obtained, expectation values for various correlation functions can
also be readily computed by Monte Carlo sampling.

C. Wavefunction and Optimization Details

To study the Fe30-Keplerate magnet we used a CPS in the form of Eq. (5) with bow tie shaped correlators. There
are 30 different bow ties in all, each defined by choosing one site and all of its nearest neighbors (see Figure 1 for an
example). After discovering that randomly chosen correlator amplitudes were not effective as initial guesses for the
variational optimization, we chose to use as our guess a relatively simple state similar to the classical ground state. To
be precise, our initial guess for Sz = 0 was chosen to be a spin-coherent state41 which can be exactly represented by a
CPS. In a spin-coherent state, the wavefunction amplitude factorizes into a product of amplitudes on individual sites
Ψs1s2...sk = cs1cs2 . . . csk , and each site amplitude csi defines a direction for the spin on the site. Here we chose the
rotation angles for each site to be the classical ground state’s spin direction for that site’s sublattice (the sublattices
were assigned based on the coloring shown in Figure 2). Starting from this guess, we optimized the wavefunction’s
energy under Sz = 0 projection, and then used the resulting wavefunction as an initial guess for the Sz = 1 sector.
In this fashion we worked our way up the magnetization ladder, obtaining a wavefunction for each Sz sector. To help
ensure convergence, we then worked backwards, using the Sz = 74 solution for the Sz = 73 guess and re-optimizing,
retaining whichever wavefunction gave the lowest energy before moving down to the next Sz sector. This sweeping
procedure was especially helpful for resolving the minimum energies for Sz ≤ 30.

IV. RESULTS

A. Total energies

Many of the comparisons and insights we present in this section stem from the total energy results of our CPS
ansatz, which are displayed in Table I and Figure 3. As we described above, working with the CPS wavefunction in
the variational Monte Carlo framework, it is simple to constrain the value of the total system’s Sz spin, and so we
are able to probe the lowest energy state in each Sz sector. As seen in Figure 3, the minimum energy as a function
of Sz is nearly parabolic, as found in previous DMRG calculations10, and thus the CPS energies provide another
wavefunction-based verification of the qualitative correctness of the rotational band model (RBM). The agreement
is not quantitative, however, and Figure 4 shows the deviation of the raw CPS energies when we try to fit them to
the RBM form in Eq. (3). We see that except for the region near 1/3 of the maximum magnetization, the differences
between the CPS and RBM energies can be fit closely by a cubic correction, which is not surprising as cubic terms
are the leading order terms neglected by the RBM. The sharp change in the deviations near 1/3 of saturation is more
interesting, however, as it is responsible for creating the Bsat/3 anomalies that cannot be predicted by the RBM. We
will discuss these anomalies and the origins of the energy deviations responsible in Sections IVB and IVD.
In the inset to Figure 3, we see that our CPS calculations produce superior variational energies as compared to

DMRG. In addition to producing superior variational energies, a fit of the CPS energies to the lowest band of the
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RBM produces band parameters (D = 6.22, γ = 1.07) that resemble much more closely the band parameters fitted
to experimental magnetization data (D = 6.23, γ = 1.07)17 than those produced by a fit to the DMRG energies
(D = 6.17, γ = 1.05)10. Note that both the CPS and DMRG fits were performed by matching the total energies at
zero field (Sz = 0) and saturation (Sz = 75) and that the saturation energy in Table I for the DMRG fit differs from
375 only because the parameters given in Ref.10 are rounded to two decimal places.
In addition to RBM comparisons, we may compare the CPS singlet-triplet gap with the singlet-triplet gap inferred

from experimental heat capacity data. In their study of Mo72Fe30, Fu et al used a two-level Schottky model to
estimate the magnetic contribution to the measured low temperature heat capacity, extracting a singlet-triplet gap of
0.09 meV16. Using the value of J ≈ 0.134 meV17,18, we find that our CPS calculations predict a gap of 0.015 meV,
which is smaller than the RBM result of 0.027 meV and significantly smaller than the gap inferred from heat capacity
measurements. Since both the Sz = 0 and Sz = 1 energies are upper bounds, this discrepancy suggests that the
CPS Sz = 0 ground-state energy, although an improvement over the DMRG energy, may be relatively too high. This
possibility motivates further improvements in the CPS ansatz, suggestions for which we mention in the conclusion.

B. Properties

Using the raw CPS energies or their fit to the rotational band model, we can evaluate the magnetization M ,
differential magnetization dM/dB, and heat capacity Cp of the S = 5/2 icosidodecahedron, as functions of the applied
field B. Note that in our calculations of dM/dB and Cp we do not include the effects of excited states other than
the lowest state in each spin-sector. Indeed, we show that including only the lowest spin-state contributions already
produces much of the anomalous behavior common to spin systems built of corner sharing triangles. Furthermore, in
the case of dM/dB, the neglect of low-lying singlets is probably a reasonable approximation at low temperatures, as
such states do not contribute directly.
To make quantitative predictions, we have taken17,18 the interaction strength as J/kB = 1.566K and the spec-

troscopic splitting factor as g = 1.974. We begin by considering the magnetization curve at finite temperatures, for
which experimental results can be matched closely by the RBM17. As may be expected by the similarity between the
experimental and ab initio CPS fittings of the band model parameters discussed in Section IVA, the magnetization
curve obtained from the CPS-parameterized RBM also matches the experimental magnetization curve closely, as seen
in the bottom panel of Figure 5. More interesting, however, is the zero temperature limit of the magnetization curve,
shown in the upper panel of Figure 5, where we see that the icosidodecahedron has anomalies in its magnetization
staircase at field strengths near 1/3 of the saturation field strength Bsat = 17.7T . Our results show a pair of magne-
tization plateaus near Bsat/3, in contrast to the single plateau seen in exact diagonalization results for the S = 5/2
cuboctahedron13. While improved energies from further refinements to our ansatz (see Section V) may restore a
single plateau structure, our current level of theory predicts two plateaus. We leave the discussion of the physical
interpretation of the energy deviations and corresponding staircase anomaly to section IVD. Here we will show that
this feature of the ground-state spectrum is sufficient to reproduce most of the unusual properties of the magnet near
Bsat/3, without the need to explicitly consider other excited states.
The differential susceptibility derived from the CPS energies is shown in Figure 6. We see that there is a sharp

rise followed by a depression in the differential susceptibility, which in the case of the 0.5K results can be clearly
associated with the staircase anomalies, which show up as gaps in the delta function progression of the 0K dM/dB
curve. Note that the area in the trough is greater than that in the peak, which, in conjunction with inhomogeneities
in the interactions12 of the Mo72Fe30 compound that could smear the features together, may explain why only a broad
trough is seen in experimental measurements11,12. In contrast to the CPS results, the RBM predicts only a very small
dip in the dM/dB curve near Bsat/3.
As for the case of differential susceptibility, the heat capacity also shows a distinct feature near Bsat/3, even

when the low-lying excited states are ignored as in our CPS calculations. (Note that to the best of our knowledge,
detailed measurements of the heat capacity are not yet available). As shown in Figure 7, the heat capacity derived
from the CPS energies oscillates near the staircase anomaly, whereas the heat capacity derived from the RBM shows
only a small dip in this region. Note that the oscillations are present and essentially the same both when the CPS
ground states are assumed to be non-degenerate and when they are assumed to have the same degeneracies as the
corresponding states in the RBM. This offers reason to expect that the feature would be robust to the inclusion of
additional excited states.
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C. Spin correlations

With the ground-state CPS wavefunction it is also possible to compute the spin-spin correlation functions. These
are shown in Table II for the case of no external field. As the spin on the magnetic sites increases from 1/2 to ∞,
the resulting ground-state is expected to become increasingly classical. The classical ground-state for corner-sharing
triangles is well-known. Recall that the lattice is tripartite. Then all spins on sub-lattice A (and similarly for B and
C) point in the same direction in the classical ground-state. The relative angle between the spins on sub-lattices A,
B, and C is 120 degrees as is found in the classical ground-state for the Heisenberg triangle. Note that there are an
infinity of classical ground-states, as the plane of the spins for sub-lattices A, B, and C can be rotated continuously.
From our calculated correlation functions, the strongest correlations are naturally within the triangles. In the

classical case, the spins are perfectly rotated from each other by 120 degrees, producing a dot product ~Si · ~Sj/(|~Si||~Sj |)
of -0.5 between nearest neighbor spins. Our CPS ansatz predicts that quantum fluctuations enhance the expectation
value of this dot product to -0.57. In doing so, the parallelity of spins on the same sub-lattice is disrupted. In the
classical case we expect the spins to be perfectly parallel on the same sub-lattice, but quantum fluctuations reduce
the average same sub-lattice dot product from 1.0 (the classical value) to 0.79. These values are the same for each
sub-lattice, showing that at least by this metric, our ansatz preserves the equivalence of the different sub-lattices.

D. Remnants of the Bsat/3 phase transition

We now seek to provide some qualitative understanding of our wavefunction at different total Sz values. In doing so
we will show that our wavefunction undergoes a change similar to a phase transition as the applied field is increased.
In classical corner sharing triangle lattices, phase transitions are known to occur near Bsat/3 between phases in which
the spins on the different sublattices take on “Y” or “V” shaped configurations37. We must stress, however, that our
numerical results do not allow us to fully distinguish whether our wavefunction’s phase transition behavior is a true
property of the S = 5/2 icosidodecahedron or an artifact of our approximate ansatz, a point we discuss in some detail
below.
To characterize our wavefunction, we will focus on the behavior of the spin triads that make up each of the

icosidodecahedron’s triangles, an approach similar to the characterization of phases in the two dimensional infinite
triangular and Kagome lattices. There, the phases are coplanar and described as either “Y” (or umbrella), “V”, uud,
or uuu37. The “Y” and “V” phases are so named because the shapes of these letters correspond to how the three
spins are arranged in the plane (in the “V” case two of the spins are collinear). We will see that our wavefunction
undergoes a sharp change between two states similar to the classical “Y” and “V” states, although our “Y” state is
not coplanar and the spins in our “V” state may not be completely collinear (see Figures 8 and 9 for cartoons).
To probe the character of our wavefunction’s spin triads, we have computed two expectation values. First, we have

computed the scalar triple product of the three spin vectors of each triangle ~Si · (~Sj × ~Sk), which gives the volume of
the parallelepiped that they define. For coplanar or collinear spins, the triple product will be zero, which should help
us differentiate between these configurations and others, such as a partially folded umbrella arrangement. In Figure
8, we plot the averages (over the twenty triangles) of the parallelepiped volumes for the ground state wavefunctions at
different applied fields. We see that before Bsat/3, the volume increases with field strength, which suggests the state
may be a “folding umbrella” in which the initially 120◦ rotated spins gradually close towards the z axis. However, near
Bsat/3, the volume drops abruptly to zero and remains there for all higher field strengths. It is tempting to interpret
this rapid drop as the remnants of what in classical 2D lattices would be a phase transition between non-coplanar
and coplanar phases, although a recent study of the classical triangular and Kagome lattices observes only coplanar
phases at low temperatures37. It appears that either quantum effects or errors inherent to our ansatz are stabilizing
a non-coplanar arrangement for applied fields below Bsat/3.
To further elucidate the qualitative nature of the states before and after Bsat/3, we have also computed for each

triangle the expectation values of the product of the three spins’ Sz operators, S
i
zS

j
zS

k
z . The average of these quantities

over all triangles is shown in Figure 9 for different applied field strengths. We see that before Bsat/3, the SzSzSz

expectation values are negative, indicating that if the state is indeed a folding umbrella in this regime that one of the
three spin vectors lies below the xy plane (this is the only way for three vectors with a non-negative net Sz to give
a negative SzSzSz product). Thus it appears the state may be a tilted umbrella, in which the axis (or “handle”) of
the umbrella has been rotated away from vertical in such a way as to place one of the spokes below the xy plane.
As with the triple product, our Sz product shows an abrupt change near Bsat/3, dropping rapidly to a value near
the maximum-magnitude negative of (−5/2)3 characteristic of the uud configuration. It has been shown11 that the
uud state makes a major contribution to the properties of the classical spin icosidodecahedron near Bsat/3. The
analogous quantum states play a similar role in the S = 1/2 icosidodecahedron13, and the same now appears to be
true for S = 5/2. Upon increasing the field further, the Sz product rises smoothly to its maximum value at saturation,



7

indicating that the three coplanar spin vectors are smoothly converting from an uud type configuration into the uuu
configuration.
As a final means to give a qualitative feel for our wavefunction, we have constructed the classical spin triad that most

closely matches the above expectation values. To do so, we have required that the triple products, Sz products, and
total Sz magnetizations match those given by our quantum wavefunction. In addition, we have arbitrarily restricted
one of the three vectors to the xz plane (our quantum expectation values are all rotationally invariant about the z
axis). Finally, in order to create a unique classical state, we have also required that the x and y components of the
classical vectors each add to zero, as is the case for the classical ground state on a spin triangle37. These requirements
give a unique evolution of the classical spin vectors with increasing applied field strength, which is depicted in Figure
10. Note that as the state approaches saturation, the quantum expectation values become incompatible with a classical
spin state, and so we have only plotted the spin evolution up to the point at which compatibility fails.
Unfortunately, we cannot rule out the possibility that the phase change behavior we observe may be an artifact of

our approximate wavefunction. Our primary concern is that our initial guess is biased towards a particular coloring
of the icosidodecahedron lattice (see Section III C and Figure 2), but this is not the only way to color the lattice and
thus the initial guess does not possess all the correct symmetries. While it is possible that the optimization repairs
this deficiency, it would be preferable to work with a wavefunction without this handicap. In future work it may be
possible to use as the ansatz a linear combination of CPS states with an initial guess taken such that each CPS in
the combination is biased towards a different lattice coloring, thus removing fears of a coloring bias in the overall
ansatz. While our computer implementation is not currently capable of optimizing such an ansatz, we do not foresee
any fundamental barriers to executing such an optimization in the future.

V. CONCLUSIONS

In this work we demonstrated that the correlator product state, a very simple ansatz designed for the treatment of
strongly correlated spins, can successfully be used to model the quantum states of complex molecular magnets such as
the Fe30 Keplerate system. The size of this system lies far outside the range of exact diagonalization. Our calculated
variational energies are significantly lower than those previously obtained with the density matrix renormalization
group and produce a fit to the rotational band model that is almost identical to that derived from experimental
magnetization data. Furthermore, unlike the rotational band model, our ansatz is capable of predicting anomalies
in the differential susceptibility and heat capacity that are observed in frustrated magnetic systems near 1/3 of the
saturation field. We have also analyzed a number of correlation functions among the spins, showing how the quantum
state deviates from classical behavior. Finally, we have shown how as a function of magnetic field, the quantum state
appears to undergo a change reminiscent of phase transitions seen in classical 2D corner sharing triangular lattices.
In future research, more work is needed to clarify a number of aspects of this study. While our variational energies are

superior to previous theoretical treatments, neutron scattering data suggests there is still ample room for improvement,
especially for small applied fields, as our predicted singlet-triplet gap is too small. In addition, it is not clear that the
optimization of our ansatz fully preserves all symmetries of the icosidodecahedron, which makes definitive conclusions
regarding the observed phase transition behavior difficult. To address these shortcomings, we have suggested that
an ansatz consisting of a specially crafted linear combination of correlator product states be employed. The other
obvious omission is a treatment of excited states, given that the presence of low-lying excitations is a key feature of
frustrated spin systems. Generalizing the methodology to model excited states within the Monte Carlo framework is
not as straightforward as the generalization to linear combinations, but the critical importance of low-lying excitations
makes it a highly desirable goal.
The CPS family of states can naturally be applied to other magnetic systems as well as to more general non-spin

electronic systems42. In the context of molecular magnetism, the effects of anisotropy are intriguing due to possible
applications in data storage43, and while we have limited ourselves to the isotropic case, the CPS ansatz can in
principle also be applied to systems with anisotropic Hamiltonians. For the more general case of electronic structure,
it is advantageous to combine the correlators with a fermionic reference function. Correlators used in this way are
formally the same as the Jastrow factors long studied in electronic structure. Jastrow factors are usually employed
to model “weak” correlations associated with the electron-electron cusp, while correlators have proven effective at
introducing strong correlations in the Hubbard model and some molecular systems. In the present study, we have
shown that even the very complex correlations arising from magnetic frustration can be described effectively using
correlators. Taken together, these findings motivate the use of correlator product states as a means to describe both
weak and strong electron correlations simultaneously, a prospect that is under active investigation.



8

VI. ACKNOWLEDGMENTS

The authors would like to thank Jürgen Schnack for helpful discussions regarding the rotational band model. This
work was supported by NSF EAGER CHE-1004603, the David and Lucile Packard Foundation, and by the Miller
Institute for Basic Research in Science.



9

1 D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006.
2 O. Kahn, Molecular Magnetism, VCH, New York, 1993.
3 S. J. Blundell, Contemp. Phys. 48, 275 (2007).
4 S. J. Blundell and F. L. Pratt, J. Phys.: Condens. Mat. 16, R771 (2004).
5 D. Gatteschi, Adv. Mater. 6, 635 (1994).
6 J. Schnack, Dalton Trans. 39, 4677 (2010).
7 M. T. Pope and A. Müller, Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications, Kluwer Academic
Publishers, Dordrecht, 2001.

8 A. Müller et al., Angew. Chem. Int. Ed. 38, 3238 (1999).
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TABLE I: Ground state energies of CPS and the RBM, in units of J , for the S = 5/2 Heisenberg model on the icosidodecahedron
for different total Sz sectors of Hilbert space. The raw energies of the CPS wavefunction are given, as well as the energies
produced by fits to the RBM using CPS energies (CF), DMRG energies10 (DF), and experimental magnetizations17 (EF). See
Section IVA.

Sz CPS CF DF EF Sz CPS CF DF EF

0 -216.25 -216.25 -210.55 -216.65 38 -61.23 -62.52 -58.15 -62.77

1 -216.14 -216.04 -210.35 -216.44 39 -52.91 -54.43 -50.13 -54.67

2 -215.80 -215.63 -209.93 -216.03 40 -44.39 -46.14 -41.90 -46.36

3 -215.23 -215.00 -209.32 -215.40 41 -35.68 -37.63 -33.47 -37.85

4 -214.45 -214.18 -208.49 -214.57 42 -26.78 -28.92 -24.83 -29.13

5 -213.43 -213.14 -207.47 -213.53 43 -17.67 -20.00 -15.99 -20.20

6 -212.20 -211.89 -206.23 -212.29 44 -8.37 -10.87 -6.94 -11.06

7 -210.74 -210.44 -204.79 -210.83 45 1.12 -1.53 2.31 -1.71

8 -209.06 -208.78 -203.15 -209.17 46 10.81 8.01 11.77 7.84

9 -207.16 -206.91 -201.30 -207.30 47 20.70 17.76 21.44 17.60

10 -205.05 -204.84 -199.24 -205.23 48 30.77 27.72 31.31 27.57

11 -202.71 -202.56 -196.98 -202.94 49 41.05 37.88 41.39 37.74

12 -200.16 -200.07 -194.51 -200.45 50 51.52 48.26 51.67 48.13

13 -197.38 -197.37 -191.84 -197.75 51 62.18 58.84 62.16 58.72

14 -194.39 -194.47 -188.96 -194.84 52 73.04 69.62 72.86 69.52

15 -191.17 -191.35 -185.87 -191.73 53 84.09 80.62 83.76 80.52

16 -187.76 -188.04 -182.58 -188.41 54 95.34 91.82 94.86 91.74

17 -184.11 -184.51 -179.08 -184.88 55 106.78 103.23 106.18 103.16

18 -180.24 -180.77 -175.38 -181.14 56 118.41 114.85 117.69 114.79

19 -176.17 -176.83 -171.47 -177.19 57 130.24 126.68 129.42 126.62

20 -172.00 -172.68 -167.36 -173.04 58 142.26 138.71 141.34 138.67

21 -168.22 -168.33 -163.04 -168.68 59 154.47 150.95 153.48 150.92

22 -163.79 -163.76 -158.52 -164.11 60 166.88 163.39 165.82 163.38

23 -159.20 -158.99 -153.79 -159.33 61 179.47 176.05 178.36 176.05

24 -154.42 -154.01 -148.85 -154.35 62 192.26 188.91 191.12 188.92

25 -149.76 -148.83 -143.71 -149.16 63 205.23 201.98 204.07 202.01

26 -144.40 -143.43 -138.36 -143.76 64 218.40 215.26 217.24 215.30

27 -138.87 -137.83 -132.81 -138.15 65 231.75 228.74 230.60 228.80

28 -133.01 -132.02 -127.05 -132.34 66 245.30 242.44 244.18 242.50

29 -126.86 -126.01 -121.09 -126.31 67 259.02 256.33 257.96 256.42

30 -120.43 -119.78 -114.92 -120.08 68 272.93 270.44 271.94 270.54

31 -113.78 -113.35 -108.54 -113.65 69 287.03 284.76 286.13 284.87

32 -106.92 -106.71 -101.96 -107.00 70 301.30 299.28 300.53 299.40

33 -99.82 -99.87 -95.17 -100.15 71 315.75 314.01 315.13 314.15

34 -92.50 -92.81 -88.18 -93.09 72 330.35 328.94 329.94 329.10

35 -84.98 -85.55 -80.98 -85.82 73 345.18 344.09 344.95 344.26

36 -77.26 -78.08 -73.58 -78.34 74 360.00 359.44 360.17 359.63

37 -69.33 -70.41 -65.97 -70.66 75 375.00 375.00 375.60 375.20
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TABLE II: Averages of the dot product ~Si · ~Sj/(|~Si||~Sj |) for different choices of the sublattices (A,B,C) for sites i and j. The
CPS results are for the wavefunction with zero total Sz, while the numbers for the classical Heisenberg model correspond to
zero applied field. The abbreviation n.n. stands for nearest neighbor. See Section IVC.

average type i j CPS Classical

all A A 0.79 1.00

all B B 0.79 1.00

all C C 0.79 1.00

n.n. A B -0.57 -0.50

n.n. A C -0.57 -0.50

n.n. B C -0.57 -0.50

non-n.n. A B -0.39 -0.50

non-n.n. A C -0.39 -0.50

non-n.n. B C -0.39 -0.50
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FIG. 1: (color online) The giant Keplerate Mo72Fe30 molecular magnet is shaped like an icosidodecahedron, with the Fe atoms
positioned on the vertices and the −O−Mo−O− bridges along the edges. Three example correlators have been shaded in
red: a two-site nearest neighbor, a three-site triangle, and a five-site bow tie.
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FIG. 2: The icosidodecahedron lattice flattened to a planar graph. The vertices are shown under the particular three-coloring
that was used to generate the initial guess for our CPS wavefunction optimization.
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FIG. 3: (color online) Ground state energies for the S = 5/2 Heisenberg model on the icosidodecahedron for different total Sz

sectors of the Hilbert space. In the main panel the CPS wavefunction’s energies are shown along with the corresponding fit to
the RBM form, Eq. (3). In the inset the CPS energies are compared to the RBM produced by fitting DMRG energies10. See
Section IVA.
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top panel we plot the low temperature limit of the magnetization curve derived from the CPS wavefunction energies. In the
lower panel we plot finite temperature curves for the rotational band model using an ab initio parameterization based on the
fit to the CPS energies (see Figure 3), as well as the experimental results (effective temperature of 4K) of Schnack et al17. See
Section IVB.
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CPS wavefunction are shown both for the case when the ground state in each Sz sector is assumed to be non-degenerate (CPS)
and when each Sz ground state is assumed to have the same degeneracy as the corresponding state in the RBM (CPS†). For
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the individual triangles’ triple products all had the same sign and that they deviated very little from the average. See Section
IVD.



20

-12

-8

-4

 0

 4

 8

 12

 16

 0  2  4  6  8  10  12  14  16  18

S z
 P

ro
du

ct

Applied Field (T)

Y

V

Bsat/3

FIG. 9: (color online) The expectation values of the product Si
zS

j
zS

k
z of the three z components of the spin triad’s vectors,

averaged over all triangles {i, j, k}. Note that the individual triangles’ products deviated very little from the average. See
Section IVD.



21

FIG. 10: (color online) Evolution of a triad of classical spin vectors depicting the qualitative changes in our wavefunction with
increasing applied field. The positions of the three vectors’ endpoints on the S2 = 35/4 sphere are given by a red line with
circles, a green line with squares, and a blue line with diamonds. The heavy black lines represent the spin vectors at B = 0,
the dashed grey lines represent the spin vectors just before the transition, and the dot-dot-dashed pink lines represent the spin
vectors just after the transition. The thin black circle represents the intersection of the S2 = 35/4 sphere with the xz plane.
See Section IVD.


