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ABSTRACT  
 

First-principles study of phase stability of various phases of Ti2N under normal conditions 

and as a function of pressure were carried out. Among the ε- and δ’-phases of Ti2N that are 

observed experimentally, ε-Ti2N is the most stable. The δ’-phase can only exist at high 

temperature due to the soft acoustic modes at the X point. The origin of the tetragonal structure 

of both the ε- and δ’-phases is supposed to be caused by the tetragonal local lattice distortion 

around a nitrogen vacancy. Based on the results of the total-energy and phonon-spectrum 

calculations at zero temperature, the following sequence of phase transformation in Ti2N under 

pressure is predicted: ε-Ti2N (space group P4/mnm), P=77.5 GPa → Au2Te-type (space group 

C2/m), P=86.7 GPa → Al2Cu-type (space group I4/mcm). The present study shows that, to 

correctly predict relative phase stability, the peculiarities of the phonon spectra of the materials 

under investigation have to be properly accounted for. 

 
 
I. INTRODUCTION 
 

Titanium nitrides TiNx form a class of materials with the NaCl-type crystal structure (B1) in 

the homogeneity range 0.38<x<1.15, and exhibit extremely high melting points, hardness, and 

metallic conductivity [1,2]. These materials are widely used as main layers in ultra-hard nano-

composite coatings [3]. In transition metal compounds (TMC), non-metal vacancies are not 

randomly distributed, but instead display long or short-range order. In addition, vacancies induce 

small local distortions of the lattice [2]. 

In the present study, we focus on the titanium nitride Ti2N, or TiNx with the composition x= 

0.5. At low nitrogen content (0.38<x<0.61), TiNx annealed below 1073 K exhibits a δ’-Ti2N 

(TiNx, x=0.5) superstructure (space group I41/amd) [4]. This superstructure is metastable, since, 

at 1023 K, the following phase-transformation sequence has been directly observed by neutron 

diffraction [5]: 

 

Quenched  δ- TiNx → δ + δ’ → δ’-Ti2N → δ + δ’ + ε → δ-TiN0.65 +  ε-Ti2N, 
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where δ is a distorted B1–TiNx structure, and ε-Ti2N (TiNx  x=0.5) is a stable phase with the 

tetragonal antirutile structure (space group P42/mnm) [6].  

        Recently, it was shown that the homogeneity ranges of the ε- and δ’- phases of TiNx are 

0.38 ≤ x ≤ 0.42, and 0.45 ≤ x ≤ 0.5, respectively [7]. This finding is not consistent with the 

results of the previous structural investigations [4-6], in which the authors found that both the ε- 

and δ’- phases of TiNx could exist in the range 0.38<x<0.61. Also, experimental investigations 

disagree with regard to the stability of the ε- and δ’- phases. In particular, according to previous 

observations [8-10], δ’-Ti2N is a metastable phase that exists in a narrow temperature range 900-

1180 K, whereas in other instances this phase was found to be stable below 900-1000 K [6,11-

13]. 

Band structure and total-energy calculations of both phases of Ti2N were carried out by 

Eibler using the FLAPW (full-potential linearized augmented plane-wave) method [14,15]. 

However, to our knowledge, electronic and phonon structures, and phase stability of Ti2N under 

pressure were not investigated at all. 

In the present work, we plan to fill this gap by studying the properties of Ti2N. We report on 

the results of first-principles investigations of phase stability, electronic and phonon structures of 

Ti2N under pressure. The relative phase stability of the ε- and δ’- phases, as well as of other 

phases of Ti2N under pressure was analyzed by taking into account the results of both total 

energies and phonon spectra. 

The paper is organized as follows.  In Sec. II we present our theoretical framework and the 

computational details.  Sec. III contains the results of our calculations together with comments. 

Finally, Sec. IV contains the main conclusions. 

 

II. COMPUTATIONAL ASPECTS 

 

A first-principles pseudo-potential procedure was employed to investigate the cubic, 

tetragonal, hexagonal, monoclinic, orthorhombic, and triclinic structures of Ti2N. Scalar-

relativistic band-structure calculations within the density functional theory (DFT) were carried 

out for different structures of Ti2N. To investigate the lattice relaxation around a nitrogen 

vacancy, the initial 64-atom (2×2×2) supercell of B1-type TiN was constructed from the basic 8-

atom cubic cell, and a single vacancy was placed in the center of the supercell. Also, we 

calculated the atomic configurations of the two clusters NTi14N18 and Ti14N18. These structures 

were considered as periodic cubic structures with a large lattice parameter of 17 Å, which 

guarantees that the atoms interact only inside the same unit cell. 
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The “Quantum-ESPRESSO” first-principles code [16] was used to perform the pseudo-

potential calculations with Vanderbilt ultra-soft pseudo-potentials to describe the electron-ion 

interaction [17]. In the Vanderbilt approach [17], the orbitals are allowed to be as soft as possible 

in the core region so that their plane-wave expansion converges rapidly.  For titanium, the semi-

core states were treated as valence states.  Plane waves up to a kinetic energy cutoff of 30 Ry 

were included in the basis set.  The exchange-correlation potential was treated in the framework 

of the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [18].  

Brillouin-zone integrations have been performed using sets of special points corresponding to the 

(8 8 8) (the 3-atomic cells) and (4 4 4) (the 6-12 –atomic cells) Monkhorst-Park meshes [19]. For 

the large supercells, we considered the (2 2 2) mesh that, although it generates a minimum 

number of k-points, provides an acceptable accuracy. Each eigenvalue was convoluted with a 

Gaussian with width σ=0.02 Ry (0.272 eV). All structures were optimized by simultaneously 

relaxing the atomic basis vectors and the atomic positions inside the unit cells using the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [20]. The relaxation of the atomic 

coordinates and of the unit cell was considered to be complete when the atomic forces were less 

than 1.0 mRy/Bohr (25.7 meV/Å), the stresses were smaller than 0.025 GPa, and the total energy 

during the structural optimization iterative process was varying by less than 0.1 mRy (1.36 

meV). The crystalline and energetic parameters of the structures of Ti2N under investigation 

obtained after structural optimization are summarized in Table I. The electronic densities of 

states (DOS) and the Fermi surfaces were calculated using the (12 12 12) mesh. 

The above-described pseudo-potential procedure was used to study the phonon spectra of 

tetragonal, hexagonal, and triclinic Ti2N in the framework of the density-functional perturbation 

theory (DFPT) described in Refs. [16,21]. The first-principles DFPT calculations were carried 

out for the (4 4 4) q-mesh, and then the phonon densities of states (PHDOS) were computed 

using the (12 12 12) q-mesh by interpolating the computed phonon dispersion curves. Both the 

DOS and PHDOS were calculated with the tetrahedron method implemented in the “Quantum-

ESPRESSO” code [16]. 

      To verify an acceptability of the chosen conditions of the calculations we estimate the heat of 

formation of TiN and ε-Ti2N, Hf, using the expression Hf = Etot - ∑ni Ei, where Etot is the total 

energy of the bulk compound with ni atoms of all involved elements i (Ti and N) and Ei is the 

total energy of the bulk hexagonal close-packed Ti (space group P63/mmc, No. 194), and half of 

the energy of N2 molecule, respectively. The total energy and equilibrium bond length of N2 

molecule were computed using the extended two-atom cubic cell. The bond length of N2 

molecule was in agreement with the experimental value (1.098 Å) within 1%. The computed 

values of  Hf  for TiN and ε-Ti2N are -3.46  and -3.98, respectively that are in good agreement  
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with the corresponding experimental values of 3.46 [22] and 4.12 [23] and theoretical values of 

3.34 and 3.86 [15], respectively (in units eV/formula unit). It follows that ε-Ti2N  

is stable over TiN + Ti, since the heat of formation of this reaction is -0.52 eV/formula unit.  

 

III. RESULTS AND DISCUSSION 
 
A. Ti2N structures at equilibrium 
 

To predict possible stable structures of Ti2N, at first we calculated the total-energy of δ’-Ti2N 

and ε-Ti2N, as well of different phases of Ti2N that were identified for other TMC (V2N, Nb2N, 

Ti2C, V2C, W2C, Mo2C, Co2Si, etc.) [1,2] at equilibrium. The unit cells of the most stable phases 

of Ti2N are shown in Fig. 1. One can see from Table I that, at zero pressure, ε-Ti2N is the most 

stable phase in agreement with experiment [6] and previous total-energy calculations [15]. The 

δ’-Ti2N phase has a slightly higher total energy and cell volume than those for ε-Ti2N. The total 

energy difference equal to 3.068 kJ/mol confirms the value determined by Eibler (3.3 kJ/mol) 

[15]. The computed and experimental structural parameters, lattice parameters and cell volumes, 

shown in Table I agree very well. 

The electronic band structure and densities of states (DOS) of the ε- and δ’-Ti2N phases are 

shown in Fig. 2.  The lowest band are associated with the 2s states of N. The next band around -5 

eV originates from N 2p- and Ti 3d -states. Finally, the broad Ti d-band with a small admixture 

of N 2p states is located above the minimum of the DOS (around -3.5 eV). One can see that the 

electronic spectra of both phases are similar. The Fermi level (EF) crosses the local DOS 

minimum in a region of the spectrum formed by the Ti 3d-states (the partial DOS is not shown 

here). However, there is a difference: The peak of the DOS just below EF in ε-Ti2N is located 

lower in energy, than in δ’-Ti2N, which indicates that the Ti-Ti bonds in ε-Ti2N are stronger than 

in δ’-Ti2N, and this may explain the stabilization of the ε-phase instead of the δ’-phase at low 

temperatures. 

It is well known that δ’-Ti2N is derived from the B1-structure by assuming long-range order 

of the nitrogen vacancies, and by allowing for a shift of the Ti atoms along the fourfold 

tetragonal axis. A shift of the Ti atoms away from the nitrogen vacancy (0.123 Å) [12], as well 

as towards the vacancy [11] can be found in literature. A comparison of the computed structures 

of B1-TiN and δ’-Ti2N clearly indicates the shift of the neighbor Ti atoms away from the 

vacancy by 0.157 Å. We also performed additional calculations to establish a possible origin of 

the tetragonal lattice relaxation in the ε- and δ’-phases of Ti2N. For this purpose, we calculated 

the atomic configuration of the Ti32N31 structure that was represented by a 63-atoms cell of B1-

TiNx with a single nitrogen vacancy in the center. After relaxation, we identified a uniform shift 
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of the Ti atoms around the N vacancy away from this vacancy by 0.107 Å, and a shift of the next 

neighbor atoms towards the vacancy by 0.015 Å.  Since the uniform lattice relaxation around the 

vacancy could be related to the periodic boundary conditions (PBC) that were imposed to the cell 

and to the small size of the unit cell, we calculated a finite cluster Ti14N18 without imposing the 

PBC (see Sec. II).  We found an outward shift of the Ti atoms Δx =Δy = 0.156 Å, Δz = 0.157 Å. 

Although further work may be required, the latter results suggest that the tetragonal structure of 

both the ε- and δ’-phases of Ti2N is related to the tetragonal local lattice distortion around the 

nitrogen vacancy. 

Now let us address the following question: can the δ’-Ti2N phase be stable at low 

temperatures as was found in some experiments? To answer this question, we calculated the 

phonon dispersion curves along some symmetry directions of k-space, and the phonon densities 

of states (PHDOS) for the ε- and δ’-phases of Ti2N. The calculated phonon spectrum and the 

PHDOS of these phases are shown in Figs. 3. We note that the phonon spectrum of the ε-phase 

does not contain any soft modes, which explains why this phase should be dynamically stable. 

On the contrary, a softening of the acoustic phonon modes around the X point is observed in the 

phonon spectrum of δ’-Ti2N, which implies that this phase is dynamically unstable. We suppose 

that the soft phonon frequencies will increase with temperature and, correspondingly, the 

dynamically unstable δ’-Ti2N structure should be stabilized at high temperatures in agreement 

with experiments [8-10]. The similar situation is observed for other transition metal nitrides with 

the B1 structure, such as VN and NbN: these nitrides display soft phonon acoustic modes around 

the X point [24,25], the reason for which they can crystallize with the stoichiometric B1 structure 

only at high temperatures, or with a lower atomic composition on the non-metal sublattice 

leading to vacancy-stabilized phases [1,2]. 

For some TMC, phonon anomalies are caused by a resonance-like increase of the dielectric 

screening at specific phonon wave vectors. The latter can be caused by the specific “jungle-gym” 

topology of the Fermi surface (as in the case of TMC with a valence-electron concentration equal 

to 9: TiN, ZrN, VC, NbC) [26,27], or by the resonance-like increase of the electron-ion form 

factors at particular phonon wave vectors q (as in the case of the TMC with a valence-electron 

concentration equal to 10, e.g., VN, NbN, TiO) [28]. For the latter compounds, the longitudinal 

electron-ion form factors drastically increase for q = 2π/a (0 0 1) (X point), owing to inter-band 

transitions between the W points [28]. Given these findings, let us return to the discussion of the 

origin of the phonon anomalies in δ’-Ti2N. We calculated the Fermi surfaces of several bands for 

both the ε-and δ’-phases of Ti2N. The computed Fermi surfaces are shown in Figs. 4. For δ’-

Ti2N, a thorough inspection of the Fermi surface topology showed that any nesting regions that 
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could cause a resonance-like increase of the dielectric screening are lacking. It follows that, for 

δ’-Ti2N, the soft acoustic modes at the X point are not a consequence of the specific Fermi 

surface topology (cf. Fig. 4), but instead, are most likely caused by the abnormal dependence of 

the matrix elements of the electron-phonon interaction at the X point. 

Since we have the information on the phonon spectra of both the ε-and δ’-phases of Ti2N, it 

would be reasonable to estimate the structural stability of these phases taking into account the 

vibrational contribution, Fvib, to the Helmholtz free energy. We calculated Helmholtz  free 

energy differences ΔF(T) = ΔEtot + ΔFvib(T)  between these phases neglecting the soft phonon 

mode contribution to Fvib in δ’- Ti2N (the negative frequency region in the PHDOS, cf. Fig. 3). 

We suppose that such an approach will be quite justified, since: i) the integrated PHDOS in this 

region approximates only to 0.01 % of the value of the total integrated PHDOS; ii) the 

frequencies of the soft modes will increase with temperature.   

Figure 5 shows that the δ’-phase will be more stable than the ε-phase at temperatures above 

the critical temperature of 1250 K. The decomposition of the vibrational free energy into the 

internal energy and the entropy (not shown here) indicates that the transition is driven by the 

vibrational entropy. Our calculated value of the   ε to δ’ transition temperature of 1250 K is close 

to the experimental annealing temperature at which the structural transformation is activated 

[5,8-10].            

 

B. Ti2N structures under pressure 

In order to predict possible stable phases of Ti2N under high pressure we calculated the total 

energies (ET) of all the Ti2N phases presented in Table I as functions of cell volume (V). An 

analysis of the calculated volume dependence of the total energies, ET(V),  7.8-8.3 < V < 13.6-

14.8 Å3/atom, enabled us to identify the phases that could be derived from ε-Ti2N at high 

pressure. The total energies of these phases as functions of cell volume obtained by means of the 

six-order polynomial fit to the data points calculated by the first-principles procedure [16] are 

shown in Fig. 6. One can see from Fig. 6 that ε-Ti2N will transform into Cd2I-type Ti2N (space 

group P-3m1), and the latter phase will transform into Al2Cu-type Ti2N (space group I4/mcm) 

with increasing pressure. We should verify whether these new pressure-induced phases are 

dynamically stable. The phonon dispersion curves for Cd2I-type and Al2Cu-type Ti2N at 

equilibrium and under pressure are presented in Fig 6. The phonon dispersions clearly indicate 

that the Al2Cu-type Ti2N phase is dynamically stable at equilibrium and under pressure, whereas 

the Cd2I-Ti2N phase is dynamically unstable at any pressures owing to the availability of the 

condensed acoustic modes around the A and Γ points.  
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To determine a new structure that could be derived from the Cd2I type Ti2N phase by a 

condensation of the soft modes at the A and Γ points, we performed a symmetry-analysis using 

the ISOTROPY code [29]. The possible structures originated from Cd2I-type Ti2N are listed in 

Table II. Given the sequence of the phonon frequencies at the A point:  2A3- < 2A3+ < A2- < A1+ 

< A2- < 2A3- , the structures that could be originated from Cd2I-type Ti2N by means of a 

condensation of the acoustic A3- mode should have the following symmetries: No. 12, C2/m;  

No.15, C2/c; No. 2, P-1. At the Γ point, the frequencies are sorted out as follows: 2Γ3- <  Γ2- < 

2Γ3+ < Γ1+ < Γ2- <  2Γ3- . This means that a deformation of the unit cell according to the acoustic 

mode Γ3-, or a shift of the sublattices in accordance with the optical modes Γ3-, Γ2-, Γ3+, and Γ2- 

should lead to the formation of one of the structures listed in Table II. In order to find the most 

stable structure that could be derived from Cd2I-type Ti2N, one should compare the total energies 

of the different structures that are listed in Table II. However, this is tedious work and is out of 

the scope of the present study. Here, we calculated only the Au2Te-type Ti2N structure (space 

group C2/m, No. 12) that is listed in Table II to illustrate the formation of a new phase by means 

of a condensation of the Γ3+ or A3- modes in Cd2I-type Ti2N.  The phonon spectrum of the 

Au2Te-type Ti2N structure at equilibrium is shown in Fig. 7. There are no imaginary frequencies 

in the phonon dispersion curves of Au2Te-type Ti2N at equilibrium and under pressure (not 

shown here), and therefore this structure should be dynamically stable.  

To clarify in more detail the phase transformations in ε-Ti2N under pressure taking into 

account the finding discussed above, we calculated the enthalpies (H) and cell volume (V) of ε-

Ti2N, Au2Te-Ti2N and Al2Cu-Ti2N. For this purpose, we used the traditional Murnaghan 

equation of states [30]. There are four fitting parameters in the Murnaghan equation that 

correspond to an equilibrium state: V0 – unit cell volume, B0 - bulk modulus, B0’ – bulk modulus 

derivative, E0 - total energy. These parameters obtained from the Murnaghan fit are included in 

Table III.  In Fig. 8 we show the values of H and V as functions of pressure (P).  Given these 

results, as well the results of the total energy  and phonon spectrum calculations for various 

phases of Ti2N under pressure, we predict the following sequence of phase transformations in ε-

Ti2N under pressure:  ε-Ti2N (space group P4/mnm), P=77.5 GPa → Au2Te-type (space group 

C2/m), P=86.7 GPa → Al2Cu-type (space group I4/mcm). All these phase transformations are 

first-order in nature, since the cell volumes change abruptly at the transition points. We note that 

the transition pressure obtained from the six-order polynomial fit was 79.7 GPa and 86.2 GPa for 

the first and second transformations, respectively. The small differences in the transition 

pressures are supposed to be likely due to the different ranges of cell volumes considered in the 

two procedures.     
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Let us investigate the electronic structure of these new pressure-induced phases. The 

densities of states of the Cd2I-, Au2Te- and Al2Cu-type Ti2N phases at equilibrium are shown in 

Fig. 9. Below, we will attempt to estimate phase stability following the simple rule: the lower the 

density of states is at the Fermi level, the more stable the structure is. The motivation of this is 

that the high DOS at the Fermi level causes the existence of soft phonon modes in the long-wave 

region, and their collapse leads to a structural transformation. Figs. 2 and 9 show that the Fermi 

level for all the computed structures of Ti2N is located in a local minimum of the DOS except for 

Cd2I-type Ti2N, where a high DOS is associated with the Fermi level. Thus, the high DOS at the 

Fermi level in Cd2I-type Ti2N can be one of the reasons of the dynamical instability of this 

phase. It is seen that the small lattice distortion in Cd2I-type Ti2N resulting in the formation of 

the Au2Te-type phase of Ti2N, in turn, leads to a splitting of the peak of the DOS near the Fermi 

level. 

 

IV. CONCLUSIONS 

First-principles calculations of the electronic and phonon structures were performed and, on 

their basis, phase stability of various phases of Ti2N at equilibrium and under pressure was 

examined. The analysis of the dependencies of enthalpy and phonon spectra on pressure of these 

Ti2N phases enabled us to bring the following conclusions. ε-Ti2N at zero pressure is the most 

stable phase in agreement with experiment and previous total-energy calculations. The δ’-Ti2N 

phase can only exist at high temperature due to the availability of soft acoustic modes at the X 

point. We supposed that the tetragonal structure of both the ε- and δ’-phases of Ti2N is caused by 

a tetragonal local-lattice distortion around the nitrogen vacancy. The following phase 

transformations in ε –Ti2N under pressure at zero temperature are predicted: ε-Ti2N (space group 

P4/mnm), P=77.5 GPa → Au2Te-type (space group P-3m1), P=86.7 GPa → Al2Cu-type (space 

group I4/mcm).  
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TABLE I. Symmetry, structural parameters, and total energy (ET) (relative to ET of ε-Ti2N) of 
the calculated phases of Ti2N. 
 

Phase Space group No Na a 
(Å) 

b 
(Å) 

c 
(Å) 

V 
(Å3/atom) 

ΔET 
(eV/atom) 

ε-Ti2N P42/mnm 
Tetragonal 

136 6 4.928 
(4.945)a 

4.928 
(4.945)a 

3.021 
(3.034)a 

12.228 
(12.365)a 

0.0000 

δ'-Ti2N I41/amd 
Tetragonal 

141 6 4.132 
(4.149)b 

4.132 
(4.149)b 

8.806 
(8.786)b 

12.523 
(12.604)b 

0.011 

Cd2I 
(anti-CdI2) 

P-3m1 
Hexagonal 

164 3 2.983 
 

2.983 
 

4.760 
 

12.225 
 

0.017  

 
Au2Tec 

(anti-AuTe2) 

C2/m  
Monoclinic 

P1 
Triclinic 

12 
 
1  

6 
 
3  

5.136 
900  

2.974 
88.040 

3.002 
92.270  
2.974 
91.960 

4.761 
900  

4.761 
119.390 

 
~12.225 

 
 

  
0.017 

ε-Fe2N P-31m 
Hexagonal 

162 9 5.123 
 

5.123 
 

4.759 
 

12.024 
 

0.051 

 
Ti2Cc  

Fd-3m 
Cubic 
R-3m 

Rhombohedral 

227 
 

166 

12 
 

12  

8.389  
 

5.932 
600 

8.389  
 

5.932 
600 

8.389  
 

5.932 
600 

 
12.298  

 

 
0.073   

Co2Si Pnma 
Orthorhombic 

62 12 4.181 
 

4.151 
 

8.2998 
 

12.003 
 

0.196  

Al2Cu I4/mcm 
Tetragonal 

140 6 5.167 
 

5.167 
 

4.978 
 

11.160 
 

0.533  

Ti2C R-3m 
Rhombohedral 

166 3 3.454 
69.420 

3.454 
69.420 

3.454 
69.420 

11.624 
 

0.674 

Fe2P  P-62m 
Hexagonal 

189 9 6.048   
 

6.048  
 

3.120  
 

10.978 
 

0.712 
 

ξ-Fe2N Pbcn 
Orthorhombic  

60 12 5.168 
 

6.512 
 

4.211 
 

11.807 
 

0.742 
 

Cu2Sb P4/nmm 
Tetragonal 

129 6 3.248 
 

3.248 
 

6.262 
 

11.010 
 

0.796 
 

Ge2Ta P6222 
Hexagonal 

180 9 4.698 
 

4.698 
 

5.362 
 

11.386 
 

1.173 
 

γ-W2C P63/mmc 
Hexagonal 

194 6 4.153 
 

4.153 
 

4.845 
 

9.881 
 

1.307 
 

aX-ray diffraction experiments [6]. 
bNeutron diffraction experiments [12]. 
cThese phases can be represented by two structures that have the same total energies and cell 
volumes. 
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TABLE II. Classification of the possible stable phases along particular directions (order 
parameter space) [29]. a is the amplitude of the normal coordinate of the corresponding mode 
that is characterized with a specific irreducible representation (IRREP) at the A and Γ points of 
Cd2I-type Ti2N (space group P-3m1, No. 164). 
 
 

IRREP 
(ISOTROPY) 

IRREP No. Space group Direction 
 

A1+ A1g 164 P-3m1 P1 (a) 

A2- A2u 164 P-3m1 P1 (a) 

 

A3+ 

 

Eg 

12 C2/m P1 (a,0) 

15 C2/c P2 (0,a) 

2 P-1 C1 (a,b) 

 

A3- 

 

Eu 

12 C2/m P2 (0,a) 

15 C2/c P1 (a,0) 

2 P-1 C1 (a,b) 

 Γ1+  A1g 164  P-3m1  P1 (a)  

 Γ2- A2u  156  P3m1  P1 (a)  

  

Γ3+     

  
Eg  

12  C2/m  P1 (a,0)  

 2 P-1  C1 (a,b)  

  

Γ3- 

 

  
Eu  
  

8  Cm  P1 (a,0)  

5   C2 P2 (0,a)  

1  P1  C1 (a,b)  
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TABLE III. Fitting parameters of the Murnaghan equation [30]: V0 – unit cell volume, E0 - total 
energy, B0 - bulk modulus, B0’ – bulk modulus derivative. 
 

Phase V0 

(Å3/atom) 

E0 

(eV/atom) 

B0 

(GPa) 

B0’ 

ε-Ti2N 12.396 0.000 203.8 3.715 

Au2Te 12.412 0.017 197.7 3.553 

Al2Cu 11.275 0.555 195.9 3.529 
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FIGURE CAPTION 

 

Fig. 1. (Color online) Primitive unit cells of ε-Ti2N (a), δ’-Ti2N (b), Cd2I-type Ti2N (c), Au2Te-
type Ti2N (d) and Al2Cu-type Ti2N (e). 
 

Fig. 2. Band structure in some symmetry directions of the BZ (a), and densities of states (DOS) 
(b) for ε-Ti2N and δ’-Ti2N. The dashed line locates the Fermi level (EF), taken as zero of energy. 
 
Fig. 3. Phonon dispersion curves along some high symmetry directions of the BZ (a) and phonon 
density of states (PHDOS) (b) for ε-Ti2N and δ’-Ti2N, σ = 0.02 Ry (solid line) and σ = 0.045 Ry 
(dashed line).   
 
Fig. 4. (Color online) Fermi surface of the 12-th band (a), 13-th band (b) and 14-th band (b) for 
ε-Ti2N and of the 13-th band d) and 14-th band (e) for δ’-Ti2N. 
 
Fig. 5. Free energy for the ε- and δ’- phases of Ti2N (F) and free energy difference ΔF = F(ε-
Ti2N) – F(δ’-Ti2N) as functions of temperature. 
 
Fig.6. Total energy (ET) as a function of cell volume (V) for various phases of Ti2N. 
 
Fig. 7. Phonon dispersion curves along some high symmetry directions of the BZ for Cd2I- and 
Au2Cu- type Ti2N at equilibrium, and for Al2Cu-type Ti2N at equilibrium (a) and under pressure 
P=120 GPa (higher than the transition pressure) (b). The Au2Te-type Ti2N structure represents a 
slightly distorted hexagonal version of the Cd2I-type Ti2N structure, hence the same notation for 
the symmetry points is used for both structures. “Negative” frequencies actually mean 
“imaginary” (negative squared frequencies). 
 
Fig. 8. Difference of enthalpies ΔH=H(ε-Ti2N)-H(Au2Te-type Ti2N) (a) and  ΔH=H(Au2Te-type 
Ti2N)-H(Al2Cu-type Ti2N) (b) and cell volume (V) for various phases of Ti2N as functions of 
pressure (P). 
 
Fig. 9. Density of states (DOS) of the Cd2I-, Au2Te- and Al2Cu-type phases of Ti2N at 
equilibrium. The vertical line locates the Fermi level (EF), taken as zero of energy  
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Fig. 1. (Color online) Primitive unit cells of ε-Ti2N (a), δ’-Ti2N (b), Cd2I-type Ti2N (c), Au2Te-
type Ti2N (d) and Al2Cu-type Ti2N (e). 
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Fig. 2. Band structure in some symmetry directions of the BZ (a), and densities of states (DOS) 
(b) for ε-Ti2N and δ’-Ti2N. The dashed line locates the Fermi level (EF), taken as zero of energy. 
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Fig. 3. Phonon dispersion curves along some high symmetry directions of the BZ (a) and phonon 
density of states (PHDOS) (b) for ε-Ti2N and δ’-Ti2N.  “Negative” frequencies actually mean 
“imaginary” (negative squared frequencies). 
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Fig. 4. (Color online) Fermi surface of the 12-th band (a), 13-th band (b) and 14-th band (b) for 
ε-Ti2N and of the 13-th band d) and 14-th band (e) for δ’-Ti2N. 
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Fig. 5. Helmholtz free energy for the ε- and δ’- phases of Ti2N (F) and Helmholtz free energy 
difference ΔF = F(ε-Ti2N) – F(δ’-Ti2N) as functions of temperature. 
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Fig. 6. Total energy (ET) as a function of cell volume (V) for various phases of Ti2N. 
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Fig. 7. Phonon dispersion curves along some high symmetry directions of the BZ for Cd2I- and 
Au2Cu- type Ti2N at equilibrium, and for Al2Cu-type Ti2N at equilibrium (a) and under pressure 
P=120 GPa (higher than the transition pressure) (b). The Au2Te-type Ti2N structure represents a 
slightly distorted hexagonal version of the Cd2I-type Ti2N structure, hence the same notation for 
the symmetry points is used for both structures.  
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Fig. 8. Difference of enthalpies ΔH=H(ε-Ti2N)-H(Au2Te-type Ti2N) (a) and  ΔH=H(Au2Te-type 
Ti2N)-H(Al2Cu-type Ti2N) (b) and cell volume (V) for various phases of Ti2N as functions of 
pressure (P). 
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Fig. 9. Density of states (DOS) of the Cd2I-, Au2Te- and Al2Cu-type phases of Ti2N at 
equilibrium. The vertical line locates the Fermi level (EF), taken as zero of energy  
 

 

 

 

 

 

 

 

 

 


