
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Frustrated Bose-Einstein condensates with noncollinear
orbital ordering

Zi Cai, Yu Wang, and Congjun Wu
Phys. Rev. B 86, 060517 — Published 30 August 2012

DOI: 10.1103/PhysRevB.86.060517

http://dx.doi.org/10.1103/PhysRevB.86.060517


BTR1219

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Frustrated Bose-Einstein condensates with non-collinear orbital ordering

Zi Cai,1, ∗ Yu Wang,2, † and Congjun Wu1, 2

1Department of Physics, University of California, San Diego, CA92093
2School of Physics and Technology, Wuhan University, Wuhan 430072, China

We investigate the unconventional Bose-Einstein condensations with the orbital degree of freedom
in the 3D cubic optical lattice, which gives rise to various exotic features absent in conventional scalar
and spinor Bose-Einstein condensations. Orbital angular momentum moments are formed on lattice
sites breaking time-reversal symmetry spontaneously. Furthermore, they exhibit orbital frustrations
and develop a chiral ordering selected by the “order-from-disorder” mechanism.
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Bose-Einstein condensation (BEC) is a striking phe-
nomenon of quantum many-body systems, character-
ized by a uniform phase that spontaneously breaks the
U(1) symmetry. By introducing extra degrees of free-
dom, novel quantum condensates with even more exotic
symmetry breaking patterns and topological structures
emerge. A familiar example is the superfluid 3He phases,
which is a spin-triplet p-wave Cooper pairing conden-
sate with both spin and orbital degrees of freedom1,2. It
exhibits a variety of rich structures that simultaneously
incorporate the symmetries of liquid crystals, magnets
and scalar superfluids. Consequently, the superfluid 3He
systems possess fundamental connections with particle
physics, and exemplifies fundamental concepts of mod-
ern theoretical physics3.

The rapid developments of cold atom gases provide an
opportunity other than 3He to explore exotic condensa-
tions with internal degrees of freedom. Spinor atomic
gases, composed of atoms with hyperfine spins, simul-
taneously exhibit magnetism and superfluidity4–6. Fur-
thermore, orbital is a degree of freedom independent of
spin and charge. It is originally investigated in condensed
matter transition metal oxides, which plays an important
role in superconductivity, metal-insulator transition, and
quantum magnetism7,8. Introducing orbital into cold
atom gases has been theoretically investigated, which
leads to unconventional BECs with complex-valued con-
densed wavefunction of bosons and spontaneously break-
ing of time-reversal symmetry9–16. Excitingly, the recent
experimental progress has realized the meta-stable BECs
in high-orbital bands exhibiting complex-valued conden-
sate wavefunctions at non-zero wavevectors and orbital
orderings17–19.

In this paper, we investigate the properties of an or-
bital BEC in the p-orbital bands of a cubic optical lattice.
Although orbital BECs share many properties with the
ferromagnetic phase in spinor BECs, there are crucial
differences between them. In spinor BECs, the internal
degrees of freedom of hyperfine spin degree is not cou-
pled to the lattice. However for orbital BECs, the or-
dering of the orbital angular momentum comes from the
atom motion within each optical site, and thus is closely
related to the motion of atoms in optical lattice. As we
will show, the uniqueness of the orbital degree of freedom

gives rise to a whole host of exotic phenomena, such as
orbital frustration and concomitant non-collinear orbital
orderings selected by the “order-from-disorder” mecha-
nism. The selected ordering pattern exhibits an orbital
angular momentum moment chirality.
The Hamiltonian of bosons pumped to the p-orbital

bands of a cubic optical lattice is described by a multi-
orbital Bose-Hubbard model, H = Ht +Hint,

Ht =
∑

~rµν

[t‖δµν − t⊥(1− δµν)]
{

p†µ,~r+a~eν
pµ~r + h.c.

}

,

Hint =
U

2

(

n~r2 −
1

3
~L2
~r

)

, (1)

where µ, ν = x, y, z denote the orbital indices, a is the

lattice constant. pµ,~r ( p†µ,~r) are annihilation (creation)

operators for bosons at site ~r in orbital µ. n~r is the to-

tal particle number operator and ~L~r represents the total
orbital angular momentum on site ~r. t‖ and t⊥ describe
the nearest-neighbor hopping matrix elements along the
longitudinal and transverse directions, respectively. Us-
ing the terminology of chemistry, they are denoted as σ
and π-bonding, respectively. Due to the odd parity of p-
orbitals, t‖ and t⊥ are positive. The strong anisotropy of
the p-band Wannier wave-function implies that t⊥ ≪ t‖.
The onsite interaction term, Hint, reflects the Hund’s
type physics generalized to bosons, i.e., bosons prefer
to occupy complex-valued orbitals of the pê1 + ipê2 type
with ê1 ⊥ ê2. This complex-valued orbital has larger
spatial extension than the real ones of pµ, and thus the
repulsive interactions are reduced and simultaneously the
onsite orbital angular momenta are maximized9,13.
We consider the orbital superfluid phase. A remark-

able feature of the band structure is that the energy
minima of pµ (µ = x, y, z)-orbitals are located at finite
momenta Qµ rather than at zero momentum, which are
Qx = (π

a
, 0, 0); Qy = (0, π

a
, 0); Qz = (0, 0, π

a
) for the

three p-orbital subbands, respectively. In the 3D cu-
bic lattice, we will show that the onsite orbital angu-
lar momenta are no longer collinear but exhibit orbital
frustrations. The single-particle states ψQµ

= eiQµ·r

(µ = x, y, z) are degenerate, thus any condensate wave-
function of a linear superposition of these states,

| ~Q〉 = c1|Qx〉+ c2|Qy〉+ c3|Qz〉, (2)
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FIG. 1: (a) The SO(3) manifold of the 3D p-orbital BEC order
parameter in terms of Euler angles, where l is the direction of
the orbital angular momentum; (b) Sketch of the non-collinear
orderings of orbital angular momenta in real space from Eq.
(4).

yields the same kinetic energy. The complex vector ~c =
(c1, c2, c3) satisfies the normalization condition, |~c|2 = 1.
Next we will consider the interaction effect to lift the
degeneracy and select the condensate wavefunctions.

FIG. 2: (a) 2D orbital BEC in the square lattice without
frustration. (b) A typical configuration of 3D orbital BEC in a
cubic lattice with frustration. The thick blue bonds minimize
both the transverse and parallel hopping energy, while the
thin red bonds only minimize the transverse hopping energy.

The SO(3) degeneracy at the classical level: At the
classical level (neglecting quantum fluctuations so that
the boson operator can be replaced by its average value),
Hint is minimized if the coefficient vector ~c in Eq.(2) can
be expressed as ~c = 1√

2
(~m+ i~n), where ~m and ~n are two

mutual perpendicular unit vectors. Transforming back
into real space, for the lattice site with integer-valued co-
ordinates ~r = (rx, ry, rz), its onsite orbital configuration
is 1√

2
(pê1 + ipê2) with the relation

ê1 = (Px)
rx(Py)

ry (Pz)
rz ~m;

ê2 = (Px)
rx(Py)

ry (Pz)
rz~n, (3)

where Px,y,z are reflection operator with respect to x, y, z-
axes, respectively. ê1,2 remain orthogonal to each other,

and the onsite orbital angular momentum ~L(~r) ‖ ê1× ê2,
such that ~L2 is maximized to minimize Hint. This de-
notes that at the classic level, the ground state manifold
is just the configuration space of the 3D orthogonal triad

~m,~n and ~l = ~m× ~n, which is just the SO(3) group space
and can be expressed in terms of Euler angles (φ, θ, γ), as
illustrated in Fig. 1(a). Note that the multiplication of
an overall U(1) phase e−iϕ is equivalent to the rotation

of the triad around ~l by the angle ϕ. Therefore, the U(1)
superfluid phase is absorbed into the SO(3) group con-
figuration space. For a given triad configuration ~m0, ~n0

and ~l0, the corresponding real space distribution of the
OAM orientation L̂(~r) becomes

L̂~r = [(−1)ry+rz lx, (−1)rx+rz ly, (−1)rx+ry lz], (4)

which is non-collinear as shown in Fig. 1(b).

Similarly to the case of frustrated magnets, this classic
level degeneracy is a consequence of orbital frustration,
which means that it is impossible to find an orbital con-
figuration that simultaneously minimizes the energy of all
the bonds in the lattice. To illustrate this point, let us
recall the previously studied 2D case for a comparison9.
The staggered OAM configuration in Fig. 2 (a) simulta-
neously minimizes both the parallel (t‖) and transverse
(t⊥) hopping energies at all bonds of the square lattice,
and thus there is no frustration. However, in the 3D cu-
bic lattice, this is no longer the case. For example, if we
take a similar state |Qxy〉 = 1√

2
(|Qx〉+ i|Qy〉), as shown

in Fig. 2(b), the hopping energy of all bonds along x
and y directions can be minimized, but the σ-bond along
the z-direction is broken. Since the hopping Hamilto-
nian Eq. 1 does not preserve the SO(3) symmetry, thus
this classic level degeneracy should be lifted by quantum
fluctuations.

Order-from-disorder In frustrated magnetism, the infi-
nite degeneracy is usually lifted by quantum or thermal
fluctuations, which is known as “order-from-disorder”
mechanism20,21. Below we perform the same analysis
to the 3D p-orbital BECs. If we take quantum fluctu-
ations around the mean-field values into account: pµ =
〈pµ〉+δpµ and calculate the fluctuation-corrected ground
state energy, quantum fluctuations lift the SO(3) classical
degeneracy. We consider two typical condensate config-
urations and compare their ground state energies (the
reason to choose these two states is due to their high
symmetry),

|Qdiag〉 =
1√
3
(|Qx〉+ ei

2π
3 |Qy〉+ e−i 2π

3 |Qz〉), (5)

|Qz〉 =
1√
2
(|Qx〉+ i|Qy〉). (6)

In the state of |Qdiag〉, OAMs are along the body-
diagonal directions, while for the state of |Qz〉, OAMs
are along the z-direction. These two configurations are
degenerate at the classic level.

Here we perform the standard Bogoliubov analysis22 to
calculate the zero-point motion energy of quasi-particles
for these two configurations. We use the state of |Qdiag〉
as an example, and the calculation for |Qz〉 is rather sim-
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FIG. 3: The energy difference between the orbital BEC with
OAM towards z-direction and body-diagonal direction ∆E =
Ez −Ediag with t‖ = t, t⊥ = 0.05t and the filling factor n=2.

ilar. For each p-component the order parameter is

〈px〉 = (−1)rxφ, 〈py〉 = (−1)rye
2iπ
3 φ

〈pz〉 = (−1)rze−
2iπ
3 φ. (7)

To calculate the Bogoliubov spectra, we consider quan-
tum fluctuations around the mean-field values: pµ =
〈pµ〉 + δpµ. Expanding to the quadratic level, we arrive
at

i~
∂Ψ(k)

∂t
= M(k)Ψ(k), (8)

where Ψ(k) is a 6-component vector that represents
the fluctuations: Ψ(k) = [δψ(k), δψ†(−k)]T , δψ(k) =
[δpx(k), δpy(k+Qxy), δpz(k+Qxz)], Qxy = (π, π, 0),
and Qxz = (π, 0, π). M(k) is a 6× 6 matrix as

M(k) =

[

H(k) ∆(k)
−∆†(k) −H(−k)

]

,

in which both H and ∆(k) are 3× 3 matrices:

H(k) =





ǫxk + 2w −w −w
−w ǫyk+Qxy

+ 2w −w
−w −w ǫzk+Qxz

+ 2w



 ,

∆(k) =





w ei
2π
3 w e−i 2π

3 w

e−i 2π
3 w we−i 2π

3 w

we−i 2π
3 w wei

2π
3



 , (9)

where w = 2
3
uφ2dg; ǫ

µ
k = 2

∑

ν [t‖δµν−t⊥(1−δµν)] cos(kνa)
is the single particle energy spectrum for the µ band bo-
son. The self-consistent equation to determine value of
φdg is

n = |φdg|2 −
1

2
+

1

2

∑

k

ε̄(k) + 2U |φdg|2
√

ε̄(k)(ε̄(k) + 4U |φdg|2)
(10)

where ε̄(k) = (ǫxk + ǫyk+Qxy
+ ǫzk+Qxz

)/3, and n is the fill-

ing factor. The contribution from the zero point motion
energy to the ground state energy can be written as

E0
diag = −3Un2

c − Unc − t+
1

2

∑

k

√

ε̄(k)(ε̄(k) + 4Unc)

where nc = |φdg|2, t = t‖ + 2t⊥. Performing the same
process, we obtain the correction for |Qz〉, and the dif-
ference ∆E = Ez − Ediag is plotted in Fig. 3.
For fixed parameters U, t‖, t⊥ and boson density n, the

energy of |Qdiag〉 is always lower than that of |Qz〉 i.e.,
∆E = Ez − Ediag > 0, which means that orbital BECs
in a cubic lattice prefer to develop OAM moments along
the body-diagonal directions. Such a configuration has a
high symmetry, and all the bonding strengths are uniform
in the lattice. In comparison, all the σ-bonds along the
z-direction are broken in the state of |Qz〉. This “order-
from-disorder” phenomenon is another feature that dis-
tinguishes orbital BECs from spinor BECs.
Spontaneous chiral orbital order: In condensed mat-

ter physics, the presence of spin chirality plays im-
portant roles in frustrated magnetism23, doped Mott-
insulators24, and the anomalous quantum Hall effect25.
Here, we find that the orbital BECs in Eq. (5) spon-
taneously develops a chiral orbital angular momentum
ordering. Eq. (5) has a time-reversal partner as

|Q′
diag〉 =

1√
3
(|Qx〉+ e−i 2π

3 |Qy〉+ ei
2π
3 |Qz〉). (11)

The orbital angular momentum orderings of Eq. 5 and
Eq. 11 are plotted in Fig. 4. To distinguish the chirality
between |Qdiag〉 and |Q′

diag〉, we define a nonzero chirality
(similar to the case of chiral spin liquid24):

χijk = ~li · (~lj ×~lk), (12)

where ijk denotes three sites of the four corners of the
plaquette in a clockwise direction, as shown in Fig. 4 (c).

In contrast to the chiral spin liquid24 (where 〈~S〉 = 0, χ 6=
0) and the spinor BEC (where 〈~S〉 6= 0, χ = 0), the orbital
BEC in our case simultaneously exhibits non-vanishing

orbital order and orbital chirality order (〈~l〉 6= 0, χ 6= 0).

FIG. 4: Ordering patterns in a plaquette for (a) |Q1

diag〉 and

(b) |Q2

diag〉 with opposite chirality; (c) Definition of the chi-
rality in a plaquette.

Excitations: Now we discuss the collective modes and
elementary excitations of the orbital BECs in the state
of |Qdiag〉. From the EOM Eq. (8), we obtain the
collective modes by diagonalizing the matrix M. In
the long-wavelength limit (k → 0), we find that there
are three modes: (1) the gapless Goldstone mode cor-
responding to the fluctuation of the superfluid phase
of the orbital BECs with linear dispersion, ω1(k) ≈
√

2U |φ|2(2t⊥ + t‖)|k|, (2) the orbital wave mode cor-
responding to the fluctuation of the OAM around its
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ground state directions, ω2(k) ≈ 2t⊥+t‖
2

k2, (3) the
gapped mode, which describes orbital excitations cor-
responding to the flipping of orbital angular momenta,

ω3(k) ≈ 2t⊥+t‖
2

k2 + 2U |φ|2.
Ginzburg-Landau (GL) free energy: To better under-

stand the various phases in orbital BECs, we first identify
the order parameters of the different phases. The orbital
BECs are characterized by both superfluidity with order

parameters ϕµ (µ = x, y, z) and orbital order ~L, which is
a 3-component real vector Lµ (after the transformation
defined in Eq. 4, the non-collinear order can be trans-
formed into a spatially uniform one). Notice that these
two different orders are not necessarily simultaneously
present. To clarify this point, we construct a GL free

energy in terms of χµ and ~L:

F =
∑

µ

r|ϕµ|2 + u|ϕµ|4 + r′|~L|2 + u′(|~L|2)2

+
∑

µν

v|ϕµ|2|ϕν |2 − gελµνi(ϕ∗
µϕν − ϕ∗

νϕµ)Lλ,(13)

the last term is the minimal coupling between the super-
fluid and orbital orders and the parameters g, u′, u are

positive in our case. For the the orbital BEC in Eq. 5, ~L
is along the body-diagonal direction and the free energy
Eq.13 can be simplified to

F = r0φ
2 + u0φ

4 + r′0l
2 + u′0l

4 − g0φ
2l + · · · . (14)

The free energy F describes both thermodynamic phase
transitions which are driven by temperature and quan-
tum phase transitions where the parameters are a func-
tion of U/t. By minimizing the free energy in Eq. (14),

we find that: for r′0 < 0 and r0 <
√

− g2

0
r′
0

2u′
0

, both φ and

l are non-zero at the free energy minima, which corre-
sponds to orbital BECs with both superfluidity and or-

bital order; for r′0 < 0 and r0 >
√

− g2

0
r′
0

2u′
0

, φ = 0 while

l 6= 0, so in this case the single particle condensations are
suppressed by thermal or quantum fluctuations while the
orbital order is preserved; for r′0 > 0 and r0 > 0, both φ
and l are zero, which means that both the superfluidity
and orbital order have been destroyed, corresponding to
the high temperature normal phases or featureless Mott
insulator at zero temperature.
Experimental detection: Next we discuss the experi-

mental detection of orbital ordering and unconventional
BEC characterized by the ordering parameters in Eq.(7).
The condensate wavefunction in Eq.(11) is a superposi-
tion of the single-particle states of three condensate mo-
menta with equal weights but different phases, as a con-
sequence, the time-of-flight (TOF) image will exhibits
three peaks with the same height in the points corre-
sponding to Qx,y,z. However, TOF images only pro-
vide the single-particle density distribution in momentum
space, while the key information about the relative phase
between different condensate components is lost during
TOF. To measure the phase difference e±i 2π

3 defined in

Eq.(7), the phase sensitive detections proposed recently
can be employed26. Impulsive Raman operations can be
applied to couple any two among the three components
at different momenta. The relative phase information can
be read out from the interference pattern from the TOF
imaging.
At last, we will briefly discuss the orbital BECs in

higher bands. Recently, an unconventional BEC in the
f -band of a bipartite optical square lattice has been
observed experimentally19. Surprisingly, d-band BECs
have also been observed in a distinct field: the exciton-
polariton condensate27. Orbital BECs in the p-band of
3D optical lattice have three components (px, py, pz),
and the interactions favor a ferro-orbital state with OAM
L = 1, which makes it similar to the ferromagnetic phase
of spinor BECs with F = 1. Analogously, orbital BECs
in higher bands behave similarly to spinor BECs with
higher spin28–31. Apparently for orbital BECs in higher
bands, the geometry and symmetry group of the order
parameters is far more complex and may give rise to
richer physics.
In conclusion, we investigate the frustrated orbital or-

dering of p-band unconventional BECs in the cubic lat-
tice, and we find that the uniqueness of the orbital de-
gree of freedom gives rise to a lot of interesting phenom-
ena that absent in the spinor BECs and superfluid 3He,
such as orbital frustration and concomitant non-collinear
orbital orderings selected by the “order-from-disorder”
mechanism. The chiral symmetry breaking and the ele-
mentary excitations have also been discussed.
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