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Observability of half-quanta vortices and Skyrmions in p-wave superconductors is an outstanding
open question. Under the most common conditions, fractional flux vortices vortices are not thermo-
dynamically stable in bulk samples. Here we show that in chiral p-wave superconductors, there is a
regime where, in contrast lattices of integer flux vortices are not thermodynamically stable. Instead
Skyrmions made of spatially separated half-quanta vortices are the topological defects produced by
an applied external field.
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Higher broken symmetries in p-wave superconductors
inspired long-standing interest to realize topological de-
fects more complicated than vortices. Much of the early
discussions of various complex topological defects were
in context of superfluid 3He.1 Recently the attention to
these questions raised dramatically in connection with
superconductors which are argued to have p-wave pair-
ing, such as Sr2RuO4 . The highly interesting possibility
there, is connected with half-quantum vortices.2–8 Their
statistics is non-Abelian and they could potentially be
used for quantum computations.9 Other kind of topo-
logical defects discussed in connection with spin-triplet
superconductors are Skyrmions10 and Hopfions.11 In su-
perconducting materials, creation of these topological ex-
citations is highly nontrivial. Superconducting compo-
nents are coupled by a gauge field and there are also
symmetry-reducing inter-component interactions. As a
consequence fractional vortices have logarithmically or
linearly divergent energies (see e.g. Ref. 8), while in-
teger flux vortices have finite energy per unit length.
Consequently, under usual conditions, half-quanta vor-
tices are thermodynamically unstable in bulk systems.
It was argued that complex setups, such as mesoscopic
samples, are needed for their creation.2,8,12 Recently
it was claimed that a half-quantum vortex was ob-
served in mesoscopic sample of Sr2RuO4.2 Other pro-
posed routes to observe fractional vortices, invoke (i)
thermal deconfinement,3,6,13 (ii) potential materials with
strongly reduced spin stiffness,4 (iii) regimes very close to
upper critical magnetic field, where gauge-field mediated
half-quanta vortex confinement is weak.5 In some more
general systems it was shown that fractional vortices
could be thermodynamically stable near boundaries.14

Today the conditions under which half-quanta vortices
and Skyrmions10 could be experimentally created in bulk
superconductors still remains an outstanding open ques-
tion.

In this work we investigate the magnetic re-
sponse of the Ginzburg-Landau model widely applied
to Sr2RuO4.15,16 Our considerations apply to two-
dimensional systems or three-dimensional problems with
translation invariance along the z-direction. Then the
free energy density reads

Figure 1. (Color on-line) – Numerically calculated texture of
the pseudo-spin vector for a Skyrmion carrying with a topo-
logical charge Q = 2. As can be seen in the picture the
skyrmionic topological charge density is confined in a closed
domain-wall.

F(ψa,A) = |∇ ×A|2 (1a)

+ |Dxψ1|2 + |Dyψ2|2 + γ|Dyψ1|2 + γ|Dxψ2|2

+ 2γRe [(Dxψ1)∗Dyψ2 + (Dyψ1)∗Dxψ2] (1b)

+ (2γ − 1)|ψ1|2|ψ2|2 +
∑
a=1,2

−|ψa|2 +
1

2
|ψa|4 (1c)

+ γ|ψ1|2|ψ2|2 cos(2(ϕ2 − ϕ1)) . (1d)

The different components of the order parameter are de-
noted ψ1,2 = |ψ1,2|eiϕ1,2 ; D = ∇ + ieA. The p-wave
state is described here by a doublet of complex fields sub-
jected to the the following symmetry breaking coupling
: Re

(
ψ∗ 21 ψ2

2

)
= |ψ1|2|ψ2|2 cos(2(ϕ2 − ϕ1)). The ground

state breaks the U(1) × Z2 symmetry, since the ground
state phase difference is either π/2 or 3π/2. Gradient
terms (1b) make this model clearly anisotropic in the
xy-plane. The coefficient γ, controlling the anisotropy,
should be γ > 1/3 when specially considering Sr2RuO4 ,
according to.15 The coupling constant e is a convenient
quantity to parametrize the penetration depth of the
magnetic field. The discrete Z2 symmetry dictates that
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Figure 2. (Color on-line) – A thermodynamically sta-
ble Skyrmion carrying two flux quanta, with e = 0.8 and
γ = 0.5. Displayed quantities are, magnetic flux (A), the
(inverted) energy density (B) and the sine of the phase dif-
ference sin(ϕ2 −ϕ1) (C). On the second line, the densities of
superconducting order parameter components |ψ1|2 (D), |ψ2|2
(E), and the ‘doubled phase difference’ Im(ψ∗ 2

1 ψ2
2) (F). Pan-

els (G) and (resp. H) on the third line are the supercurrents
associated with each component ψ1 (resp. ψ2) of the order
parameter.17 The last panel (I) shows the total supercurrent.

the system allows domain-wall solutions interpolating be-
tween two regions with different phase-locking. Such
domain-walls are energetically expensive and thus not in-
trinsically stable. It was suggested that they could be ob-
servable if pinned by crystalline defects.18 Also domain-
walls formed as dynamic excitations inside vortex lattices
were studies extensively in.19 They could be experimen-
tally observable in these setups since they pin half-quanta
vortices.18,19

Returning to the discussion of vortices one can ob-
serve that the system (1) has U(1)× Z2 broken symme-
try. Thus a single fractional vortex has linearly diverg-
ing energy and thus is not thermodynamically stable.8

Since both components have similar ground state den-
sity, the fractional vortex excitation are half-quantum
vortices, i.e. they carry a half of magnetic flux quan-
tum. Also from this broken symmetry, the existence of
skyrmionic excitations would not follow. The previous
works required higher broken symmetry for the existence
of Skyrmions.10 However we show below that there is
a considerable window of parameters where the system
(1) possesses what we term as a “skyrmionic phase”.
In that phase, mostly because of favorable competition
of field gradients, potential and magnetic energies, the
system does have thermodynamically stable Skyrmions

while ordinary integer flux vortex lattices are not thermo-
dynamically stable. These Skyrmions are bound states
of spatially separated half-quanta vortices, connected by
domain-walls. Half-quanta vortices are linearly confined
into integer vortices in a bulk sample because of the terms
|ψ1|2|ψ2|2 cos(2(ϕ2−ϕ1)). However on a (closed) domain-
wall, a composite vortex should split along this wall, since
the above-mentioned term has there, unfavorable values
of the phase difference. Indeed, such deconfining allows
to reduce energetically unfavorable values of the phase
differences. Because of this vortex splitting and resulting
repulsive interactions, vortices trapped on domain wall
can prevent the collapse of a closed domain-wall. The
main result of this paper is that we show that these ob-
jects are characterized by an integer-valued skyrmionic
topological charge and that they can be energetically
cheaper than vortices. Such a Skyrmion is displayed in
Fig. 1, as a texture of a pseudo-spin vector field defined
later on.

Figure 3. (Color on-line) – A Skyrmion carrying five flux
quanta, with e = 0.8 and γ = 0.4. Displayed quantities are
the same as in Fig. 2, except panel (I) showing the gradi-
ent of the phase difference ∇(ϕ12), which is non zero at the
domain-wall. The Skyrmion consists of ten spatially sepa-
rated half-quanta vortices. It assumes a complicated non-
symmetric structure due to a competition of a preferred ge-
ometry of a Skyrmion with the anisotropies (1b).

We investigated structures carrying N flux quanta
(i.e. with each phase winding

∮
∇ϕa = 2πN) as functions

of the gauge coupling e and the anisotropy parameter γ.
Ground states, carrying a given number of magnetic flux
quanta, are computed numerically by minimizing the en-
ergy within a finite element framework provided by the
Freefem++ library.20 See technical details in supplemen-
tary material.17
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When the penetration length is sufficiently large
(i.e. at small values of the coupling constant e), the sys-
tem indeed forms ordinary Abrikosov vortices in external
field. On the other hand for sufficiently large e the sys-
tem behaves as a type-I superconductor. However there
is a regime in a wide range of intermediate coupling con-
stants e, where integer flux vortices are more expensive
than bound states of spatially separated half-quanta vor-
tices connected by closed domain-wall. Such configura-
tions carrying different number of flux quanta are given
in Figures 2, 3 and 4. The clearly visible preferred di-
rections for supercurrents originate in the anisotropies
(1b). The cores in different components do not coincide
in space. This means fractionalization of vortices in this
state. Each of the split cores carries a half of a flux quan-
tum (for detailed calculations of fractional vortices flux
quantization, see e.g. Ref. 8).

Figure 4. (Color on-line) – A Skyrmion with N = 8, e =
0.6 and in the case of higher anisotropy γ = 0.6. Displayed
quantities are the same as in Fig. 2.

The configurations found here are actually Skyrmions,
although it may not be obvious from the Figures 2, 3 and
4. To prove that the solutions are Skyrmions the two-
component model (1) is mapped to an anisotropic non-
linear σ-model.21 In that mapping the superconducting
condensates are projected on the Pauli matrices σ allow-
ing to define the pseudo-spin vector n:

n ≡ (nx, ny, nz) =
Ψ†σΨ

Ψ†Ψ
where Ψ† = (ψ∗1 , ψ

∗
2) .

(2)
The target space being a sphere, together with the one-
point compactification of the plane defines the map n :
S2 → S2. Such maps are classified by the homotopy class
π2(S2) ∈ Z, so there exists an integer valued topological

charge

Q(n) =
1

4π

∫
R2

n · ∂xn× ∂yn dxdy . (3)

For a Skyrmion, Q = N , while Q = 0 for ordinary vor-
tices. The terms in (1c) and (1d), break the O(3) sym-
metry of the pseudo-spin n down to Z2. In a non-linear
σ-model, such anisotropy would undermine stability of
the Skyrmions. However this collapse does not occur
in the Ginzburg-Landau model, because of the demon-
strated below behaviour of gradient energy.

The numerically computed topological charge (3) is
found to be integer (with a negligible relative error
of the order 10−5, due to the discretization) for the
closed domain-wall/vortex systems which are therefore
Skyrmions. The solutions shown in Figures 2, 3 and 4
have skyrmionic topological charge Q = 2, Q = 5, Q = 8
correspondingly. The terminology Skyrmion is more in-
tuitively obvious when the solutions are represented in
terms of the pseudo-spin vector field n, as in Fig. 1.
However unlike Skyrmions in non-linear σ-model, here
the skyrmionic topological charge density is mostly con-
centrated on the half-quanta vortices and on the domain-
wall.

The main result of this work is that Skyrmions of the
above type (and thus half-quanta vortices) can be less
energetic than integer-flux ordinary vortices and thermo-
dynamically stable, in the chiral p-wave superconductors.
The critical external magnetic field Hc1 for formation of a
flux-carrying topological defect is determined by the con-
dition where Gibbs free energy G = Ed−2

∫
B ·He dxdy

becomes negative. Here Ed and B are the energy and
magnetic field of the defect. He denotes the applied field.
Thus Hc1 = Ed/2Φ where Φ is the magnetic flux pro-
duced by the defect. The defects are thermodynamically
stable if the critical external magnetic field’s energy den-
sity H2

c1 is smaller than the condensation energy. We
investigated the energy dependence of the Skyrmions on
the number of enclosed flux quanta N . The energy of an
integer flux vortex is used as a reference point. As shown
in Fig. 5 panels (a) and (b), for low N , the energy de-
pends non-monotonically on N . This is because the pre-
ferred symmetry of small N configurations in some cases
is in strong conflict with the anisotropies of the model.
In the large-N limit the energy per flux quantum gradu-
ally tends to some value. The main point here is that the
energy per flux quantum for Skyrmions is in certain cases
smaller than that of vortices. This signals instability of
vortex lattices with respect to Skyrmion formation.

Next, the thermodynamical stability of Skyrmions is
investigated. Results for N = 5 quanta are reported as
a characteristic example, in Fig. 5 (c). We find that
there are three regimes on the resulting phase diagram.
When penetration length is large (i.e. low e), the system
shows usual type-II superconductivity. When penetra-
tion length is small, the system is a type-I superconduc-
tor. For intermediate values of the penetration length,
depending on the underlying anisotropies γ, the external
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Figure 5. (Color on-line) – Upper panels show the depen-
dence of the energy per flux quantum for Skyrmions of dif-
ferent topological charges Q (values are given in the units of
the energy of one integer flux vortex). The N = 1 point at
the origin corresponds to an ordinary vortex solution. Panel
(a) shows calculations corresponding to different γ for fixed
e = 0.6, while (b) displays how the energy per flux quantum
changes with e and N for fixed anisotropy parameter γ = 0.7.
The Q = 2 Skyrmions are usually less energetically expensive
than the Q = 3. This is because the Q = 2 Skyrmions can
be better aligned with the underlying anisotropies, than the
Q = 3 Skyrmions.
The lower panel displays the phase diagram, calculated us-
ing energy characteristics of Q = 5 Skyrmions. The different
colors refer to different physical properties. The type-I re-
gion is shown by yellow shade. The lower part of the phase
diagram shows regions where Skyrmions (red) or vortex lat-
tices (blue) form in applied external field. The phase diagram
retains similar structure in calculations with different topolog-
ical charges. With the increasing of the skyrmionic charge Q,
the region where Skyrmions are energetically preferred over
vortex lattices slightly grows. These results apply either for
two-dimensional systems or three dimensional systems with
translational invariance along z-axis. In the latter case the
energy should be understood as the energy per unit length of
a Skyrmion line (i.e. a Skyrmion texture in xy plane which is
invariant under translation along z-axis). The discretization
errors can be estimated by computing the total magnetic flux
and comparing it to the exact value which follows from the
quantization condition 2πN/e. This gives the relative accu-
racy on the flux to be around 10−5. From that, the accuracy
on the energy is estimated to be at least three order of mag-
nitude smaller than the energy difference between Skyrmions
and vortices.

field produces Skyrmions rather than vortex lattices. To
understand the instability of vortex lattices with respect
to Skyrmion formation, different contributions to energy
are investigated in Table I. In the skyrmionic state, vor-
tex lattice decay into Skyrmions is driven by a win in

Etotal Egrad Epot EZ2 Emag

Vortex 19.7759 10.7518 -12.0190 16.5195 4.5235

Skyrm. 18.9004 8.10522 -12.2301 17.6336 5.3916

Vortex 32.1684 19.3227 -19.0381 25.4445 6.4392

Skyrm. 37.6456 16.2529 -22.1474 32.8582 10.6818

Table I. Different contributions to the Skyrmion energy per
flux quantum. Q = 5 Skyrmions are considered in this exam-
ple. The results are compared with the contributions to the
energy of a single vortex (which determines the lower bound
on vortex lattice energy near the first critical magnetic field
Hc1). The gradient contribution Egrad is given by the in-
tegrated (1b), the magnetic energy Emag by (1a). The po-
tential energy Epot is (1c) and EZ2 is (1d). First block, for
which γ = 0.8 and e = 0.4, corresponds to the state where
Skyrmions are thermodynamically stable but vortex lattices
are not. Second block is for γ = 0.6 and e = 0.2. It corre-
sponds to a regime with standard Abrikosov vortex lattice.
Here the Skyrmions are local minima of the free energy func-
tional. They are more expensive than vortices but, if formed,
they are protected against decay by a finite energy barrier. In
the second example the win in the kinetic energy is too small
to overcome extra energy cost associated with domain-wall
formation and magnetic energy.

gradient and potential energies although there is a loss
in magnetic energy as well as the extra cost of producing
a domain-wall.

The Skyrmions we find are are structurally dif-
ferent from Skyrmions discussed in other kinds of
superconductors10 because of the different symmetry of
the model. Other principal difference is the nature of the
Skyrmionic state. Namely the works10 proposed mod-
els where there are only skyrmionic solutions carrying
two flux quanta. The latter forming stable lattices. In
contrast, the model we consider supports Skyrmions with
any integer value of topological charge. Importantly, here
the energy per flux quantum is a sublinear function of
the topological charge, which prohibits a ground state
in the form of a lattice of simplest Skyrmions envisaged
in.10 Instead our model predicts more complicated high-
topological-charge skyrmionic structures. Also in type-II
regime our model predicts metastable states of coexisting
vortices and Skyrmions.

In conclusion we have shown that the phase diagram of
chiral p-wave superconductors has a thermodynamically
stable skyrmionic phase between type-I and the usual
type-II regimes. This is despite the fact that the model
has U(1) × Z2 broken symmetry where naive symmetry
arguments would rule out skyrmionic excitations. In the
skyrmionic phase, the long sought-after half-quanta vor-
tices acquire thermodynamic stability. These objects can
be detected with surface probes through their character-
istic profile of magnetic field. The phase transition into
a skyrmionic state should be first order, because the en-
ergy per flux quantum is decreasing with the skyrmionic
topological charge.



5

We estimate that Sr2RuO4 which is frequently de-
scribed by the model (1) has penetration length which is
slightly too large to fall into the skyrmionic phase. How-
ever for these parameters the model predicts metastable
skyrmionic excitations (which are slightly more energetic
than vortices). Recently sporadic formation of objects
with multiple flux quanta were reported in Fig. 2 of
Ref. 22. Higher resolution scans of the magnetic field
profile could confirm or rule out if the observed objects
are Skyrmions.
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