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We study the physics of the superconducting variant of Weyl semimetals, which may be realized in
multilayer structures comprising topological insulators and superconductors. We show how super-
conductivity splits each Weyl node into two. The resulting Bogoliubov Weyl nodes can be pairwise
independently controlled, allowing to access a set of phases characterized by different numbers of
bulk Bogoliubov Weyl nodes and chiral Majorana surface modes. We analyze the physics of vortices
in such systems, which trap zero energy Majorana modes only under certain conditions. We finally
comment on possible experimental probes, thereby also exploiting the similarities between Weyl
superconductors and 2-dimensional p+ ip superconductors.

PACS numbers:

I. INTRODUCTION

The discovery of topological insulators has stimulated
a broad inquiry into topological features of electronic en-
ergy bands. Such features are present not only in fully
gapped systems but also in gapless ones. Of particu-
lar recent interest are semimetals (zero gap semiconduc-
tors) with Fermi points, where conduction and valence
bands touch at isolated momenta in the Brillouin zone.
In three dimensions, a linear touching between two non-
degenerate bands is a Weyl point,1–3 and is completely
robust to all perturbations which do not break trans-
lational symmetry. Such Weyl nodes are predicted to
lead to a variety of measurable consequences, includ-
ing unusual surface states whose Fermi surface is open
(“Fermi arcs”), unusual Hall effects, and other unusual
transport features, and have been studied in a number
of systems.3–17 Generically, Weyl points require a system
with strong spin-orbit coupling, and in addition the con-
dition that the bands be non-degenerate requires that
at least either inversion or time-reversal symmetry be
broken.9,18 This might occur in a bulk material through
magnetic order or a non-centrosymmetric crystal struc-
ture, but Weyl points can also be engineered. In particu-
lar, an appropriate superlattice of alternating normal and
topological insulators has been shown to display Weyl
points.5,19

Weyl fermions have been discussed extensively in the
context of the A phase of 3He, which also exhibits Weyl
quasiparticles. 3He also supports the B phase, in which
quasiparticles are fully gapped, but which nevertheless
possesses interesting topological properties.2 In this pa-
per, we explore the connection of Weyl semimetals to
Weyl and topological superconductors, and more gener-
ally the effects of superconductivity on Weyl semimet-
als. Specifically we consider another class of engineered
structures, in which the normal insulator of the afore-
mentioned superlattice is replaced by a (conventional,
s-wave) superconductor. Simple arguments show that
only the Weyl semimetal produced by time-reversal sym-
metry breaking, and not the one produced by non-

centrosymmetry, leads to non-trivial superconducting
states. Focusing on the former, we find that a vari-
ety of superconducting phases, with and without Weyl
points, and with varying topological features, can be
tuned, depending upon the degree of time-reversal sym-
metry breaking and the magnitude of the superconduct-
ing proximity effect upon the topological insulating layers
of the superlattice.
Each of these phases may be characterized in a number

of ways, which we discuss in the main text. In the bulk,
they may be parametrized by the number, location, and
chirality of Weyl points. At surfaces, depending upon
both the phase and the surface orientation, one or several
branches of chiral Majorana states may be present, and
extend over a varying range of momenta in the surface
Brillouin zone. Gapless Majorana states may also be
present at vortex cores, again depending in detail upon
vortex orientation and phase. These Majorana modes are
relatives of those proposed for use in quantum computing
in two dimensional topological superconductors.
The paper is organized as follows. In Sec. II, we dis-

cuss how Weyl superconductors can be engineered in su-
perlattices of superconductors and topological insulators,
and derive the corresponding model. Sec. III is then de-
voted to the characterization of this Hamiltonian. We
analyze how superconductivity acts on Weyl electrons
in the bulk and discuss the related topological surface
physics. Based thereon, a topological phase diagram is
constructed. In Sec. IV, we analyze the physics of vor-
tices, which under certain conditions can bind Majorana
zero modes. We close with some proposals for experimen-
tal signatures based on thermal and electrical transport,
which are given in Sec. V.

II. SUPERLATTICE

A Weyl semimetal can be understood as an intermedi-
ate phase between a normal insulator (NI) and a topolog-
ical insulator (TI), arising due to a perturbation of the
transition between the two.18 One pathway to engineer
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FIG. 1: The proposed heterostructure for an experimental re-
alization of Weyl superconductors. Magnetically doped layers
of a topological insulator (TI) are alternated with layers of an
s-wave superconductor (SC). The period of the superlattice is
d. The arrows in the TI layers depict their magnetization,
which is along the superlattice axis.

Weyl semimetals is thus the stacking of layers of topo-
logical and normal insulators.5 In the very same spirit,
a Weyl superconductor arises upon alternating thin lay-
ers of topological insulators and standard s-wave BCS
superconductors (SC). In such a structure, sketched in
Fig. 1, the proximity effect induces superconductivity in
the surface states of the TI layers.
As remarked in the Introduction, to realize a Weyl

semimetal requires breaking of either time reversal or
inversion symmetry. In the bulk of this paper we fo-
cus on the time reversal symmetry breaking case, as it
leads to much more non-trivial results in the presence
of superconductivity. Indeed, in Appendix A, we show
that when inversion symmetry is instead broken, while
time reversal is preserved, superconducting proximity ef-
fect leads directly to a gapped, trivial phase. Specifi-
cally we model the topological insulator layers by a single
Dirac node per surface, with an imposed Zeeman splitting
which may be considered to arise from an exchange cou-
pling to randomly distributed magnetic impurities fer-
romagnetically polarized perpendicular to the TI layers,
while the coupling between the TI surface modes and the
magnetic field of the impurities is neglected as usual in
such systems.20–24 We assume the individual layers to be
thin, such that sample is globally phase coherent. Fur-
thermore, neighboring surface layers are tunnel coupled.
Longer range tunneling is assumed to be negligible.

A. Model Hamiltonian

Working in units of ~ = 1, we model the system by the
Hamiltonian

H =
∑

~k⊥,i,j

c†~k⊥i
Hij c~k⊥j

+HSC , (1)

Hij = vF τ
z (ẑ × ~σ) · ~k⊥ δi,j +mσz δi,j (2)

+ tS τ
x δi,j +

1

2
tD τ

+ δi,j+1 +
1

2
tD τ

− δi,j−1

HSC =
∑

~k⊥,i

∆
(

ctop~k⊥↑i

†ctop
−~k⊥↓i

† + cbot.~k⊥↑i
†cbot.

−~k⊥↓i
†
)

+ h.c. ,

(3)

where c~k⊥i = (ctop~k⊥↑i
, ctop~k⊥↓i

, cbot.~k⊥↑i
, cbot.~k⊥↓i

)T comprises an-

nihilation operators for electrons of spin up and down
in the top and bottom surfaces of layer i with in-plane

momentum ~k⊥. The unit vector along the perpendicular
axis is ẑ. The Fermi velocity of the Dirac nodes is vF ,
for simplicity considered to be the same on each surface,
and Pauli matrices ~σ act on the real spin. The addi-
tional pseudo spin for the top/bottom surface degree of
freedom denoted by the Pauli matrices ~τ . The Zeeman
mass (half the Zeeman splitting) is m, the tunneling be-
tween top and bottom surface of the same TI layer is
denoted by tS , and the tunneling between different TI
layers is tD. The proximity induced superconductivity is
characterized by ∆ = |∆|eiϕ, with ϕ being the globally
coherent superconducting phase.
We proceed by Fourier transforming the Hamiltonian

along ẑ, where the superlattice constant is d. After a
canonical transformation

σ± → τzσ± , τ± → σzτ± , (4)

and subsequent diagonalization in the ~τ subspace, the
Hamiltonian reads

H =
∑

~k,l=±

c†~kl
Hl c~kl

+
∑

l=±

HSC,l , (5)

H± = vF (ẑ × ~σ) · ~k +M±(kz)σ
z , (6)

M±(kz) =m±
√

t2S + t2D + 2 tStD cos (kzd) , (7)

HSC,± =
∑

~k

∆ c†~k↑±
c†
−~k↓±

+ h.c. , (8)

where c~k± = (c~k↑±
, c~k↓±

)T is now composed of the appro-

priate eigenoperators resulting from the diagonalization

in the ~τ -subspace, and ~k being the 3-dimensional momen-
tum. Because the proximity induced superconductivity
does not mix the two ~τ sectors, we can analyze the cor-
responding subspaces separately.

B. Normal state

A Weyl node corresponds to the vanishing of an
eigenenergy of (5) for one momentum. In the case with-
out superconductivity analyzed in Ref. 5, and assuming
without loss of generality that m > 0 and tS/tD > 0, two
Weyl nodes of opposite chirality can appear in the spec-

trum of H−. They are located at ~k = (0, 0, π/d± k0)
T

with

k0 =
1

d
arccos

(

1− m2 − (tS − tD)2

2 tS tD

)

, (9)

as long as the condition

m2
c1 = (tS − tD)

2
< m2 < (tS + tD)

2
= m2

c2 (10)
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is fulfilled. For m2 < (tS − tD)
2
, H− describes a trivial

insulator, while m2 > (tS + tD)
2
corresponds to a quan-

tum anomalous Hall insulator. The Hamiltonian H+, on
the other hand, always describes a trivial insulator. It is
adiabatically connected to the case m = 0 that is topo-
logically trivial.

C. Superconducting state

For the superconducting case, we keep m > 0 and
tS/tD > 0, although a different choice does not change
our results qualitatively. We start by analyzing the sub-
space corresponding to τz = −1, which in the normal
case potentially exhibits Weyl nodes. Technically, su-
perconductivity is taken into account by introducing a
particle-hole pseudospin on which the Pauli matrices ~κ
act, as well as the corresponding Nambu spinors. Using

ψ~k = (c~k↑−
, c~k↓−

, c†
−~k↓−

, c†
−~k↑−

)T , the τz = −1 sector of

the Hamiltonian can be recast into the form

H− =
1

2

∑

~k

ψ†
~k

[

(

vF (ẑ × ~σ) · ~k +M−(kz)σ
z
)

1~κ (11)

+ σz 1

2

(

∆κ+ +∆∗ κ−
)

]

ψ~k
.

Diagonalization of the ~κ subspace yields

H− =
1

2

∑

~k,n=±

Φ†
~k,n

Hn∆
− Φ~k,n

, (12)

where

H±∆
− = vF (ẑ × ~σ) · ~k +M±∆

− (kz)σ
z , (13)

M±∆
− (kz) = (m± |∆|) −

√

t2S + t2D + 2 tStD cos (kzd) ,

(14)

and

Φ~k,+ =
(

d~k
, d†

−~k

)T

, Φ~k,− =
(

f~k
, f †

−~k

)T

, (15a)

d~k =
1√
2

(

e−iϕ/2 c~k↑−
+ e+iϕ/2 c†

−~k↓−

)

, (15b)

f~k =
1√
2i

(

e−iϕ/2 c~k↑−
− e+iϕ/2 c†

−~k↓−

)

. (15c)

In the basis of Bogoliubov quasiparticles d~k and f~k, the
Hamiltonian H− thus takes a similar form to a normal
Weyl semimetal upon replacing m→ m± |∆|.
The subspace corresponding to τz = +1 can be ana-

lyzed in the same way, which leads to a Hamiltonian

H±∆
+ = vF (ẑ × ~σ) · ~k +M±∆

+ (kz)σ
z , (16)

M±∆
+ (kz) = (m± |∆|) +

√

t2S + t2D + 2 tStD cos (kzd) .

(17)

For m > |∆|, this subspace is adiabatically connected
to the topologically trivial case m = |∆| = 0, and Weyl
nodes can only appear in the τz = −1 sector. By anal-
ogy to the normal case, we find that for m > |∆|, the
spectrum of Eq. (12) has up to 4 Bogoliubov Weyl nodes

of pairwise opposite chiralities at ~k =
(

0, 0, π/d± k∆±
)T

with

k∆± =
1

d
arccos

(

1− (m± |∆|)2 − (tS − tD)2

2 tS tD

)

(18)

if the respective conditions

mc1 < m± |∆| < mc2 (19)

are fulfilled. For m ± |∆| < mc1, the respective mode
is adiabatically connected to the case m = |∆| = 0 and
thus topologically trivial.
If m < |∆|, each ~τ sectors contains one topologically

trivial mode as well as one mode that potentially has
Weyl nodes. The latter now exist in the range

mc1 < |∆| ±m < mc2 , (20)

at the same momenta ~k =
(

0, 0, π/d± k∆±
)T

with

k∆± =
1

d
arccos

(

1− (|∆| ±m)2 − (tS − tD)2

2 tS tD

)

, (21)

and the topologically trivial regime is corresponds to
|∆| ±m < mc1.

III. CHARACTERIZATION OF THE

ACCESSIBLE PHASES

Having recast the Weyl superconductor Hamiltonian
into a more convenient form, we will now analyze it in
detail. For simplicity, we focus on the case m > |∆|,
when all of the interesting physics happens in H− defined
in Eq. (12). As the discussion in the last section implies,
the case m < |∆| follows upon interchanging the roles of
m and |∆| and considering different subspaces of the full
Hamiltonian.
We first recall some results for the limiting case |∆| →

0, in which a normal Weyl semimetal is recovered (see
Fig. 2(a)).5 If the Zeeman mass m is small, m < mc1,
the system is a topologically trivial insulator. When m
reachesmc1, two Weyl nodes of opposite chirality appear

at ~K = (0, 0, π/d)T . Close to these points, ~k = ~K + ~q,
the dispersion is roughly given by

E ≈ ±vF ~σ · ~q , (22)

where ± defines the chirality of the node.
Upon increasing m, the Weyl nodes move in oppo-

site directions along the k̂z-axis and to the momenta
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FIG. 2: Evolution of the masses M+∆
− (upper curve) and

M−∆
− (lower curve) defined in Eq. (14) upon increasing |∆|.

For |∆| = 0 and mc1 < m < mc2, the system has two Weyl
nodes of chiral electrons, located at the sign changes of M±∆

− .
With superconductivity, each Weyl nodes splits into two Bo-
goliubov Weyl nodes of equal chirality and opposite particle-
hole symmetry. Their separation grows with increasing |∆|
from subfigures (a) to (d).

~k =
(

0, 0, π/d± k∆=0
±

)T
. For fixed kz , the combined

Hamiltonians H±∆=0
− describe a gapped 2-dimensional

Dirac electron. The mass of the latter changes sign at
the Weyl nodes. The sign change in the Dirac mass sig-
nals a quantum Hall transition. For small |kz|, where the
mass is negative, the system is still in the topologically
trivial regime. The 2-dimensional systems correspond-
ing to momenta outside the Weyl nodes, however, are
in topologically nontrivial quantum Hall state. Chiral
surface modes appear on any surface that is not perpen-
dicular to ẑ for each value of kz between the Weyl nodes.
This restriction gives rise to so-called Fermi arcs.

A. Effect of pairing on nodes

When superconductivity is turned on, the Hamiltonian
decomposes into two copies of itself, acting on Bogoliubov
quasiparticles rather than electrons. This is due to the
fact that superconductivity splits each electronic state
into a particle-hole symmetric and particle-hole antisym-
metric state with an energy separation ∼ 2 |∆|. For the
Hamiltonian H−, these new states correspond to d~k and
f~k defined in Eq. (15).
Remarkably, the system does not develop a supercon-

ducting gap, but rather each Weyl node splits into two
separated Bogoliubov Weyl nodes of opposite particle-
hole symmetry (see Fig. 2(b)). Both Bogoliubov Weyl
nodes have the same chirality, which is inherited from
the initial electronic Weyl node, and in this sense half
of the topological charge of the initial Weyl node. The
particle-hole symmetric and particle-hole antisymmetric
subspaces are decoupled. For fixed kz , each subspace de-

scribes a spinless p+ ip-superconductor, which is known
to have both a topologically trivial (“strong pairing”) and
non-trivial (“weak pairing”) phase.28 The transition be-
tween the strong and weak pairing phases is still marked
by the Weyl nodes that separate trivial state at small |kz|
from a non-trivial state at large |kz|.
If superconductivity is further increased, the distance

between the particle-hole symmetric and antisymmetric
Weyl nodes grows. This increases the topologically non-
trivial momentum range for one of them (the H+∆

− sub-

space), and shrinks it for the other one (the H−∆
− sub-

space). For H−∆
− , the Weyl nodes are pushed back to-

wards ~k = (0, 0, π/d)T , where they annihilate. The cor-
responding subspace is left in the topologically trivial
insulating state. The Weyl nodes of H+∆

− move towards
~k = 0. After their annihilation at the origin, they leave
the entire Brillouin zone of this subspace in a topologi-
cally nontrivial insulating state. The motion of the Weyl
nodes upon increase of |∆| is followed in Fig. 2. Specifi-
cally, subfigure (b) depicts the situation where both sub-
spaces have topologically trivial and nontrivial momenta.
Subfigure (c) corresponds to an order parameter ampli-

tude |∆| large enough to trivially gap out the H−∆
− sub-

space, while theH+∆
− subspace still has Weyl nodes. Sub-

figure (d) corresponds to even larger |∆|, such that all
Weyl nodes have annihilated.

B. Majorana surface states

For the topologically non-trivial momentum range of
kz, surface states are expected. We model a surface per-
pendicular to ŷ by replacing m and |∆| by some smooth
functions of y with m(y), |∆|(y) = const. for y < 0, and
m(y), |∆|(y) → 0 for y → +∞ (which realizes a trivial
insulator equivalent to the vacuum). The Hamiltonian

H+∆
− = vF

(

kxσ
y + i

∂

∂y
σx

)

+M+∆
− (kz, y)σ

z (23)

indeed has eigenstates

Ψsurf(kx, kz , y) =
1

N e
∫

y

0
dy′ M+∆

−
(kz,y

′)/vF

(

e−iπ/4

eiπ/4

)

(24)

which are normalizable and exponentially localized at the
surface only for momenta kz with M+∆

− (kz) > 0 inside
the sample, as anticipated. N is the corresponding nor-
malization factor. The dispersion of the surface state is
linear, E = vF kx/2.
The “Majorana-ness” of this state can be understood

by counting. In particular, recall that the Nambu con-
struction, Eq. (11), nominally doubles the number of
components of the fermionic fields. This implies that
ψk and ψ−k are not independent. Thus corresponding to
Eq. (24) there is one state, i.e. one canonical (complex)
fermion, for each momentum satisfying the localization
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condition M+∆
− (kz) > 0 with, say, kx > 0, where the last

condition is made to keep the states independent. Equiv-
alently, we can divide this complex fermion into two real
ones, and associate one real Majorana fermion with each
kx, with no restrictions on kx.
In conclusion, we find that the Bogoliubov Hamilto-

nians H+∆
− and H−∆

− essentially each describe half of a
normal Weyl semimetal. They are subject to respective
effective Zeeman gapsm±|∆|. A pair of BogoliubovWeyl
nodes of opposite chirality exists ifmc1 < m±|∆| < mc2.
In the sense that two Bogoliubov Weyl nodes arise from
a single normal Weyl one, each of the former carries
half of the topological charge of the latter. However,
this notion is tied up with the non-independence of Bo-
goliubov states. The corresponding quasiparticles are
characterized by their chirality and particle-hole symme-
try rather than just chirality in the non-superconducting
case. The Bogoliubov Weyl nodes are located at mo-

menta ~k = (0, 0, kz)
T , with

M±∆
− (kz) = 0 . (25)

The vanishing of M∆
± (kz) reflects a topological transi-

tion, regarding the quasiparticles as two dimensional ones
parametrized by kz. For any kz that satisfies

M±∆
− (kz) > 0 , (26)

the respective Hamiltonian H±∆
− maps to a topologically

non-trivial spinless p+ip superconductor and has a chiral
surface mode. The latter describes a Majorana particle
with linear dispersion perpendicular to ẑ and the surface,

E = vF ~k · (ê⊥ × ẑ) /2. The spin of the surface mode is
locked to the direction of propagation. Negative values
of M±∆

− (kz), on the contrary, correspond to a trivial in-
sulator.

C. Topological phase diagram

The Hamiltonians H±∆
− can separately be tuned from

a topologically trivial to topologically non-trivial state by
changing both m and |∆|. In our model, these two pa-
rameters can be tuned separately, although a finite mag-
netization can in principle affect the proximity induced
superconductivity in the TI/SC interfaces. An analysis
of the effect of the magnetization on the gap (and of the
superconductivity on the magnetic ordering) requires a
theory of the superconducting mechanism, like BCS the-
ory, which goes well beyond the treatment here and we
think deserves a separate study from this manuscript.
If we exclude a substantial magnetic field due to mag-

netic impurities, they could most importantly affect the
superconductivity in the TI/SC interfaces by an exchange
coupling of the nearby superconductor layers to the mag-
netic impurities. A weakening of the superconductivity
there would in turn diminish the proximity effect at the
interfaces. Since however the superconductor layers are

FIG. 3: Phase diagram of a Weyl superconductor in a TI/SC
heterostructure as a function of Zeeman gap m and proxim-
ity induced superconducting order parameter amplitude |∆|.
The values of mc1 and mc2 are set by the tunneling ampli-
tudes between the surface Dirac layers of the heterostructure
depicted in Fig. 1, see Eq. (10). Each phase is characterized by
nb, the number of pairs of bulk Bogoliubov Weyl nodes, and
ns, the number of two-dimensional Majorana surface modes.
The phases are labeled as nb, ns. The black dots locate the
different subfigures of Fig. 2.

separated from the magnetic impurities by the interfaces,
the exchange coupling of the SC to the magnetic impu-
rities is certainly much weaker than the Zeeman term in
the interfaces. It is therefore reasonable to neglect the
explicit dependence of ∆ from m. Similarly, a proximity
effect of the SC on the impurities potentially weakening
their ferromagnetic ordering is disregarded. This approx-
imation would break down if either the magnetic field of
the impurities was important, or if the tunnel coupling
between the superconductor and the magnetic impurities
was strong.

Neglecting their weak interdependence, a simultane-
ous modification of m and |∆ allows to access a number
of different phases with nb = 0, 1, 2 pairs of Bogoliubov
Weyl nodes in the bulk and ns = 0, 1, 2 two-dimensional
Majorana surface modes (potentially living in a restricted
kz-range). Fig. 3 shows the phase diagram as a function
of m and |∆|, the phases are labeled according to their
values of (nb, ns). The phase diagram is mirror symmet-
ric for negative values of m. The tunability of Weyl su-
perconductors (which can be mapped to four copies of a
spinless p+ip superconductor per value of kz, only two of
which are potentially topologically non-trivial) is similar
to the one of superconducting quantum anomalous Hall
insulators (which can be mapped to two topologically
potentially non-trivial copies of a spinless p + ip super-
conductor), although the increased complexity leads to a
richer phase diagram for Weyl superconductors.29 Of par-
ticular interest are the phases (0, 1), which corresponds
to a truly topological superconductor (in class D and thus
with two-dimensional topological invariants similarly to
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a three-dimensional quantum anomalous Hall state), and
(1, 1), which is precisely half of a normal Weyl semimetal.
We will analyze them further in the next section.30

IV. VORTICES IN WEYL

SUPERCONDUCTORS

One of the most interesting features of two dimensional
topological superconductors is that they may host a zero
energy Majorana mode localized around a vortex. Collec-
tions of such Majorana bound states allow for non-local
storage of quantum information, which may make the
stored information less sensitive to decoherence.31 This
motivates the analysis of vortices in Weyl superconduc-
tors. We specifically discuss the behavior of vortices in
the simplest (0, 1) and (1, 1) phases of Fig. 3, which mini-
mize the number of surface Majorana modes. The vortex
physics in other phases is qualitatively similar, but may
involve more Majorana modes.
The suppression of superconductivity inside a vortex

puts its core in either the (0, 2), (2, 2) or (0, 0) phase. For
simplicity, we consider the core to be is in the trivially
insulating (0, 0) phase. In general, the finite size of the
core suggests that in any case the core cannot be sharply
distinguished from a trivial state, in a full treatment.
The (0, 0) state can always be realized for an appropriate
choice of m and |∆|. Nevertheless, our results are not
affected by this assumption. Different values of m and
|∆| will at most change the number and/or direction of
propagation of the interface Majorana modes.
Because the heterostructure has one special direction,

namely the ẑ-axis along which the different layers are
stacked, vortices parallel and perpendicular to ẑ have to
be distinguished, as depicted in Fig. 4. The qualitative
physics of vortices can be understood by analogy to 3He-
A, which also is a Weyl superconductor.2,32 As pointed
out in Ref. 32, the momentum range in which Majorana
bound states at a vortex exist is proportional to êv · ẑ,
where êv is the direction of the vortex. In particular, a
vortex perpendicular to ẑ has no bound states. In the fol-
lowing, we will analyze the behavior of vortices in TI/SC
heterostructures in more detail.

A. Vortex along the superlattice axis

At first, we turn to a magnetic field ~B applied along
ẑ, the stacking axis of the heterostructure. For modest
field strengths, only few vortices are present, and interac-
tions between vortices can be neglected. This situation is
sketched in Fig. 4(a). By assumption, the vortex core is
in a topologically trivial insulating state. The boundary
of the vortex is thus equivalent to an interface between
a Weyl superconductor and vacuum and has 1 Majorana
edge mode. If the Weyl superconductor is in the (1, 1)
phase, this mode has a restricted range of momenta kz (it
lives ”between the Bogoliubov Weyl nodes”), the (0, 1)

FIG. 4: The two classes of vortices in Weyl superconductors.
Subfigure (a) sketches a vortex along the superlattice axis ẑ,
with bound states along a tube through the whole sample.
Subfigure (b) depicts a vortex perpendicular to ẑ. Whereas
there are no states bound to the vortex, the surface states can
be used for Majorana interferometry (thick line).

phase has interface modes for any momentum kz. We re-
strict the discussion to |∆| < m when all relevant physics
happens in H−, but the results can easily be generalized.

Exploiting the cylindrical symmetry with respect to
the vortex axis, we model the latter by a radially depen-
dent Zeeman gap m and superconducting order param-
eter ∆(~r) = |∆(r)|eiϕ(φ), where ϕ(φ) = ϕ0 − (Φ/Φ0)φ
is the phase of the order parameter. The latter is now
twisted due to the presence of a magnetic field (φ denotes
the angular coordinate). The twist is proportional to the
flux Φ trapped by the vortex, which itself is quantized
in units of Φ0 = hc/2e = π/e, as usual for superconduc-
tors. The phase ϕ0 corresponds to the superconducting
phase without magnetic field. The radius of the vortex
is considered to be R, and m(r) and |∆(r)| are smooth
functions interpolating between fixed values m and |∆|
for r > R, and |m| < mc1, |∆| = 0 inside the core of

the vortex. The magnetic field is ~B = B ẑ inside the
vortex and for simplicity assumed to vanish everywhere
else. This gives rise to a vector potential

~A(~r) = A(r) êφ , (27)

A(r) =
Br

2
Θ(R− r) +

BR2

2r
Θ(r −R)

in êφ direction, that is taken into account by minimal

coupling ~k → ~k − e ~A in the Hamiltonian (1). After a
canonical transformation σx → −σy, σy → σx, the rele-
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vant Hamiltonian H− in Eq. (11) becomes

H− =
∑

kz

∫

d2r ψ†
kz
(~r)H− ψkz

(~r) , (28a)

H− =

(

HA |∆(r)| eiϕ(φ) σz

|∆(r)| e−iϕ(φ) σz H−A

)

, (28b)

HA =M−(kz , r)σ
z + vF

(

0 −i e−iφ

−i eiφ 0

)

∂

∂r
(28c)

+ vF

(

0 − e−iφ

eiφ 0

)(

1

r

∂

∂φ
+ ie A(r)

)

.

For any given kz , this Hamiltonian may be interpreted as
two copies of a spinless p+ip superconductor threaded by
a magnetic flux. By analogy, the vortex binds one Majo-
rana zero mode per topological value of kz and per topo-
logical subsector if it traps an odd number of flux quanta,
and no zero mode for an even number of trapped flux
quanta.28 Assuming that there is only a single topologi-
cally non-trivial subsector, one can thus define a unique
zero energy Majorana mode bound to the vortex. See
appendix B for more details.
Physically, the Majorana bound state can be under-

stood in terms of an Aharonov-Bohm like phase, a Berry
phase and a geometrical phase for the Majorana surface
states. Consider the topologically equivalent situation of
a Weyl superconductor with a tube-like hole along the ẑ
axis. Without a magnetic field inside the hole, we know
that chiral Majorana surface states exist when kz is cho-
sen in the range where the two-dimensional superconduc-
tor is in the topological phase. Since the spin is locked to
the momentum, the surface states pick up a Berry phase
of π upon encircling the hole once. This shifts the zero
momentum mode away from zero energy and can be in-
terpreted as effectively antiperiodic boundary condition
on the geometrical phase in order to counterbalance the
Berry phase. If now a unit flux is threaded through the
tube-like hole, the surface states pick up an additional
phase of π. The latter derives from the winding of the
order parameter phase, and is similar to an Aharonov-
Bohm effect. It compensates the Berry phase and thus
allows for zero energy bound states. Similar effects have
also been discussed for confined magnetic flux tubes im-
posed in 3-dimensional strong topological insulators.34,35

For momenta kz which are in the topologically trivial
range, of course, no bound states exist both with and
without magnetic flux. Because the magnetic field van-
ishes outside the vortex, the topological character and
especially the existence of surface states is unchanged
there. We thus conclude that a vortex with an odd num-
ber of flux quanta traps a Majorana zero mode for every
topologically non-trivial value of kz .
In a more realistic model, the Majorana bound states

do not form totally flat bands as a function of kz . The
presence of a zero energy Majorana mode for odd-integer
fluxes is however partially robust. As an effective model
at lowest energies, we consider the zero energy band of

Majorana modes as a function of kz . After transforming
to Wannier orbitals, we obtain a set of Majorana bound
states at different heights z, as depicted in Fig. 4(a). This
Hamiltonian can be interpreted as a 1-dimensional chain
of decoupled sites. Next, we introduce a small hopping
along the chain, thus allowing the Majoranas to move up
and down the vortex tube. In dimensionless units, their
dispersion is given by

E = − cos(kz) . (29)

Therefore, zero energy Majorana bound states exist if

1. a Majorana bound state can be defined for kz =
±π/2, i.e. M±∆

− (±π/2) > 0, and if

2. kz can take the values ±π/2.

The first condition is always fulfilled in the (0, 1) phase,
but depends on the exact position of the BogoliubovWeyl
nodes in the (1, 1) phase. The second condition depends
on the number of layers of the TI/SC heterostructre and
the boundary conditions. Choosing for instance hard wall
boundary conditions, one finds exactly one zero energy
Majorana mode if the system has an odd number of su-
perlattice layers, and no zero energy Majorana modes for
an even number of layers. This result is quite natural,
in a weak tunneling picture. Majorana states in a pair
of layers can mix to form a Dirac fermion, moving away
from zero energy. Only for an odd number of layers is an
unpaired Majorana left behind at zero energy.

B. Vortex perpendicular to the superlattice axis

Viewing the vortex, as in the previous subsection,
as a cylindrical hole enclosing a flux, the discussion in
Sec. III B implies that a vortex perpendicular to the axis ẑ
of the heterostructure should also host Majorana modes.
In our model, they run between the front and back sur-
faces of the heterostructure on the side walls of the vor-
tex. For a thin vortex, however, already a small coupling
across the flux line is sufficient to hybridize and conse-
quently gap out these two states. We thus recover the
result of Ref. 32.

The hole comprising the vortex also introduces a new
edge at the sample boundary (the circular ends of the
cylindrical hole). The nearby surface states will rear-
range in order to host the vortex and locally run along
this new edge, as depicted in Fig. 4(b). While there are
no states bound to the vortex, a special class of surface
state paths allows for Majorana interferometry, depicted
by thick lines in Fig. 4(b). It may be interesting to study
experimental measurements of interference in such struc-
tures.
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FIG. 5: Sketch of the anomalous thermal Hall effect in Weyl
superconductors. The sample is shown from above. A thermal
gradient ∇T is applied across the sample. The upper surface
is at a temperature T> larger than the temperature T< of the
lower surface. This leads to a net heat current from side A to
side B perpendicular to the temperature gradient transported
by the surface modes running around the sample.

V. EXPERIMENTAL PROBES

A. Anomalous thermal Hall effet

Because Majorana particles do not carry electric
charge, a natural way to measure surface Majorana states
is to detect their thermal transport. We again focus
on a Weyl superconductor in the (0, 1) or (1, 1) phase.
As there is only a single Majorana surface modes, these
phases should exhibit only half of the thermal transport
of a normal Weyl semimetal in the corresponding regime.
On a surface perpendicular to ŷ, thermodynamics can

be calculated from the effective Majorana surface parti-
tion function

Z =

∫

D
(

Ψωn,kx,kz
,Ψωn,kx,kz

)

kx>0
e−S , (30)

S =
∑

ωn,
kx>0,kz

Ψωn,kx,kz
(−i ωn + vF kx)Ψωn,kx,kz

, (31)

where the operators Ψ†
ωn,kx,kz

create excitations above
the Bogoliubov vacuum. Note the restriction to kx > 0,
which is because pairs of Majorana fermions at kx and
−kx have been recombined into the canonical Ψ fermion
(c.f. Sec. III B).
If a thermal gradient ∇T is applied across the Weyl

semimetal, each surface mode transports heat only in its
direction of propagation. Therefore, the thermal gradient
leads to a net heat transport perpendicular to ∇T , as de-
picted in Fig. 5. This phenomenon is known as the ther-
mal Hall effect. It has been proposed as an experimental
signature of various other chiral edge states, for example
in the spin Hall effect, the fractional quantum Hall effect
or topological superconductors.28,37–39 We presume any
bulk transport to be parallel to the gradient, so that it
can be separated from the surface contribution. In any
case, the dependence upon field, density, etc. of any pos-
sible bulk contribution would be very different from that
of the surface one.

For concreteness, consider a temperature gradient ∇T
imposed across the sample in the ŷ direction. This leads
to a net difference in the distribution of quasiparticles
on the y = 0 and y = Ly surfaces. The result is an
excess heat current IQ, in the x direction, which defines
the thermal Hall conductance Kxy, according to

IQ = Kxy |∇T | . (32)

For small temperature differences between the surfaces,
the excess heat current is obtain by differentiation, and
we obtain

Kxy =
∑

kz

∫ ∞

0

dkx
2π

v2Fkx
∂ nF (vFkx)

∂T
, (33)

=
∑

kz

1

2

k2Bπ
2T

3h
, (34)

with kz being summed over all topologically non-trivial
values for the given phase of the Weyl superconductor
(either (0, 1) or (1, 1)) and nF denoting the Fermi-Dirac
distribution at the temperature T . Note that we have
restored physical units such as Boltzmann’s constant kB
and Planck’s constant h for concreteness. As expected,
the surface of a Weyl superconductor has half of the ther-
mal Hall conductance of a quantum Hall edge state per
allowed momentum kz. This is not surprising because
the thermal Hall coefficient is proportional to the cen-
tral charge c of the surface modes, Kxy = c π2k2BT/(3h),
similar to the heat capacity.28,40

Coming back to the Weyl superconductor in the (0, 1)
or (1, 1) phase, the thermal Hall effect has an anomalous
coefficient proportional to the distance 2k∆+ between the
Weyl nodes defined in Eq. (18). Concretely, the ther-
mal Hall conductance is proportional to the length of the
system in the ẑ direction, Kxy = κxyLz, with

κxy =
1

2

k2Bπ
2T

3h

k∆+
π

. (35)

In the (0, 1) phase, where k∆+ = π/d, each TI layer con-
tributes the full Majorana quantum (1/2)π2k2BT/(3h) to
the thermal Hall coefficient. Although thermal transport
measurements are experimentally demanding, the higher
dimensionality of the surface states in a Weyl supercon-
ductor as compared to fractional or spin quantum Hall
edge states hopefully tends to result in more approach-
able experiments.

B. Electrical transport

As discussed in Sec. III, the surface physics of a Weyl
superconductor can be understood as layers of spinless
p+ip superconductors stacked in momentum space along
kz, with potentially associated edge states. In order to
minimize bulk transport, we now specialize to the (0, 1)
phase. The surface of the Weyl superconductor is then
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equivalent to just one non-trivial spinless p + ip super-
conductor edge state per value of kz. In this phase, elec-
tric transport experiments that have been proposed for
p+ ip superconductors can simply be transferred to Weyl
superconductors. The general idea is to bring different
samples with Majorana edge modes into contact. When-
ever an interface has two edge modes running into the
same direction, electrons can tunnel into the interface by
decomposition in the two Majorana particles. These two
Majorana particles can then be transported in parallel,
giving rise to a one-directional electronic transport chan-
nel along the interface.41 In alternative setups, the two
Majoranas can be separated and recombined with differ-
ent Majorana modes, which leads to distinct signatures
in conductance and noise.42 The latter experiments are
however less appropriate for Weyl superconductors where
each surface has a large number of generically coupled
Majorana modes at different values of kz.

VI. SUMMARY AND CONCLUSIONS

We have shown how a variety of gapless and/or
topological superconducting phases can be achieved
in superconducting–topological insulator superlattices.
These phases are analogous to quasiparticle states of 3He,
The most interesting (0, 1) and (1, 1) phases exhibit Ma-
jorana surface states on some surfaces, and bound to the
cores of vortices. Particularly in the gapless phases, such
as (1, 1), these Majorana states exist only for a range of
momenta, kz, along the modulated direction of the su-
perlattice. In such a case, no local (in z) description of
the Majorana modes is possible, as opposed to the situ-
ation in the (0, 1) phase, in which the Majorana modes
can be modeled in terms of a real-space tight-binding
Hamiltonian in the z direction, and the state can be con-
sidered as a sort of stack of two-dimensional topological
superconductors.
It is hoped that the proposed structures might be ex-

plored experimentally in the future. While we do not
discuss materials in any detail here, we note that recent
studies have shown that CuxBi2Se3

25–27 becomes a su-
perconductor with x ≈ 0.14, while it is a topological
insulator for x = 0, so that a superlattice with mod-
ulated x might be a candidate realization of this pro-
posal. Some ab initio modeling of such a superlattice
would probably be useful prior to any experimental at-
tempts. Alternatively, spin-triplet superconductors have
recently been identified to exhibit Weyl superconducting
phases as well.43,44

There is significant scope for further theoretical study
of Weyl and topological superconductors in three di-
mensions. The Majorana surface states of (0, 1) and
(1, 1) phases are rather analogous to the “chiral surface
sheaths” which occur in three-dimensional quantum Hall
systems,45,46 where interesting vertical transport, quan-
tum interference, and universal conductance fluctuations
have been studied, and it would be interesting to see

how such phenomena translate to the superconducting
case. We have also not touched on the Adler-Bell-Jackiw
anomaly associated with Weyl points. This has been
discussed recently for normal Weyl semimetals, where
it may lead to anomalous magnetotransport.7 It is not
obvious what the consequences are for Weyl supercon-
ductors. One might also consider Josephson effects for
currents along the z axis. We leave these questions for
future work.

Acknowledgments

We acknowledge discussions with Victor Galitski, and
Xiaoliang Qi. L.B. was supported by NSF grants DMR-
0804564 and PHY05-51164. T.M. gratefully acknowl-
edges the hospitality of KITP, where part of this work
was done, as well as financial support by SFB 608 and
FOR 960 of the DPG, and the Bonn-Cologne graduate
school (BCGS).

Appendix A: Gaplessness of inversion symmetric

Weyl superconductors

In this appendix, we discuss the qualitative behavior
of Weyl semimetals under superconducting proximity ef-
fect. We assume that either time reversal or inversion
symmetry is conserved, while the respective other sym-
metry needs to be broken for the system to exhibit Weyl
physics. As has been mentioned in the introduction, the
fate of the Weyl superconductor depends on which of the
symmetries is conserved. For inversion symmetric, time
reversal symmetry broken Weyl semimetals, the presence

of a Weyl node at ~k0 implies the presence of a Weyl node

of opposite chirality at − ~k0. In Weyl semimetals with
broken inversion symmetry, however, time reversal sym-
metry guarantees the presence of Weyl nodes of equal

chirality at ±~k0. When a superconducting proximity ef-
fect is turned on, the low energy modes at these two
Weyl nodes mix. However, the superconducting correla-
tions more precisely couple electrons on one Weyl node
to holes on the other, instead of electrons to electrons as
a more standard perturbation would do. This effectively
inverts the chirality of one of the Weyl nodes. Conse-
quently, the proximity effect in inversion symmetric sys-
tems effectively mixes Weyl nodes of the same chirality,
and no gap opens. In time reversal symmetric systems,
on the contrary, the mixed Weyl nodes effectively have
opposite chiralities, and a gap is to be expected.
To be more concrete, we consider the effective low en-

ergy theory of a Weyl semimetal, which corresponds to
electrons living close to Weyl nodes. Since standard su-

perconductivity couples electrons at momenta ±~k, we fo-
cus our effective model on two of the Weyl nodes located

at momenta ±~k0. For an inversion symmetric system,
where the nodes are of opposite chirality, this already
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describes a complete minimal model. For a time rever-

sal symmetric system, the nodes at ±~k0 have the same
chirality, and there must exist at least two additional

nodes, say at ±~k1, of the respective opposite chirality.
Since these two pairs of nodes are decoupled, we can un-
derstand the system as two copies of the following Hamil-
tonian (A4) describing only two Weyl nodes. The latter
thus allows us to decide on the presence or absence of a
gap.

As advertized, our result will only depend on whether
the two initial Weyl nodes have the same or opposite
chirality. We therefore assume one Weyl node to have

positive chirality, H1 ∼ ~σ · ~k, while the second node is

so far keep in a general notation, H2 ∼ ± ~σ · ~k in order
to tackle both the time reversal symmetric and inver-
sion symmetric cases simultaneously. The electrons close
to these nodes are described by the operators c1,~k,σ and

c2,~k,σ, respectively. We furthermore measure the mo-

menta relative to the respective Weyl nodes, such that
the non-superconducting Hamiltonian reads

H0 =
∑

~k

(c†
1,~k,↑

, c†
1,~k,↓

)
(

vF ~σ · ~k
)

(

c
1,~k,↑

c
1,~k,↓

)

(A1)

+
∑

~k

(c†
2,~k,↑

, c†
2,~k,↓

)
(

± vF ~σ · ~k
)

(

c
2,~k,↑

c
2,~k,↓

)

=
∑

~k

Ψ†
~k,0

(

vF ~σ · ~k 0

0 ± vF ~σ · ~k

)

Ψ~k,0

with Ψ~k,0 = (c1,~k,↑, c1,~k,↓, c2,~k,↑, c2,~k,↓)
T . We assume that

the superconducting part of the Hamiltonian only con-
tains terms of the from

HSC ∼ h(~k) c†
1,~k,σ

c†
2,−~k,σ′

+ h.c. , (A2)

which in particular includes s-wave and p-wave pairing.
It is now useful to rewrite the non-superconducting part
of the Hamiltonian as

H0 =
∑

~k

Ψ†
~k,∆

(

vF ~σ · ~k 0

0 ∓ vF ~σ · ~k

)

Ψ~k,∆
, (A3)

where Ψ~k,∆ = (c
1,~k,↑

, c
1,~k,↓

, c†
2,−~k,↓

,−c†
2,−~k,↑

)T . We note

that the sign of the second Weyl node in the Hamilto-
nian has to be reversed due to the inversion of creation
and annihilation operators. This precisely corresponds to
the effective inversion of the chirality of the second node
under proximity effect, see above. Including a general su-
perconducting term, the full Hamiltonian H = H0+HSC

can be written as

H =
∑

~k

Ψ†
~k,∆

HΨ~k,∆
, (A4)

H =





vF ~σ · ~k
[

α(~k)1σ + ~β(~k) · ~σ
]

[

α(~k)∗ 1σ + ~β(~k)∗ · ~σ
]

∓ vF ~σ · ~k



 .

(A5)

For an inversion symmetric system, where the lower
(plus) sign applies, the diagonal is proportional to the
unit matrix in Nambu space. Superconductivity can
therefore never open up a gap, but only shift the Bo-
goliobov Weyl nodes in momentum space. For time re-
versal symmetric systems, the Hamiltonian is however
generically gapped. As an example, we consider s-wave
superconductivity. The latter corresponds to

Hs−wave =
∑

~k

∆ c†
1,~k,↑

c†
2,−~k,↓

+ h.c. (A6)

=
∑

~k

∆

2

(

c†
1,~k,↑

c†
2,−~k,↓

− c†
2,~k,↓

c†
1,−~k,↑

)

+ h.c. ,

where we neglect the superconducting phase for simplic-
ity, i.e. ∆ = |∆|. The total Hamiltonian then reads

H =
∑

~k

Ψ†
~k,∆

(

vF ~σ · ~k ∆
2 1σ

∆
2 1σ − vF ~σ · ~k

)

Ψ~k,∆
. (A7)

The eigenvalues of this Hamiltonian are easily found as

E = ±
√

(vF ~σ · ~k)2 + |∆|2
4

, (A8)

and the system is gapped as expected. Finally, consider
adiabatically restoring inversion symmetry. Throughout
this process, superconductivity ensures the system to be
gapped. A time reversal symmetric, inversion symmetry
broken Weyl superconductor can thus adiabatically be
connected to the trivial state respecting both symmetries,
and is therefore a trivial insulator itself.

Appendix B: Expression of the zero energy

Majorana bound state

A vortex in a Weyl superconductor traps a unique zero
energy bound state if it contains an odd number of flux
quanta. To explicitly show this, let us first discuss the
bound state for a simple limiting case where the alge-
bra can be done explicitly, and then turn to the general
solution.
The limiting case is defined as follows. We assume

that the Zeeman mass m is constant in the entire Weyl
superconductor (and in particular takes the same value
inside and outside the vortex). Moreover, we assume
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that mc1 < m < mc2 , such that there is one momentum
kz = k0z with M−(r, k

0
z) = 0 everywhere. As follows from

Fig. 3, we are then able to find a |∆| = ∆0 outside the
vortex such that only one subsector is topologically non-
trivial, and expect a single zero energy Majorana mode
bound to the vortex for this choice of |∆|. In addition, we
assume that there is only a single flux quantum inside the
vortex. Outside the vortex, the Hamiltonian (28) reads
for kz = k0z

H− =

∫

r>R

d2r ψ†
k0
z
(~r)H− ψk0

z
(~r) , (B1a)

H− =

(

HB |∆(r)| eiϕ(φ) σz

|∆(r)| e−iϕ(φ) σz H−B

)

, (B1b)

HB = vF

(

0 −i e−iφ

−i eiφ 0

)

∂

∂r
(B1c)

+ vF

(

0 − e−iφ

eiφ 0

)(

1

r

∂

∂φ
+ ie

BR2

2r

)

.

The order parameter amplitude |∆(r)| goes to zero in
the vortex core and takes the value |∆(r)| = ∆0 far
away from the vortex. For kz = k0z , this Hamiltonian
has two linearly independent normalizable zero energy
bound state solutions,

Ψouter
1 =

1

N ′′

1√
r
e−

∫
r

R
dr′ |∆(k0

z,r
′)|/vF









e−iφ

0
0
i eiφ









, (B2)

Ψouter
2 =

1

N ′′

1√
r
e−

∫
r

R
dr′ |∆(k0

z,r
′)|/vF







0
i
1
0






. (B3)

Inside the vortex. i.e. for r < R, where

HB = vF

(

0 −i e−iφ

−i eiφ 0

)

∂

∂r
(B4)

+ vF

(

0 − e−iφ

eiφ 0

)(

1

r

∂

∂φ
+ ie

Br

2

)

,

only the state

Ψinner
2 =

1

N ′′′
e−1/vF

∫
r

R
dr′ (|∆(k0

z,r
′)|+eBr′/2)







0
i
1
0






(B5)

is normalizable. The state that would be connected to
Ψ1 is given by

ψinner
1 ∼ e−1/vF

∫
r

R
dr′ (|∆(k0

z,r
′)|+1/r′−eBr′/2)









e−iφ

0
0
i eiφ









.

(B6)

This state however diverges at the origin as ψinner
1

r→0∼
1/r and is thus not normalizable. Consequently, there is
only a single normalizable zero energy state bound to the
vortex. Up to the normalization, it is given by

Ψ = Ψinner
2 Θ(R− r) + Ψouter

2 Θ(r −R) . (B7)

When we consider a momentum kz close to k0z or change
the Zeeman gap m a little bit, the system will stay in
the same extended topological phase. There will thus
always be a single zero energy bound state per topolog-
ical momentum as long as there is no topological phase
transition. We find that the Hamiltonian (28) always ex-
hibits two linearly independent zero energy bound states
for r > R. For M+∆

− (kz , r
′) > 0 and M−∆

− (kz , r
′) < 0 at

large r, they are given by

Ψouter
+∆ ∼ 1√

r
e−

∫
r

R
dr′ M+∆

−
(kz,r

′)/vF









e−iφ

i
1
i eiφ









(B8)

Ψouter
−∆ ∼ 1√

r
e+

∫
r

R
dr′ M−∆

−
(kz ,r

′)/vF









e−iφ

−i
−1
i eiφ









. (B9)

The bound state will be a superposition of these two
states that connects to the normalizable solution for r <
R. The special case considered previously corresponds to
M+∆

− = −M−∆
− = |∆(r)| and Ψ2 ∼ Ψ+∆ −Ψ∆−.
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