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We theoretically consider a Josephson junction formed by a ferromagnetic spacer with a strong
spin-orbit interaction or a magnetic spin valve, i.e., a bilayer with one static and one free layer.
Electron spin transport facilitates a nonlinear dynamical coupling between the magnetic moment
and charge current, which consists of normal and superfluid components. By phenomenologically
adding reactive and dissipative interactions (guided by structural and Onsager symmetries), we
construct magnetic torques and charge pumping, whose microscopic origins are also discussed. A
stability analysis of our coupled nonlinear systems generates a rich phase diagram with fixed points,
limit cycles, and quasiperiodic states. Our findings reduce to the known phase diagrams for current-
biased nonmagnetic Josephson junctions, on the one hand, and spin-torque driven magnetic films, on
the other, in the absence of coupling between the magnetic and superconducting order parameters.

PACS numbers: 72.25.-b,74.50.+r,74.20.Rp,75.70.Cn

I. INTRODUCTION

Hybrid structures with ferromagnet (F)|normal-metal
(N) interfaces have garnered much attention over the past
few decades owing to their application in spintronic de-
vices. Injecting a spin current into such a system exerts a
torque on the magnet,1 which can induce precession and
even reversal,2 allowing for manipulation of the magnetic
order parameter in nanoscale structures without an ex-
ternal magnetic field.3 Because of the nonlinear nature of
the ensuing magnetic dynamics, such devices offer obser-
vation of effects traditionally seen in nonlinear dynami-
cal systems: phase locking, hysteresis, bifurcations, and
chaos are readily observed.4

In consideration of a superconductor (S)|F|S het-
erostructure, one may expect the Josephson effect to be
suppressed due to the rapid decay of a singlet pair in-
side the ferromagnet. Recent experiments,5 however, ob-
served superconducting transport through a strong fer-
romagnet between two conventional (s-wave) supercon-
ductors. With the expectation that the triplet compo-
nent of the superconducting condensate can penetrate
long distances into a ferromagnet, the preservation of this
signal suggests a spin singlet-to-triplet conversion at the
interfaces.6 The unexpected persistence of a supercurrent
through the magnet forecasts a new kind of spintronic
device that manipulates the Josephson junction by the
ferromagnet and, conversely, ferromagnetic layer by the
superconducting condensate.7–9

Previous analyses7–10 have considered equilibrium in-
teractions between magnetic and superconducting order
parameters, which naturally induce a reactive coupling.
In contrast, in our description, we introduce nonequilib-
rium interactions consistent with the symmetries of the
structure and obeying Onsager reciprocity.11 This treat-
ment allows the addition of both dissipative and reac-
tive couplings between the magnet and superconductor
that may in practice be crucial in the understanding of
ferromagnetic Josephson junctions, analogous to the im-
portance of Slonczewski1–3 and spin-pumping12 terms in
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FIG. 1. Schematics of our magnetic Josephson junctions.
The directions of junction layering, applied current I, internal
Rashba field E (a), and direction of the static ferromagnetic
layer ms (b) all lie along the z axis. φ is the phase difference
between the superconducting leads.

the theory of spin-transfer torques. Such effects cannot
be fully captured by quasiequilibrium free-energy con-
siderations. We expect the dissipation to be governed by
the quasiparticle excitations in the superconductors in
concert with the microscopic processes in the ferromag-
net (due to magnon interaction with electrons, phonons,
or other magnons) that are responsible for their Gilbert
damping (which, in turn, is known to persist down to
very low temperatures13).

In order to provide specific examples, we consider (a)
an S|F|S heterostructure with a Rashba spin-orbit in-
teraction (SOI) in a thin ferromagnetic interlayer (ne-
glecting the vector potential and associated phase shift
caused by its magnetic moment9) and (b) S|F|N|F|S het-
erostructure wherein the SOI is replaced by a pinned fer-
romagnetic layer, ms. See Fig. 1. The corresponding
spin-dependent Hamiltonians mix the singlet and triplet
superconducting components,6 allowing the superfluid to
penetrate into the magnet and exert spin torque and
carry spin pumping (since a triplet Cooper pair is a spin-
1 object) that are analogous to those associated with
normal quasiparticles (spin-1/2 objects). In particular,
as a simple model to demonstrate proof of concept, we
take the device geometry to be rotationally symmetric
along the axis associated with the Rashba interaction, as
sketched in Fig. 1(a), or along the direction of the fixed



2

magnetic layer, as sketched in Fig. 1(b). By analyzing the
stability and dynamics of our model, we outline a phase
diagram of the coupled system as a function of applied
magnetic field and current bias.

II. MODEL

The phenomenological equation of motion of an iso-
lated ferromagnet sufficiently well below the Curie tem-
perature is given by the Landau-Lifshitz-Gilbert (LLG)
equation14

ṁ = −γm×H + αm× ṁ , (1)

where γ is the gyromagnetic ratio and α is the dimension-
less Gilbert damping. We use a normalized form of this
equation, in which the (unit) magnetic direction vector
m = M/Ms, Ms = |M| (saturation magnetization), is
dimensionless. H = −V−1∂F/∂M is the effective mag-
netic field and F , M, and V are the free energy, magneti-
zation vector, and volume, respectively. In the spin-valve
model, Fig. 1(b), m will denote the free layer mf .

We consider the resistively-shunted junction (RSJ)
model for the Josephson junction, wherein the device
is composed of conventional superconductors with some
Ohmic conductance σ in the junction.15 Additionally, we
take the capacitance to be zero, which precludes RC-
type delays in the coupled dynamics. The corresponding
Josephson relations (for a static magnetization) are

Q̇ = Ic sinφ+ σV , φ̇ =
2e

~
V , (2)

where V is the voltage drop across the junction. φ is the
phase difference between the superconducting reservoirs
and Q is the charge transported by the junction. The
supercurrent is proportional to the critical current, Ic =
(2e/~)EJ , where EJ parametrizes the Josephson energy
−EJ cosφ. We note that Eq. (2) is dictated by gauge
symmetry and, in anticipation of the arguments to follow,
is a manifestation of Onsager reciprocity in the dynamics
of Q and φ.

Under time reversal, ṁ→ ṁ and αm× ṁ→ −αm×
ṁ. The term proportional to α in the LLG equation
thus reflects irreversible processes. We characterize such
terms as dissipative. σ, likewise, parametrizes Ohmic dis-
sipation of normal fluid. All other terms thus considered
so far are reactive. Couplings between the free ferromag-
net and superconductor at the level of the free energy, in-
duced by the static magnetic layer or SOI, are restricted
by the symmetries of our structure. Our device geome-
tries, shown in Fig. 1, are assumed to be structurally in-
variant under arbitrary rotations about the z axis as well
as a parity transformation followed by π rotation about
the x (or y) axis. Because both the exchange interac-
tion between the magnetic layers of our spin-valve device
and the Josephson energy are individually preserved un-
der the symmetries of the combined system, the product

of these interactions must also be permitted.7 However,
the interlayer F|N|F spin-valve exchange is usually very
small (except for the thinnest N spacers),3 and will be
disregarded in our study. One may, furthermore, show
that any (time-reversal symmetric) bilinear cross term
involving m, Q, and φ does not respect the symmetries
of our device geometry (keeping in mind that φ → −φ
under time reversal and m is a pseudovector under im-
proper rotations). In particular, an interaction of the
type10 cos(φ+ Γmz) is forbidden in our geometry. Thus
neglecting interactions of m, Q, and φ beyond quadratic
order, the free energy remains uncoupled:

F [m, Q, φ] = F [m] + F [Q] + F [φ] , (3)

where F [m] = VKM2
z /2− VM ·Ha, F [Q] = −QV , and

F [φ] = −EJ cosφ. The sign of the anisotropy constant,
K, defines an easy plane or easy axis and is determined by
the geometry of the device and crystalline anisotropies.
Ha is an applied external magnetic field.

The LLG equation of motion of the magnet is now
complemented with interactions that are quasistationary
(i.e., first order in frequency), up to quadratic order in the
components of m, preserving the magnitude of m, and
consistent with the structural symmetry of the device:

ṁ =− γm×H + αm× ṁ

+ (µQ̇+ λφ̇)m× z×m + (νQ̇+ κφ̇)m× z . (4)

Hereafter, we are focusing on the spin-valve case,
Fig. 1(b), where the phenomenological coupling coef-
ficients µ, λ, ν, and κ may be taken to be angle-
independent constants if we identify z ≡ ms. [For the
SOI device, Fig. 1(a), structural symmetries dictate these
coefficients to be odd functions in mz, similar to voltage-
controlled torques at CoFeB/MgO interfaces,16 which are
due to magnetic anisotropy induced by broken inversion
symmetry.] Constants µ and ν characterize the strength
of the coupling between the magnet and the total current
Q̇. Similarly, the strength of the coupling between the
magnet and the dynamics of the superfluid condensate
φ̇ is characterized by λ and κ. To the reader familiar
with spin valves,3 Eq. (4) is reminiscent of the Landau-
Lifshitz-Gilbert equation with the so-called Slonczewski
and field-like torques, respectively, added on the second
line of the right-hand side. In this case, sketched in
Fig. 1(b), current is spin polarized by passing through
the fixed magnetic layer. The resulting spin-polarized
current impinging on a free ferromagnet induces torque
due to conservation of angular momentum. In the case
of a single magnetic layer with SOI, Fig. 1(a), a spin
torque is generated via SOI inside this layer itself.17,18

Because the leads in our system are superconducting, we
additionally generate a torque as a result of the dynam-
ics of the superfluid condensate. Loosely speaking, the
torque induced by both currents, normal current and su-
percurrent, through the junction produce two channels
for driving magnetization dynamics (and thus two sets
of terms, as compared to the usual normal-metal spin
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torques). Appropriately, above the critical temperature
of the superconductor, we recover the normal-metal limit,
in which torque is generated by the Ohmic current (or,
equivalently, voltage) alone.16–18

The reaction of the current and superconducting phase
dynamics to the magnet are not captured by the Joseph-
son relations, Eq. (2), which would not be consistent with
Eq. (4). One must extend Eq. (2) to include the pumping
terms satisfying Onsager reciprocity, in order to obtain
equations of motion for our coupled system that obey mi-
croscopic time-reversal symmetry.11 Because the magnet
flips under time reversal (upon invoking Onsager sym-
metry), one must additionally use the symmetries of the
structure to relate the time-reversed state to the original.
After straightforward manipulations, that are analogous
to Ref. 18 for normal junctions, we construct the follow-
ing equations in lieu of Eq. (2):

Q̇ =
2e

~
[EJ sinφ− S(λṁ ·m× z + κṁ · z)] +

~σ
2e
φ̇ ,

φ̇ =
2e

~
[V − S(µṁ ·m× z + νṁ · z)]− ρQ̇ , (5)

where S = VMs/γ is the total spin angular momentum of
the ferromagnetic layer. These equations of motion now
include both normal and superfluid pumping, which are
Onsager reciprocal to the driving effects introduced in the
generalized LLG equation, Eq. (4). Our theory includes
two types of pumping as a result of the non-Ohmic rela-
tionship between current and voltage. The term with co-
efficient ρ causes current to drag phase across the device;
ρ is a measure of the viscosity between the current and
superfluid condensate. Although this term is not needed
for consistency with Onsager reciprocity, we will see that
it would generally have to be included in order to satisfy
the second law of thermodynamics. We could also im-
mediately notice that the coefficients ρ, ν, and µ should
vanish in the limit of large superconducting reservoirs,
recovering the ordinary ac Josephson effect (as expected
based on the gauge invariance). Keeping these terms, on
the other hand, would capture finite-size (mesoscopic)
properties of the superconducting layers, which are of
secondary interest to our ends.

We may write the equations of motion in a dimension-
less form by measuring time, magnetic field, charge, volt-
age, and conductance in units of S/EJ , EJ/γS, 2eS/~,
EJ~/2eS, and S(2e/~)2, respectively:

ṁ =−m×H + αm× ṁ + φ̇(λm× z×m + κm× z)

+ Q̇(µm× z×m + νm× z) ,

Q̇ = sinφ− λṁ ·m× z− κṁ · z + σφ̇ ,

φ̇ =V − µṁ ·m× z− νṁ · z− ρQ̇ . (6)

Additionally, allow us to absorb a factor of VM2
s /EJ into

the anisotropy constant, such that the free energy for the
magnet reads F [m, Q, φ] = EJ(Km2

z/2−m ·Ha−QV −
cosφ). Under time reversal, the terms with coefficients
ν and λ reverse sign in the LLG equation. Because ṁ

does not change sign, these are dissipative. Likewise,
the terms with coefficients µ and κ do not reverse sign
and are thus nondissipative. σ is a dissipative coefficient,
therefore ρ is as well.

Let us try to understand the microscopic origin of the
dissipative terms in our theory. Consider momentarily
only the RSJ subsystem: when enough energy is sup-
plied (either thermally or by a bias), quasiparticles are
able to overcome the superconducting gap and transport
through the junction. Normal scattering of quasiparti-
cles across the junction causes Ohmic resistance. Like-
wise, consider an isolated precessing ferromagnet. This
is microscopically described by a coherent magnon state
that can decay into phonons and incoherent magnons,
processes which macroscopically give Gilbert damping.
In the case of a metallic ferromagnet, the additional de-
cay channel into the electron-hole continuum enhances
further its Gilbert damping. Upon coupling these sub-
systems, energy is shared by the entire structure. Like-
wise, dissipation by microscopic mechanisms underlying
Ohmic conductance and Gilbert damping can give rise
to a dissipative (viscous) energy transfer between ferro-
magnetic and superconducting layers, as parametrized by
new dissipative coefficients ν and λ. Phenomenologically,
therefore, we may expect σ, α, and ρ to bound ν and λ,
which is indeed verified below.

In the RSJ model, Eq. (2), if φ is static, we are in
a superconducting (S) state because only dissipationless
current is passing through the junction. Likewise if φ is
not constant, the circuit must have a finite voltage drop.
This is called a resistive (R) state. Notice that in our
generalized model, Eqs. (6), a choice of dynamics that
leave φ static can still generate dissipative current due to
magnetic pumping. We will, nonetheless, keep refering to
the static and dynamic states of φ as the superconducting
(S) and resistive (R) states, respectively, even though this
terminology is, in general, abusive, in the presence of the
new spin-torque/pumping terms in Eqs. (6).

We distinguish between two regimes governed by the
superconducting coherence length ξ. When ξ is smaller
than the thickness of superconducting layers, the bulk
properties of the superconductors will be largely detached
from physics at the interfaces. Thus for superconducting
reservoirs, a change in phase difference cannot be induced
by transport through the junction. We expect the corre-
sponding coefficients µ, ν, and ρ to scale inversely with
the volume of the smaller of the superconducting lay-
ers then; these are representative of mesoscopic effects,
as has already been inferred above. Because charge is
a conserved hydrodynamic quantity, on the other hand,
the electric current should be maintained in the bulk far
from the junction. In particular, λ, κ, and σ should not
depend on the size of superconducting reservoirs; these
coefficients parametrize the properties of the Josephson
junction itself and are thus of central interest to us.

In what follows we consider a dc current biased junc-
tion, Q̇ = I, where the applied magnetic field is along the
axis of symmetry, Ha = Haẑ, and K is positive (which is
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generically the case for films with magnetostatic energy
dominating over crystalline anisotropy).

III. DECOUPLED JUNCTION

In the special case where λ = κ = 0 in Eqs. (6), the
current-biased magnetic and superconducting dynamics
decouple. We take this opportunity to recall the prop-
erties of magnetic spin valves and the RSJ model of su-
perconductors, to which the decoupled equations map.
Ignoring λ and κ,

ṁ = −m×H + αm× ṁ + I(µm× z×m + νm× z) ,

σφ̇ = I − sinφ . (7)

The equation of motion for the magnet is thus the LLG
equation for a spin valve, including Slonczewski (µ) and
field-like (ν) torques, in the case that a fixed magnetic
layer points along the z axis. The superconductor is de-
scribed by the RSJ model with zero capacitance.

There are three possible stable states of the current-
biased magnet in the presence of a static field in the
z direction: pinned parallel to the z axis, antiparal-
lel to the z axis, or precessing around the z axis, la-
beled p, a, and o, respectively. A pinned state is sta-
ble when |(µ/α − ν)I/K + ha| ≥ 1, where ha ≡ Ha/K.
If |(µ/α − ν)I/K + ha| < 1, the magnet precesses at
frequency ωM = µI/α. The corresponding stability di-
agram with Hopf bifurcation lines is shown in Fig. 2.
In the dimensionless form of the RSJ description, when
−1 ≤ I ≤ 1, the junction is in the S state and the phase
is fixed at φ = sin−1 I. When the current is raised be-
yond the critical current, I > 1, the Josephson junc-
tion is in the R state and φ oscillates with frequency
ωJ =

√
I2 − 1/σ.15 For the RSJ model, a π junction is

trivially impossible: |φ| cannot access values between π/2
and π. The inset of Fig. 2 displays the well-known phase
diagram of the RSJ junction.

IV. COUPLED JUNCTION

Neglecting mesoscopic effects, we set ρ, ν, µ to zero:

ṁ = −m×H + αm× ṁ + φ̇(λm× z×m + κm× z) ,

σφ̇ = I − sinφ+ λṁ ·m× z + κṁ · z . (8)

Thermodynamic self consistency of our theory requires
for the dissipation power P = (E2

J/S)(αṁ2− 2λṁ ·m×
zφ̇ + σφ̇2) ≥ 0. This bounds our phenomenological con-
stant λ as λ2 ≤ ασ (while, clearly, α ≥ 0 and σ ≥ 0).
To proceed with the analysis, notice that, according to
Eq. (8), the dynamics of mz and φ decouple from the
transverse dynamics (m = mx+imy), which can, in turn,
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FIG. 2. Stability diagram as a function of the current and
applied magnetic field of the decoupled magnet. µ = −1.5,
ν, λ, κ = 0, and K = 1. p and a label the parallel and an-
tiparallel states of the magnet, respectively. Inset: decou-
pled Josephson junction. The S state (unshaded) and R state
(shaded) are separated by the line I = 1. Solid line is the
value of φ for a 0 junction and dashed for the unstable π
junction.

be expressed in terms of (mz, φ):

ṁz =(1−m2
z)
[
ᾱ(Ha −Kmz) + λ̄φ̇

]
,

φ̇ =
I − sinφ− λ̄(Ha −Kmz)(1−m2

z)

σ − (λκ̄+ κλ̄)(1−m2
z)

,

m =
√

1−m2
z exp

[
− i
α

(
λφ+

1

2
ln

1−mz

1 +mz

)
+ iϕ

]
,

(9)

where λ̄ ≡ (λ − ακ)/(1 + α2), κ̄ ≡ (κ + αλ)/(1 + α2),
ᾱ ≡ α/(1 + α2) and ϕ determined by initial conditions.
Consequently, the fixed points of the equations of motion
for mz and φ immediately determine the state of the full
system.

When the current is below the critical current, I ≤ 1,
one can show that there are three stable fixed points: p0,
a0, and o0 which correspond to a Josephson 0-junction
(defining a junction with |φ| < π/2 to be in the “0 phase”
and π/2 < |φ| < π in the “π phase”) and magnetic di-
rection parallel, antiparallel, and away from the z axis,
respectively. In all these states φ is fixed by the applied
current such that sinφ = I. As indicated by our stability
diagram, Fig. 3, the state of our device is determined by
the applied magnetic field. When |ha| ≤ 1, mz = ha and
m is fixed by initial conditions. By applying a sufficiently
large external magnetic field, |ha| ≥ 1, o0 is annihilated
under a saddle-node bifurcation,19 and the sole stable
state is p0 or a0 for positive or negative applied field,
respectively, pinning the magnet along the z axis. A
full linear stability analysis is discussed in the appendix,
where we note, specifically, that the dissipation power
bound precludes the existence of a stable π-junction.

If the current exceeds its critical value, I > 1, the
superconducting phase and z component of the mag-
net become dynamic. This disappearance of all the
fixed points is an infinite-period bifurcation.19 Because
no fixed points exist, the Poincaré-Bendixson theorem
implies any closed orbit on the cylinder, parameterized



5

!2 !1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

aR pRq

a0 p0o0

i

h

i i

h

dd

I

ha

FIG. 3. Stability diagram as a function of the current, I,
and applied magnetic field ha. λ = −0.1, µ, ν, κ = 0, K = 1,
α = 1, and σ = 0.1. h labels the Hopf bifurcation (solid lines),
i labels the infinite-period bifurcation (long-dashed lines), and
d labels the saddle-node bifurcation (short-dashed lines).

by mz and φ, is periodic and must go around the circum-
ference of this cylinder. Supposing the frequency of this
periodic motion is ΩJ , mz may be written as a constant
plus terms periodic in ΩJ . Likewise, we may express
φ = nΩJ t (with nonzero n ∈ Z) plus terms periodic in
ΩJ . Therefore, the characteristic frequency of the system
is given by the time average of φ̇. According to the equa-
tion for transverse component of the magnet, Eqs. (9),
we find it undergoes rotations at frequency n(λ/α)ΩJ
that are superimposed with ΩJ oscillations. Therefore
the magnet in general undergoes quasiperiodic motion, a
state we label q.

To determine the full expression for ΩJ when I > 1
would require solving the system of differential equa-
tions Eqs. (9). For simplicity, consider the limit of small
λ and κ, so that we can neglect quadratic terms in λ
and κ. In this case, the characteristic frequency of the
Josephson junction is given by the usual RSJ frequency
ωJ =

√
I2 − 1/σ.15 In region q of our stability diagram,

Fig. 3, mz oscillates with frequency ωJ around the av-
erage value sign(I)(λ/α− κ)ωJ + ha/K. Near the point
|sign(I)(λ/α− κ)ωJ + ha/K| = 1, a Hopf bifurcation19

(labeled h) is induced wherein the quasiperiodic orbit dis-
appears and the magnet is parallel or antiparallel to the
z axis, labeled pR and aR respectively, and the phase is
dynamic. We anticipate the higher-order coupling in λ
and κ to modify the frequency dependence on current.
Furthermore, we expect that, near the line defining the
Hopf bifurcation, there exists a phase of bimodal sta-
bility wherein the magnet can orient along the z axis
or precess quasiperiodically, subject to the initial condi-
tions. This is a natural consequence of the reciprocity of
current-driven magnetic dynamics and pumping and per-
sists even in the absence of any superconductivity (i.e.,
EJ = 0). Details of these rich coupled nonlinear dynam-
ics are, however, beyond the scope of the present paper.

V. MESOSCOPIC JUNCTION

Finally, we analyze the properties of the general junc-
tion wherein we do not restrict any phenomenological
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FIG. 4. Separation of the S state (white) and R state (grey) of
the superconductor by a nonlinear function defined by I ′ = 1.
The parameters of this system are µ = −1, λ = 0.6, ν, κ = 0,
K = α = 1, and σ = 2. The 1, 2, 3 labels along the dashed line
show the three places where the Josephson junction switches
between superconducting and resistive states.

parameters in Eqs. (6) to be zero, thus including meso-
scopic effects. As previously, the transverse magnetiza-
tion m = mx+imy decouples from the (mz, φ) dynamics:

ṁz =(1−m2
z)
[
ᾱ(Ha −Kmz) + λ̄φ̇+ µ̄I

]
,

φ̇ =
I − sinφ−

[
λ̄(Ha −Kmz)− I(µ̄κ+ ν̄λ)

]
(1−m2

z)

σ − (λκ̄+ κλ̄)(1−m2
z)

,

(10)

where µ̄ ≡ (µ − αν)/(1 + α2), ν̄ ≡ (ν + αµ)/(1 + α2)
and λ̄ ≡ (λ − ακ)/(1 + α2), κ̄ ≡ (κ + αλ)/(1 + α2),
ᾱ ≡ α/(1+α2), as before. One can show that the general
solution for transverse components is (up to an arbitrary
phase shift ϕ)

m =
√

1−m2
z exp

[
− i
α

(
µIt+ λφ+

1

2
ln

1−mz

1 +mz

)]
.

(11)
The fixed points in the (mz, φ) plane, as shown in the
appendix, are

(m̄z, φ̄) =

 (±1, sin−1 I) , (±1, π − sin−1 I)(
(µ/α− ν)I/K + ha, sin

−1 I ′
)(

(µ/α− ν)I/K + ha, π − sin−1 I ′
) , (12)

where we have introduced

I ′ ≡ I
[
1 + (µ/α)λ

(
1− m̄2

z

)]
(13)

with m̄z = (µ/α− ν)I/K+ha that itself depends on the
current bias I. At the first four fixed points, the magnet
is pinned parallel or antiparallel to the z axis and can be
either a 0 or π junction. Hence we label these fixed points
p0, a0, pπ, and aπ. The final two fixed points [which
are possible when |(µ/α − ν)I/K + ha| < 1] are labeled
by o0 and oπ. These o0 and oπ points are stationary
in the (mz, φ) plane but the transverse components of

the magnet follow a circular orbit of radius
√

1− m̄2
z at

frequency ωM = µI/α.
The salient differences between these fixed points and

those found studying the fixed points of Eqs. (9) are in
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FIG. 5. Stereographic projection of the magnetization at dif-
ferent currents. Here, µ = 0.1, λ = 0.5, ν, κ = 0, K = 1,
α = 1, and σ = 1.

the properties of o0 and oπ. First, the transverse compo-
nent of the ferromagnet is dynamic when µ 6= 0. Second,
the static value of sinφ is a nonlinear function of the cur-
rent. This results in a change in shape of the boundary
separating the S and R states of the superconductor: see,
for example, Fig. 4, where the phase diagram develops a
“foldover region.” Consider the current increase at fixed
magnetic field along the dashed line in Fig. 4. The sys-
tem undergoes changes from (1) S to R, (2) R to S, and
(3) S to R again. Unlike in a conventional Josephson
junction, our model has multiple values of the current
for which the junction changes between superconducting
and resistive states. Thus the junction has three ‘critical
currents.’ Likewise at a particular fixed value of cur-
rent, we can induce a change from R to S then S to R
by increasing or decreasing the applied magnetic field.
This has no analogy in the RSJ model. As a function of
the applied current, a rich variety of the coupled dynam-
ics generally emerges, as seen in Fig. 5, where we have
plotted the stereographic projection of the magnetic di-
rection. A detailed analysis of this motion is deferred to
a future study.

VI. SUMMARY AND OUTLOOK

We have introduced a model of S|F|S and S|F|N|F|S
heterostructures coupling the dynamics of the magnets
to that of the superconductor via a Rashba SOI in single-
layer junctions and via magnetic misalignment in spin-
valve junctions. We expect such structures to be highly
adaptable to uses in spintronics due to the versatility

with which one can in principle influence both the magnet
and superconductor.

The S|F|S structures deposited on topological insula-
tors (engendered by strong SOI) were studied in Refs. 20.
With an appropriate modification of the Josephson effect
in the presence of Majorana modes and, if necessary, revi-
sion of the structural symmetries, such systems can also
be amenable to our phenomenology.

Chaos in ferrites and magnetic thin films is often at-
tributed to spatially nonuniform magnetizations.4 Per-
haps a simpler route towards chaos in our model is by
applying a magnetic field perpendicular to the axis of
cylindrical symmetry. As a result, the dynamic equations
become three dimensional and thus no longer restricted
by the Poincaré-Bendixson theorem to periodic orbits or
fixed points.
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Appendix A: Linear stability analysis

Here, we explicitly calculate the fixed points and their
associated stabilities for the equations of motion of mz

and φ. In particular, we point out that when K > 0,
the existence of a π-junction is precluded. By dc biasing
a general junction defined by Eqs. (6), we obtain the
equations of motion for m and φ:

ṁ =−m×H + αm× ṁ + φ̇(λm× z×m + κm× z)

+ I(µm× z×m + νm× z) ,

σφ̇ =I − sinφ+ κṁz + λṁ ·m× z , (A1)

where I = Q̇ is fixed. If the applied magnetic field is
strictly along the axis of rotational symmetry of our junc-
tion, H = Haẑ, the transverse equations of motion de-
couple from (mz, φ) and we obtain Eqs. (10):

ṁz =(1−m2
z)
[
ᾱ(Ha −Kmz) + λ̄φ̇+ µ̄I

]
,

Σφ̇ =I − sinφ−
[
λ̄(Ha −Kmz)− I(µ̄κ+ ν̄λ)

]
(1−m2

z) .

Note that Σ ≡ σ − (λκ̄ + κλ̄)(1 −m2
z) is guaranteed to

be nonnegative by the thermodynamic bound λ2 ≤ ασ.
We see this by setting κ to be λ/α, which maximizes the
quantity λκ̄+κλ̄ at λ2/α ≤ σ. Furthermore, according to
Sylvester’s criterion, the thermodynamic bound requires
the additional condition αρσ − ν2σ − λ2ρ ≥ 0 in the
general mesoscopic regime.

The corresponding fixed points of Eqs. (10) are given
by Eq. (12). Linearizing around a fixed point (m̄z, φ̄), we
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obtain

ṁz =(m̄2
z − 1)(ᾱKmz − λ̄φ̇)

+ 2mzm̄z(ᾱKm̄z − ᾱHa − µ̄I) ,

Σ̄φ̇ =− φ cos φ̄+ λ̄Kmz(1− m̄2
z)

− 2mzm̄z

[
λ̄(Km̄z −Ha) + λν̄I + κµ̄I

]
, (A2)

where we have introduced Σ̄ as Σ evaluated at the fixed
point m̄z. Recall that the stability properties of a system
of linear differential equations, ẋ = Âx, around a fixed
point, x̄, of a pair variables, x = {x1, x2}, are classified

according to the following criteria: (1) detÂ < 0, x̄ is a

saddle point, (2) detÂ > 0 and trÂ < 0, x̄ is stable, and

(3) detÂ > 0 and trÂ > 0, x̄ is unstable.4 The matrix

defining the linearization around the fixed points with
m̄z = ±1 is[

2[ᾱK ∓ (ᾱHa + µ̄I)] 0
−2/σ

[
λ̄K ± (λν̄I + κµ̄I − λ̄ha)

]
−σ−1 cos φ̄

]
.

(A3)
Because only the diagonal terms of the matrix in
Eq. (A3), which are independent of λ and κ, contribute
to the trace and determinant, the stability analysis pro-
ceeds as in the decoupled regime. Specifically, if the cur-
rent and magnetic field are not large enough to overcome
the anisotropy, ᾱK > |ᾱHa + µ̄I|, then these points
are unstable π-junctions or saddle point 0-junctions. If
the external sources are large enough to overcome the
anisotropy, ᾱK < |ᾱHa + µ̄I|, the π-junction is a sad-
dle point and the 0-junction is stable node. When
m̄z = (µ/α− ν)I/K + ha, the linearization matrix

Â =

[
(m̄2

z − 1)ᾱK − λ̄Σ̄−1(m̄2
z − 1)

[
λ̄K(1− m̄2

z)− 2µλIm̄z/α
]
λ̄Σ̄−1(m̄2

z − 1) cos φ̄
Σ̄−1

[
λ̄K(1− m̄2

z)− 2λµIm̄z/α
]

−Σ̄−1 cos φ̄

]
. (A4)

One may show that the determinant of the this matrix is
equal to that of an uncoupled junction and, because we
have chosen K > 0, π-junctions are always saddle nodes
and therefore cannot be realized in this device geometry.

We point out, however, that forK < 0 a π-junction can
be stable or unstable subject to the trace of the above
matrix. Because ᾱ > (1 − m̄2

z)λ̄
2/Σ̄ as a result of the

thermodynamic bound on λ, a stable π-junction is pre-
cluded in the absence of mesoscopic effects. However,
in general, there is an additional term that contributes
to stability in Eq. (A4): 2m̄z(m̄

2
z − 1)µλλ̄I/αΣ̄. We find

that for sufficiently large κ and conductance, and thereby
sufficiently large λ, an applied magnetic field and current
can stabilize a π-junction in the mesoscopic regime.
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