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We present here the results of electrical resistivity ρ, magnetization M, ac susceptibility χ′

ac, and
specific heat CM measurements that have been carried out on single crystals of Yb3Pt4 over a wide
range of fields and temperatures. The 2.4 K Néel temperature that is found in zero field collapses
under field to a first order transition TN = 0 at BCEP = 1.85 T. In the absence of antiferromagnetic
order, the specific heat CM(T,B), the magnetization M(T,B), and even the resistivity ρ(T,B) all
display B/T scaling, indicating that they are dominated by strong paramagnetic fluctuations, where
the only characteristic energy scale results from the Zeeman splitting of an energetically isolated, Yb
doublet ground state. This paramagnetic scattering disappears with the onset of antiferromagnetic
order, revealing Fermi liquid behavior ∆ρ = AT 2 that persists up to the antiferromagnetic phase line
TN(B), but not beyond. The first order character of TN = 0 and the ubiquity of the paramagnetic
fluctuations imply that non-Fermi liquid behaviors are absent in Yb3Pt4. In contrast to heavy
fermions like YbRh2Si2, Yb3Pt4 represents an extremely simple regime of f -electron behavior where
the Yb moments and conduction electrons are almost decoupled, and where Kondo physics plays
little role.

PACS numbers: 75.30.Kz, 75.50.Ee, 75.40.Cx, 71.20.Eh

I. INTRODUCTION

The quantum critical point (QCP) that is formed
when magnetic order is suppressed to zero temperature
is firmly established as an integral part of the physics of
most strongly correlated electronic materials. Arguably,
the most comprehensive account of these phenomena
comes from studies of heavy fermion compounds1–6. Ini-
tially, it was thought that the unusual divergencies of
the specific heat and magnetic susceptibilities that were
found near QCPs, as well as electrical resistivities with
linear temperature dependencies, phenomena collectively
referred to as ‘non-Fermi liquid’ behavior, reflected the
dominance of quantum critical fluctuations. However, it
has become clear that in at least a few cases, that the
QCP affects the electronic structure itself, where T = 0
electronic delocalization leads to a change in the Fermi
surface volume at or near the QCP7–9. Evidence for these
Fermi surface volume changes come from Hall effect mea-
surements near the field-driven QCP in YbRh2Si2

10–12,
from discontinuous changes in quantum oscillations and
moment localization near the pressure - driven QCP in
CeRhIn5

13,14, and from the values of the quantum criti-
cal exponents themselves8,15.

YbRh2Si2 exemplifies the full range of phenomena
that can be associated with a field-driven QCP5. First,
the B = 0 Néel temperature is only 0.065 K, with a
correspondingly small ordered moment ≃ 10−3µB/Yb.
TN is suppressed continuously to TN = 0 with a field
B = 0.66 T16,17. Quantum critical scaling of the field
and temperature dependencies of the specific heat C and
the magnetization M are reported in the vicinity of the
QCP18. non-Fermi liquid temperature dependencies are
observed near the QCP, such as a diverging specific heat

C/T ≃-ln(T ), and a linear temperature dependence for
the electrical resistivity ρ(T ) = ρ0 + aT , observed over
several decades in temperature16,18. Fermi liquid be-
havior is found once the antiferromagnetic order is sup-
pressed by fields B ≥ BQCP, with ρ = ρ0 +A(B)T 2 and
C = γ(B)T . The Fermi liquid parameters A and γ in-
dicate that the quasiparticle mass is strongly enhanced
and even diverges as B → BQCP from above, signalling
the breakdown of the Fermi liquid itself at the QCP. As-
sociated with this breakdown is an electronic localization
transition, where the number of states contained by the
Fermi surface changes at or near the QCP5,10–12,19.
The question that we ask here is what part of this

spectrum of quantum critical phenomena survives in a
more minimal system, where electronic localization does
not occur. Yb3Pt4 is an ideal system in which to explore
this issue. Metallic Yb3Pt4 orders antiferromagnetically
at TN = 2.4 K20, where the mean-field like development
of the ordered parameter taken from neutron diffraction
measurements results in a T=0 moment of 0.8 µB/Yb

21.
Specific heat and inelastic neutron scattering measure-
ments indicate that the antiferromagnetic order develops
from Yb moments in a crystal field split doublet ground
state that is well separated in energy from the first ex-
cited state22. The rapid recovery of the magnetic entropy
S(TN) = 0.8 Rln2 suggests that there is little evidence
that Kondo compensation of the Yb moments has oc-
curred as T → TN, indicating that TK ≤ TN. For these
reasons, it is believed that the Yb moments in Yb3Pt4
are spatially localized, and only weakly coupled to the
conduction electrons. Given the apparent irrelevance of
Kondo physics to Yb3Pt4, it likely that the 4f -holes of
the Yb ions are excluded from the B = 0 Fermi surface.
The complexity of the unit cell in Yb3Pt4 precludes a
direct test of this conclusion from electronic structure
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calculations.
Magnetic fields suppress antiferromagnetic order in

Yb3Pt4, and we find that TN = 0 for the critical end
point (CEP) BCEP = 1.85 T. The Clausius - Clapeyron
equation is obeyed here, and although the antiferromag-
netic phase line intersects the T = 0 axis vertically and so
cannot be fitted to a power-law as TN → 0, TN(B) is con-
tinuous for TN > 023, possibly following a mean-field ex-
pression. We present here the results of experiments that
seek answers to three questions. First, is there non-Fermi
liquid behavior near BCEP in Yb3Pt4? Measurements of
the temperature dependence of the electrical resistivity
are expected to be of particular importance in answering
this question. Second, does a Fermi liquid state develop
once magnetic fields suppress antiferromagnetic order? If
so, is there a divergence of the Sommerfeld coefficient γ
and the resistivity coefficient A as B → BCEP that sig-
nal the breakdown of this Fermi liquid with the onset
of antiferromagnetic order? Finally, is there any sug-
gestion of electronic delocalization in Yb3Pt4, or is the
coupling between the Yb moments and the conduction
electrons always vanishingly small? Electrical resistiv-
ity, specific heat, magnetic susceptibility, and magneti-
zation measurements were performed on Yb3Pt4 over a
wide range of fields and temperatures, in both the anti-
ferromagnetic and paramagnetic phases. The results are
presented here, and are compared to those of similar ex-
periments on YbRh2Si2, with the intention of providing
support for a global phase diagram that relates these two
very different systems.

II. EXPERIMENTAL DETAILS

Single crystals of Yb3Pt4 were grown from lead
flux20,21, yielding rod-like crystals with approximate di-
mensions of 1 × 1 × 5 mm. Powder X-ray diffraction
measurements were used to verify that the crystals form
in the reported rhombohedral Pu3Pd4 structure type24.
Electrical resistivity ρ was measured using a Quantum
Design Physical PropertyMeasurements System (PPMS)
for temperatures T between 0.1 K and 300 K, and in
fields as large as 6 T. Electrical contacts were made to
the crystal in the four probe configuration using silver-
filled epoxy. The current flowed along the long axis of the
crystal, corresponding to the crystallographic c-axis. The
dc magnetization M was measured using a Quantum De-
sign Magnetic Property Measurement System (MPMS)
in magnetic fields B as large as 7 T. Measurements of
the ac magnetic susceptibility χ′

ac were also carried out
in the MPMS using a 17 Hz ac field Bac = 4.17 Oe, with
an additional dc field that was as large as 2 T. Specific
heat C was measured using the PPMS for temperatures
T between 0.3 K and 300 K, and in fixed magnetic fields
B that were as large as 7 T. All the measurements that
we report here were were carried out with the magnetic
field perpendicular to the c-axis, and due to the small
anisotropy within the easy ab plane, the field direction
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FIG. 1: (Color online) (a) The temperature dependence of the
electrical resistivity ρ(T ) in Yb3Pt4. (b) The temperature
dependencies of ρ(T ) measured in different magnetic fields
from 0 T to 4.0 T, as indicated. The red arrows indicate the
antiferromagnetic transitions at each field B ≤ 1.85 T. (c)
The temperature derivative of the electrical resistivity dρ/dT
in different fixed fields, as indicated. Red arrows indicate
values of TN(B), taken from the maxima in dρ/dT .

within the ab plane is not specified.

III. EXPERIMENTAL RESULTS

Electrical resistivity has proven to be a very sensitive
probe of the quantum critical fluctuations in other heavy
fermion compounds where antiferromagnetic order can
be suppressed to T = 02,25. The temperature dependence
of the B = 0 electrical resistivity ρ(T ) in Yb3Pt4 is shown
in Fig. 1a. ρ(T ) drops monotonically from its room tem-
perature value of 127 µΩ-cm to 35 µΩ-cm at 10 K, con-
firming that Yb3Pt4 is definitively metallic. Given the
crystal field scheme deduced from specific heat and in-
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FIG. 2: (Color online) Field - temperature phase diagram of
Yb3Pt4. The antiferromagnetic ordering temperatures TN(B)
extracted from the temperature(red filled squares) and field
(blue triangles) dependent resistivities are in good agreement
with the phase line determined from specific heat(black open
circles) measurements in23. Solid black line is a fit to a mean-
field expression. The vertical dashed line indicates the critical
field BCEP = 1.85 T, above which no antiferromagnetic order
is found.

elastic neutron scattering measurements where four dou-
blets are separated by 87 K, 244 K, and 349 K22, it is
likely that the bulge in ρ(T ) at intermediate tempera-
tures reflects the depopulation of these crystal field levels
with reducing temperature. The onset of antiferromag-
netic order is evident from the sharp drop in ρ(T ) at
the Néel temperature TN = 2.4 K. Since our primary
interest is in the behavior of ρ(T ) as magnetic fields sup-
press TN to zero, we have repeated the measurements of
ρ(T ) in different fixed fields B ranging from 0 T to 4 T
(Fig. 1b). As expected, the resistive drop at TN occurs
at lower temperatures with increasing fields, and there
is no indication of a resistive anomaly when B & 2 T.
We take TN(B) from the maximum in the temperature
derivative, dρ/dT (Fig. 1c), and the result is compared in
Fig. 2 to the phase line TN(B) that was previously deter-
mined from specific heat, neutron diffraction, and magne-
tization measurements23. We note that the specific heat
measurements place BCEP near 1.9 T, although the other
measurements find BCEP ≃ 1.8− 1.85 T. The agreement
is very good, especially considering that the experiments
were performed on different crystals, and that small un-
certainties in the orientation of the field are inevitable.
We will take BCEP = 1.85± 0.05 T.

Since the phase line is very steep when TN → 0, mea-
surements of the field dependence of the resistivity at
different fixed temperatures are better suited to explor-
ing this part of the T − B phase diagram. As indicated
in Fig. 3a, the magnetoresistance ρ(B) has a sharp peak
at TN(B), most prominent for TN ≥ 1 K. The values of
TN(B) that are taken from this peak have been added
to the phase diagram in Fig. 2, and they agree well with
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FIG. 3: (Color online) (a) Field dependencies of the electrical
resistivity ρ measured at different temperatures from 0.1 K to
3.0 K, as indicated. Red arrows indicate the antiferromagnetic
transitions. (b) Magnetoresistivity ρ (•, left axis) measured at
0.1 K plotted together with the magnetization (red solid line,
right axis) measured at 0.2 K. Vertical dashed lines delineate
the step like kink around the critical field ∼ 1.85 T.

those found from the ρ(T ) data of Fig. 1. At lower tem-
peratures, the peak in ρ(B) evolves into a broadened
step, whose magnitude becomes smaller with decreas-
ing temperature. No hysteresis was observed between
resistivity measurements obtained with increasing or de-
creasing fields, even at the lowest temperatures. The val-
ues of TN(B) that are taken from the resistive step have
been added to Fig. 2, and we see that the magnetore-
sistivity data closely track the near-vertical phase line
TN(B) as it approaches the horizontal axis at the criti-
cal field BCEP = 1.85 T. The width of the field-induced
step in ρ(B) decreases with decreasing temperature, and
at the lowest temperatures it has a width of ≃ 0.2 T.
This behavior is reminiscent of the step in the Yb3Pt4
moment observed in both magnetization M(B) and neu-
tron diffraction measurements23. We previously showed
that the step ∆M and the vertical phase line TN(B) are
in agreement with the Clausius-Clapeyron equation, in-
dicating that antiferromagnetic order in Yb3Pt4 vanishes
at a first order transition or critical endpoint, where
TN = 0 and B = BCEP. We have compared the mag-
netization step measured at T = 0.2 K to the mag-
netoresistivity step measured at 0.1 K in Fig. 3b, and
their resemblance is striking. This is our first indication
that the magnetization controls the electrical resistivity
in Yb3Pt4, a finding that we will develop further below.
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The suppression of magnetic order in a heavy fermion
compound that has been driven to a QCP often re-
sults in a normal metallic state that is a Fermi liquid.
Here, the electrical resistivity is quadratic in tempera-
ture ρ(T ) = ρ0 + AT 2, and the coefficient A is often
enhanced near the QCP, reflecting the growth of quasi-
particle interactions that can culminate in the divergence
of the quasiparticle mass at the QCP itself. Accordingly,
we have plotted the temperature dependent part of the
electrical resistivity ρ(T)−ρ0, measured in different fixed
fields, as a function of T 2 in Fig. 4a. A quadratic temper-
ature dependence is observed within the antiferromagnet-
ically ordered state, i.e. for T ≤ TN(B). There is only
a small variation in the slopes of the curves in Fig. 4a
for the fields B ≤ 1.85 T where antiferromagnetic or-
der is present. To highlight this point, we have plotted
the coefficient A(B) in Fig. 4b, and within the antifer-
romagnetic phase A(B) remains roughly constant. We
have attempted to extend the Fermi liquid temperature
dependence to higher fields B ≥ BCEP, but we find that
the fit is only valid over an extremely small range of tem-
peratures T ≤ TFL(B) and the minimum measurement
temperature, 0.3 K (Fig. 4c). While we report A(B) that
is derived from these fits in Fig. 4b, we feel that there is
no convincing evidence that Fermi liquid behavior can be
detected in ρ(T ), once antiferromagnetic order has been
suppressed to zero by either temperature or field.

If the paramagnetic state with B ≥ BCEP is not a
Fermi liquid at low temperatures, then what physical pro-
cesses are responsible for the electrical resistivity once an-
tiferromagnetic order is suppressed? The similar field de-
pendencies of the magnetoresistivity ρ(B) and the mag-
netization M(B) displayed in Fig. 3b suggest that spin
disorder scattering may dominate. To test this idea, we
have combined measurements of M(B)(Fig. 5a), normal-
ized by MS, which is taken to be the value of M for T =
1.8 K and B = 3 T, with those of the normalized magne-
toresistivity ∆ρ/ρ(B = 0) = (ρ(B) − ρ(B = 0))/ρ(B =
0). The result is presented in Fig. 5b. The normalized
magnetoresistivity obtained at different fixed tempera-
tures collapses as a function of the normalized magneti-
zation, provided that the fields and temperatures of the
respective measurements do not place Yb3Pt4 within the
antiferromagnetic phase, whose boundaries are indicated
by arrows in Fig. 5b. Spin-disorder scattering can be
identified by its power-law relation between ρ(T,B) and
M(T,B), where ∆ρ/ρ(B = 0) ∝ (1 − (M/MS)

2)26,27.
This relationship is confirmed in Fig. 5c, where a double
logarithmic plot of ∆ρ/ρ(B = 0) is linear with respect to
M/MS. The best fit to the scaling region gives a slope of
two, as indicated by the red line. Our measurements af-
firm our proposal that fluctuations in the magnetization
are the primary agent for scattering quasiparticles over
a very wide swath of the B−T phase diagram, provided
that antiferromagnetic order is not present.

A simple scaling analysis reveals the nature of the dom-
inant magnetization fluctuations. Fig. 6a shows that the
magnetization M collapses when plotted as a function of
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FIG. 4: (Color online) (a) The resistivity ρ − ρ0 as a func-
tion of T 2 in different magnetic fields as indicated. Red ar-
rows indicate the antiferromagnetic transitions, taken from
the maxima in dρ/dT . (b) The coefficient of the quadratic
temperature dependence A as a function of magnetic field B.
Vertical dashed line indicates the critical field BCEP = 1.85 T.
(c) The range of fields and temperatures T ≤ TFL(B) where
ρ − ρ0 = AT 2 is indicated by the shaded areas on this field-
temperature phase diagram. TFL is indicated in the param-
agnetic phase (B ≥ BCEP) by red open diamonds. TN(B) is
indicated by the black squares, and the critical field BCEP by
the vertical dashed line. The lower temperature limit for our
measurements is ≃ 0.3 K.

B/T , but only when B and T are taken from the param-
agnetic part of the (T,B) phase diagram (Fig. 2). Since
Fig. 5 shows that the magnetoresistivity is a proxy for
the magnetization, it is not surprising that it too dis-
plays B/T scaling(Fig. 6b). This scaling fails within the
antiferromagnetic phase T ≤ TN(B), where Fermi liquid
behavior ∆ρ = AT 2 is observed. The success of the B/T
scaling implies that the magnetization fluctuations are
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FIG. 5: (Color online) (a) The field dependencies of the mag-
netization M , determined at different temperatures between
1.8 K to 3.0 K. (b) Plot of the normalized magnetoresistivities
as functions of the normalized magnetizations M/MS mea-
sured at different temperatures, where ∆ρ(B) = ρ(B)−ρ(B =
0), andMS is the saturation magnetization defined in the text.
The red arrows indicate the onset of antiferromagnetic order
for each curve, highlighting that this relationship fails within
the antiferromagnetic phase. (c) The data from (b) collapse
onto a single curve with a slope of 2, as indicated by the red
line.

simply paramagnetic fluctuations among the crystal field
split states of the Yb3+ ion. The crystal field split mani-
fold of the J = 7/2 Yb3+ ions in rhombohedral symmetry
consists of four doublets, and inelastic neutron scattering
and specific heat measurements indicate that the ground
doublet in Yb3Pt4 is separated from the first excited level
by 80 − 90 K21,22, much larger than the temperature
scales probed in the measurements reported here. Prac-
tically speaking, we can safely ignore the excited states,
and so the field and temperature dependencies of the
magnetization M reflect the two-fold degeneracy of the
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FIG. 6: (Color online) (a) Field dependencies of the magneti-
zation M were measured at different temperatures, and then
plotted as functions of B/T . (b) The temperature dependen-
cies of the electrical resistivity ρ were measured in different
magnetic fields from 1.0 T to 4.0 T, and then plotted as func-
tions of T/B. Red arrows indicate the onset of antiferromag-
netic order, showing that the resistivity data collapse onto a
single curve in the paramagnetic phase.

ground doublet, lifted by Zeeman splitting in field.
The paramagnetic nature of the magnetic fluctuations

also leads to B/T scaling in the measured specific heat
CP. The field dependence of CP is plotted in Fig. 7a for
different fixed temperatures between 0.7 K and 2.3 K,
and at lower temperatures in Fig. 7b, where the field de-
pendencies of CP(B) are presented for 1.9 K≥ T ≥ 0.3 K.
For each temperature, CP falls on an apparently univer-
sal function of B/T above a characteristic value of B/T
marked by red arrows. Fig. 7a shows the fields separat-
ing the scaling and nonscaling parts of the CP(B) curves,
and the resulting curve closely resembles the phase line
TN(B) in Fig. 2. Like the magnetization M , the B/T
scaling evident in CP betrays an underlying energy spec-
trum that has only two states. Accordingly, Fig. 7a shows
that CM is well described in the paramagnetic phase by
a Schottky expression, where the Zeeman splitting of the
states ∆ = gµBB with g = 2.5.
The B/T scaling that we have demonstrated in the

field and temperature dependent resistivity ρ, magne-
tization M , and specific heat C suggests that the pre-
dominant magnetic fluctuations that are present for T ≥

TN(B), and in the T = 0 paramagnetic phase where B
exceeds the critical value of 1.85 T, are incoherent fluc-
tuations of the Yb moments within their Zeeman split
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FIG. 7: (Color online) (a) The field dependencies of the spe-
cific heat CP were obtained at different fixed temperatures,
and were then plotted as functions of B/T . The red arrows
indicate the onset of antiferromagnetic order, and the red line
is the Schottky expression for the specific heat of a two level
system with g = 2.5. (b) An expanded view of the field de-
pendencies of the specific heat CP measured from 0.3 K to
1.9 K. The red arrows indicate the onset of antiferromagnetic
order. (c) The lowest temperature where B/T scaling was
observed in the specific heat CP (red triangles) is virtually in-
distinguishable from the antiferromagnetic phase line TN(B)
(black circles) previously determined from specific heat mea-
surements23. The B/T scaling is seen in the shaded region
that extends over a very wide range of fields and temperatures
where antiferromagnetic order is absent.

doublet ground state. Within the accuracy of our mea-
surement, this single ion behavior extends to TN itself,
implying that critical fluctuations play a negligible role
in Yb3Pt4. If this conclusion is correct, then the mag-
nitude of the gap ∆ between the Zeeman split ground
state doublet of the Yb ions should provide the only en-
ergy scale for the paramagnetic part of the Yb3Pt4 phase
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FIG. 8: (Color online) (a) −∆M/∆T vs B calculated as de-
scribed in the text, for different fixed temperatures. (b) The
temperature dependencies of the real part of the ac magnetic
susceptibility χ′

ac, measured at different fields. The red ar-
rows in (a) and (b) mark the positions of maxima.

diagram. The importance of this energy scale near field-
driven QCPs has recently been emphasized28.
The Zeeman gap ∆ may be determined, in principle,

from analyses of the magnetization M , resistivity ρ, and
specific heat CP. The temperature derivative of the mag-
netization ∆M/∆T can be calculated from magnetiza-
tion isothermsM(B), measured at temperatures differing
by ∆T = 0.05 K according to −dM/dT ≃ −∆M/∆T =
−[(M(T + ∆T,B) − M(T − ∆T,B)]/(2∆T ). This pro-
cedure is repeated for a wide range of fields B, and the
result is plotted in Fig. 8a. We restrict ourselves here to
temperatures T ≥ TN. The field dependence of -∆M/∆T
displays a distinct maximum at a field BM that moves to
higher fields with increasing temperature. The tempera-
tures TM and fields BM of the maxima in −∆B/∆T are
plotted in Fig. 9, where they are shown to be linearly
related.
ac magnetic susceptibility measurements provide com-

plementary information, since χ′

ac is defined as the field
derivative of the magnetization, measured as a func-
tion of temperature in different fixed dc fields (Fig. 8b).
When the dc magnetic fields are small, a sharp ordering
anomaly is observed at TN, which passes out of our ex-
perimental temperature window T ≥ 1.8 K for B ≥ 1 T.
In the paramagnetic state at higher fields, χ′

ac also has
a maximum at Tχ′ , which moves to larger temperatures
with increasing fields. Fig. 8 shows that, like Tχ′(B),
TM(B) increases linearly with magnetic field, at least for
the limited range of fields where the magnetization and
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lines are guides for the eye, indicating that the three different
temperature scales have the same slope(∆T/∆B ≃ 2.6 K/T).

ac susceptibility measurements overlap. Intriguingly, the
peak in χ′

ac is not driven to T = 0 as B → 0, but instead
occurs at ≃ 4.6 K when B = 0.

Since the resistivity and the magnetization are re-
lated for paramagnetic Yb3Pt4, it follows that the field
derivative of the resistivity dρ/dB will also have a peak
that mirrors that of χ′

ac = dM/dH . The magnetoresis-
tance of Yb3Pt4 was measured for temperatures T ≥ TN,
as shown in Fig. 10a. The corresponding field deriva-
tive dρ/dB was determined numerically, and it is plot-
ted in Fig. 10b. A negative maximum is found for
dρ/dB that moves to larger fields with increased tem-
perature. The fields Bρ and temperatures Tρ where
−dρ/dT has its maximum should correspond to the
fields BM and temperatures TM where −∆M/∆T has
its maximum. Fig. 9 confirms that Tρ and TM are
identical, within the accuracy of our analyses. The
peak in −dρ/dT broadens markedly with increasingly
temperature, and although the onset of antiferromag-
netic order prohibits a direct measurement, its full-width,
half-maximum (FWHM)(Fig. 10c) extrapolates approxi-
mately to zero as B → 0.

The effect of Zeeman splitting on the ground dou-
blet is most obvious in measurements of the tempera-
ture dependent specific heat CP, carried out in differ-
ent fixed fields (Fig. 11a). We separate CP into two
parts: CP = CM+CPh. CPh is the contribution from the
phonons, and we approximate this term by the specific
heat measured in nonmagnetic but isostructural Lu3Pt4
(Fig. 11a). CPh is taken to be field independent. CM is
the magnetic and electronic contribution to the specific
heat, and we takeCM = γ(B)T+CSchottky. CP−CPh−γT
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FIG. 10: (Color online) (a) Magnetic field dependencies of the
electrical resistivity ρ(B) measured at different fixed temper-
atures, as indicated. The black arrow indicates the antiferro-
magnetic transition, and red arrows indicate the position of
the negative peak in dρ/dB (b). (c) The full width at half
maximum(FWHM) of the dρ/dB peak decreases linearly with
decreasing temperature, and within the accuracy of our anal-
ysis extrapolates to zero for T → 0 (red dashed line). Inset:
The FWHM is defined as the crossover width at half maxi-
mum (as indicated by the red horizontal arrow) of the dρ/dB
peak, demonstrated here for T = 2.6 K.

is plotted in Fig. 11b, and indeed it consists of a peak
that broadens and moves to higher temperatures with
increasing field, much as we would expect for a Schottky
contribution to the specific heat. Accordingly, we have
fit CP − CPh = γ(B)T + CSchottky, where CSchottky is
the Schottky expression for two levels with equal degen-
eracy, separated by a gap ∆(B). The quality of these
fits for fields from 2.25 T to 7 T is demonstrated in
Fig. 11b. The Sommerfeld coefficient γ(B) is approxi-
mately 40 mJ/mol-K2 for B = 0, and the minimal field
dependence that is displayed in Fig. 11c likely reflects
the inherent accuracy of our fits. γ is always small, con-
sistent with the apparent absence of any Kondo physics
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in Yb3Pt4, and there is no evidence for any divergence
of γ at BCEP, in agreement with similar results on the
resistivity coefficient A (Fig. 4b).
Fig. 11b shows that CM = CP − γT − CPh is well

fitted by the Schottky expression for fields from 2.25 T
to 7 T, and the field dependence of the temperature scale
T∆ = ∆/kB that results from these fits has been added
to Fig. 9. As expected, T∆ increases linearly with field.
While the temperature scales TM, Tχ′ , Tρ, and T∆ are
not all identical, in each case we find that their slopes
∆T/∆B ≃ 2.6 K/T (Fig. 9), which is also consistent
with the value g = 2.5 found in the scaling of the specific
heat at very low temperatures (Fig. 7a). It is tempting
to believe that all these scales originate with the Zeeman
splitting of the Yb doublet ground state.

IV. DISCUSSION AND CONCLUSION

Our measurements suggest that Yb3Pt4 is a particu-
larly simple system. Throughout the paramagnetic phase
T ≥ TN and B ≥ BCEP, the magnetic and electronic
specific heat CM(T,B), the magnetization M(T,B), and
even the resistivity ρ(T,B) are all dominated by strong
magnetic fluctuations, where the only characteristic en-
ergy scale results from the Zeeman splitting of an ener-
getically isolated, Yb doublet ground state. These single
ion, paramagnetic fluctuations extend down to TN(B) it-
self, indicating that critical fluctuations are always very
weak. This may reflect the fact that the Néel state van-
ishes at BCEP = 1.85 T in a field-driven critical endpoint,
much as is found for antiferromagnetic insulators29–31.
Quantum critical fluctuations are still possible, in princi-
ple, if this transition is weakly first order. We speculate
that the absence of these quantum critical fluctuations in
Yb3Pt4 may result from an inherent mean-field like char-
acter that is evident in the phase line TN (B), from the
B=0 order parameter found in neutron diffraction mea-
surements21,and in the appearance of the specific heat
transition itself23. The highly localized character of the
moments in Yb3Pt4 prohibits the sorts of quantum crit-
ical fluctuations between states with different Fermi sur-
face volumes that were reported in YbRh2Si2, suggesting
that they may be a larger part of the quantum critical
fluctuations of the more hybridized heavy fermions than
was previously appreciated.
Yb3Pt4 is a metal, and the near-constancy of the Som-

merfeld coefficient for fields both larger and smaller than
BCEP suggests that there is a Fermi liquid state that
underlies both the antiferromagnetic and paramagnetic
phases in Yb3Pt4. The T 2 temperature dependence of
the electrical resistivity is only observed when antiferro-
magnetic order disables the paramagnetic fluctuations,
suppressing the spin-disorder scattering that otherwise
obscures the Fermi liquid component of the resistivity.
The smallness of the Sommerfeld coefficient indicates
that the exchange coupling of the conduction electrons
to the Yb moments is weak, and that the quasiparti-
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FIG. 11: (Color online) Temperature dependencies of the spe-
cific heat CP, measured at different fields. The red dashed line
is the measured B = 0 specific heat of the isostructural and
nonmagnetic analog compound Lu3Pt4, which gives an esti-
mate of the phonon contribution to the specific heat (see text).
(b) The temperature dependencies of the specific heat after
subtraction of the phonon contribution CPh and the electronic
contribution γ(B)T . The solid lines are fits to the Schottky
expression, described in the text. (c) The Sommerfeld coeffi-
cient γ that was obtained from the fits in (b) is almost field
independent. Vertical dashed line indicates BCEP = 1.9 T,
where antiferromagnetic order vanishes.

cle mass enhancement is minimal. It is fair to say that
the Fermi liquid in Yb3Pt4 simply coexists with the Yb
moments, and that it is almost unaffected by the onset
of antiferromagnetic order. Yb3Pt4 seems to have much
more in common with elemental rare earth metals like
Gd or Dy, where magnetic order occurs well above the ex-
tremely low or even vanishing temperature scales where
Kondo physics could play a role, than heavy fermions like
YbRh2Si2, where the Kondo effect is largely complete by
the time magnetic order is established.

Our measurements provide definitive answers to the
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questions that we posed in the introduction.

• Is non-Fermi liquid behavior found near the TN = 0,
B = BCEP = 1.85 T critical endpoint? Given the first
order character of this transition, quantum critical fluc-
tuations are weak, at best. We have showed that para-
magnetic fluctuations of individual Yb moments domi-
nate all measured quantities down to the antiferromag-
netic phase line itself. non-Fermi liquid behaviors such
as ∆ρ = BT 1+δ are entirely absent near BCEP.

•Is a heavy Fermi liquid found once magnetic fields sup-
press antiferromagnetic order? A Fermi liquid under-
lies both the antiferromagnetic and paramagnetic phases
of Yb3Pt4, but the Sommerfeld coefficient is small in
both, signalling a small quasiparticle mass enhancement.
There is no sign of Fermi liquid breakdown in paramag-
netic Yb3Pt4, signalled in other systems by divergencies
of the Sommerfeld coefficient γ or the resistivity coeffi-
cient A as the field approaches BCEP from above.

•Is there any indication of electronic delocalization in
Yb3Pt4? Yb3Pt4 appears to be an extreme case of mo-
ment localization. Outside the range of fields and tem-
peratures where antiferromagnetic order is stable, the
electrical resistivity, magnetization, and specific heat all
display the B/T scaling that is expected for decoupled
and fully incoherent magnetic moments, where the spac-
ing between the underlying energy levels increases lin-
early with magnetic field. The ubiquity of B/T scal-
ing suggests that these levels originate with the well-
separated doublet ground state in Yb3Pt4, which is Zee-
man split in field. This single ion behavior dominates in
the absence of antiferromagnetic order, suggesting that
the Yb moments are always localized, seemingly ruling
out the possibility of electronic delocalization and an ex-
pansion of the Fermi surface at TN, as is found in systems
like YbRh2Si2.

It is interesting to consider how the rather minimal
physics of localized Yb3Pt4 might be connected to the
rich physics that is found in heavy fermions with bona
fide QCPs. Is there a generalized T = 0 phase diagram
that can accommodate both? We present a phase di-
agram in Fig. 12 that proposes just such a connection.
Since this proposed phase diagram is based largely on
experimental results in Yb3Pt4, and further experimen-
tal investigation will be required to establish whether
it may have more universal application. One axis of
this phase diagram is inspired by the Doniach phase
diagram32, and represents the degree of hybridization
Γ between the moment-bearing f-electrons and conduc-
tion electrons. Applied pressure increases Γ for Ce com-
pounds, but decreases Γ for Yb compounds33,34. The Do-
niach argument associates magnetic order arising from
the Rudermann-Kittel-Kasuya-Yosida (RKKY) interac-
tion with weak hybridization, although the increasing
influence of Kondo physics ultimately leads to its sup-
pression at a QCP for a critical value of Γ = ΓQCP. The
second axis of this T = 0 phase diagram is magnetic field,
which generally suppresses antiferromagnetic order. An-
tiferromagnetic order is stable at T = 0 when B ≤ BN(Γ)

Γ
TCP

Γ
QCP

CEP
B

Γ
LOC

Γ

B

B
M

B
C

B
NIII

III IV

V

Yb  Pt3 4 YbRh Si2 2

FIG. 12: (Color online) Field B - hybridization Γ phase di-
agram for T = 0. The antiferromagnetic phase line BN(Γ)
has a continuous region that terminates for B = 0, Γ = ΓQCP

(solid line) and a first order part (dashed line) that termi-
nates at Γ → 0, BCEP, separated by a tricritical point (White
circle, Γ = ΓTCP). Regions I and II are antiferromagnetically
ordered, regions III,IV, and V are not. Dashed line BC(Γ)
separates regions II and III, having localized Yb moments,
from Regions I, IV, and V, where there are differing degrees
of electronic localization (see text). The line BM(Γ) separates
regions IV (light mass Fermi liquid) from region V (heavy
mass Fermi liquid). It is not known where BM(Γ) intersects
the antiferromagnetic phase line BN(Γ) (dashed line). The
evolution of the T = 0 states of Yb3Pt4 and YbRh2Si2 with
increasing field is indicated by vertical arrows.

and for B = 0, when Γ ≤ ΓQCP.

The persistence of field-temperature scaling for com-
pounds that are tuned to the vicinity of the (B = 0,
Γ = ΓQCP) QCP suggests that the phase line BN(Γ) is
second order for an appreciable range of the hybridiza-
tion parameter Γ, terminating for B = 0 at Γ = ΓQCP

18.
YbRh2Si2 forms very close to ΓQCP, and the fragility of
its antiferromagnetic state is evident from both the tiny
ordered moment35 and by the small amounts of doping
that are required to drive TN → 018,36. Larger chemical
pressures are responsible for the absence of antiferromag-
netic order in YbIr2Si2, which can be restored by the
subsequent application of hydrostatic pressure37. High
pressures are expected to stabilize antiferromagnetic or-
der at progressively higher fields, an effect that is repro-
duced by Co-doping in Yb(Rh1−x,Cox)2Si2

11. A different
behavior is found in compounds like Yb3Pt4, where the
exchange coupling Γ is very small (Γ → 0) and the field-
driven phase transition TN = 0 is first order. The mag-
netic fields required to suppress antiferromagnetic order
to TN = 0 form a line of T = 0 transitions that emanate
from a tricritical point with ΓTCP that separates this
first order part of the BN(Γ) phase line with Γ → 0 from
the continuous regime with Γ → ΓQCP

38,39. There is
some initial evidence that the antiferromagnetic ground
state is achieved via a first-order transition in Co-doped
YbRh2Si2

40, suggesting that it may be possible to span
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this tricritical point with an appropriate combination of
magnetic fields and chemical pressure.
Very different types of electronic behaviors are found

in the different regimes of this T = 0 phase diagram.
All these f -electron based compounds start with the
same high temperature state, where spatially localized
moments fluctuate independently and are essentially de-
coupled from the conduction electrons. With lowered
temperature, magnetic order and Kondo compensation
compete to determine the final T = 0 state. In systems
like Yb3Pt4, TN is larger than TK, and so the ground
state is magnetic order of spatially localized moments,
where the related f -electrons or holes are excluded from
the Fermi surface. Magnetic fields suppress the T = 0
antiferromagnetic order in Yb3Pt4, and the robust B/T
scaling in the paramagnetic regime indicates that the lo-
calized moments persist, creating a paramagnetic state
that is stable even for T = 0. In YbRh2Si2, TK is much
larger than TN. Here, the Yb-based f -holes and the
conduction electrons are strongly entangled, with both
contributing to the Fermi surface of the T = 0, B = 0
ordered state. Here, too, magnetic fields suppress anti-
ferromagnetic order17, but the transition in YbRh2Si2 is
accompanied by an expansion of the Fermi surface that
produces a heavy Fermi liquid10,28. A second transition
or crossover is found at BM ≃ 10 T41, which is accom-
panied by a broadened step in the magnetization and
a step like reduction in the Sommerfeld constant, sug-
gesting the formation of a new Fermi liquid with sub-
stantially reduced quasiparticle mass and interactions42.
High pressure measurements on YbRh2Si2 find that BM

decreases with increasing pressure (decreasing Γ) as in-
dicated in Fig. 12. This general trend has been reported
as well in a number of different heavy fermion and mixed
valence compounds43. The exact nature of the transition
or crossover at BM remains uncertain. de Haas - van
Alphen measurements44 support the proposal that a Lif-
shitz transition occurs in YbRh2Si2 at ≃10 T, where the
majority spin sheet of the Fermi surface vanishes to pro-
duce a more weakly correlated Fermi liquid45. Electronic
structure calculations suggest instead a gradual crossover
that is driven by Zeeman splitting of the quasiparticle
states, a process that redistributes spectral weight among

bands with different masses, while leaving the number of
states contained by the Fermi surface unchanged between
the light and heavy Fermi liquid states46. Neither sce-
nario suggests that there is an actual localization of the
f-holes at BM ≃ 10 T.

The complete destruction of the heavy fermion state
is projected to occur at a much higher field BC

45, result-
ing in a high field state where the Yb moments and the
conduction electrons are decoupled. The definitive ab-
sence of heavy fermion character in Yb3Pt4, where the
Yb moments and the conduction electrons are nearly de-
coupled, prompts our suggestion (Fig. 12) that a smaller
field is required to suppress the heavy fermion state as
Γ decreases, ultimately producing a B = 0 state with
Γ ≤ ΓLOC where moments are always localized. We note
that such a transition has been observed in YbRh2Si2,
where a pressure P ≃ 10 GPa causes the B = 0 or-
dering transition become first order47, and the ordered
Yb moment increases dramatically from 0.02 µB/Yb at
1 bar35 to ∼ 1.9µB/Yb at 16.5 GPa47. The latter value
is similar to the B = 0 moment found in Yb3Pt4, which
is in turn close to the expected value for a Yb doublet
ground state when TK → 0, signalling that the Yb mo-
ments have become largely decoupled from the conduc-
tion electrons. These data suggest that BC(Γ) intersects
the B = 0 axis at ΓLOC ≤ ΓTCP. Understanding how the
BC(Γ) line passes through the antiferromagnetic phase
and connects to a B = 0 moment localization transition
will require challenging new measurements that use high
pressures or chemical pressure to drive localization, with
the subsequent addition of magnetic fields to drive the
resulting T = 0 transition towards the BN(Γ) phase line
itself.
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