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ABSTRACT 

When phonons transport across a material interface, they experience reflection, 

transmission and mode conversion, which results in a local temperature jump at interface and 

thus dramatically changes the thermal conductivity of nanostructured materials. Phonon 

transmission across lattice-matched interfaces has been studied extensively in recent years with 

the atomistic Green’s function (AGF) approach, which usually uses one unit cell to represent the 

cross-section along the interface. However, modeling phonon transmission across realistic 

material interfaces is much more challenging because realistic interfaces are usually lattice-

mismatched ones with atomic reconstruction, defects, and species mixing, which demands a 

larger cross-sectional area for the AGF simulation. In this paper, an integrated molecular 

dynamics (MD) and AGF approach is developed to study the phonon transmission across lattice-

mismatched interfaces. MD simulation is used to simulate atomic reconstruction close to the 
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interface. The recursive AGF approach is then employed for the first time to calculate frequency-

dependent phonon transmission across lattice-mismatched interfaces with defects and species 

mixing, which addresses the numerical challenge in calculating phonon transmission for a 

relatively large cross-sectional area with reduced computational cost. The study of the relaxed 

interface formed from two semi-infinite bulk materials shows that lattice mismatch increases the 

lattice disorder and decreases the adhesion energy, which in turn lowers phonon transmission and 

reduces the interface thermal conductance across lattice-mismatched interfaces. Low-frequency 

phonons can be significantly scattered by increasing the defect size across the interface while 

high frequency phonons can be scattered almost completely (phonon transmission <0.1) across 

an alloyed layer as thin as 2.27 nm.  The effect of lattice-mismatch on phonon transmission 

becomes smaller for interfaces with defects and species mixing. The effect of annealing 

temperature on the Si/Ge interface thermal conductance was studied. A significant reduction of 

the Si/Ge interface thermal conductance was observed for a lattice-mismatched interface when 

annealed at high temperature, which agrees well with the available experimental data in literature.  

 
PACS number(s): 44.10.+i, 68.35.-p, 63.20.kp 



I. INTRODUCTION 

Interfaces play a critical role in phonon dynamics and thermal conductivity of 

nanostructured materials.1-3 When phonons transport across a material interface, they experience 

reflection, transmission, and mode conversion, which results in a local temperature jump at the 

interface.4 Such a temperature jump is described by the interface thermal resistance, thermal 

boundary resistance (TBR), or Kapitza resistance, owing to Kaptiza's original work.1 With 

temperature 1T   and 2T   at the two sides of the interface, and heat flux q (W/m2) flowing across 

the interface, the thermal boundary resistance (R) can be written as, qTTR /)( 21 −= , and the 

interface thermal conductance (K) is defined as the inverse of the thermal boundary resistance as, 

RK /1= . 

In the past two decades, molecular dynamics (MD) simulations have been employed 

extensively to study the interface thermal conductance across various material interfaces,5-13 such 

as Kr/Ar,7 Si/In,11 carbon nanotube/Si,12 Si/polymer9 and PbTe/GeTe.13 A relatively good 

understanding of the reduced lattice thermal conductivity in nanostructured materials due to the 

thermal boundary resistance has been obtained. However, the interface thermal conductance 

alone from MD simulations, which describes the collective motion of all phonons across an 

interface and lacks details about how each specific phonon is scattered at interface, is not 

sufficient for developing predictive modeling tools for novel nanostructured materials with 



extraordinary thermal properties. For example, large-scale nano-enabled bulk systems with 

multiple interfaces such as integrated circuits (ICs)14 and nanocomposites15, 16 call for a better set 

of variables and simulation tools to describe such systems. An empirical approach is the 

Boltzmann transport equation-based (BTE-based) deterministic and stochastic approaches, which 

could potentially bridge the length scale from a few nanometers to the macroscale.3, 17-21 The 

knowledge of how a phonon with any specific frequency supported by a material is transmitted, 

reflected, and converted across a realistic material interface which could have atomic 

reconstruction, species diffusion, and vacancies, is essential for the understanding of the 

interface thermal conductance, which can be easily calculated using the Landauer formalism,22 

and for developing frequency-dependent BTE-based multiscale design and modeling tools.  

Modeling frequency-dependent phonon transmission across material interfaces has been 

challenging. The acoustic mismatch model (AMM) and diffuse mismatch model (DMM) are 

often used for the calculation of phonon transmission.1 AMM considers long-wavelength 

phonons and uses the acoustic impedances of the materials for the calculation of phonon 

transmission. The model is strictly valid only at low temperatures. Phonon scattering at 

interfaces is assumed to be completely diffusive in DMM,1 which better predicts phonon 

transmission across rough interfaces. Although AMM and DMM have been used exclusively as 

inputs for phonon BTE-based thermal conductivity models of nanostructures and for explaining 



experimental observation of reduced thermal conductivity in nanostructured materials, neither 

AMM nor DMM can accurately capture the underlying physics of phonon transport across 

material interfaces with detailed atomic structures.  

Significant progresses have been made recently for studying phonon transmission using 

atomistic simulation methods, including the phonon wave-packet method23 based on molecular 

dynamics simulations, the linear lattice dynamics,24, 25 and the atomistic Green’s function (AGF) 

approach which solves the phonon dynamical equation under the harmonic approximation. In 

particular, the frequency-dependent phonon transmission across a variety of material interfaces 

has been studied using the AGF approach, such as the interface in low dimensional atomic 

chains,26 strained Si/Ge interface,27 metal/graphene nanoribbon (GNR) interface,28 rough 

interface between two face-centered cubic (FCC) crystals,29 and more recently across confined 

material interfaces.30 However, all the past AGF-based studies on phonon transmission across 

interfaces27-32 focused on lattice-matched material interfaces, where the inter-atomic distance of 

one material is usually adjusted to match that in the other material in the directions parallel to the 

interface to simplify the calculations. For example, Si (or Ge) is strained to have the same lattice 

constant as Ge (or Si) along the interface plane to study phonon transmission across Si/Ge 

interface while the inter-atomic distance in the direction perpendicular to the interface is adjusted 

according to the Poisson’s ratio in Ref. 27. A similar numerical technique has been applied to 



study the phonon transmission across a TiC/graphene nanoribbon (GNR) interface in Ref. 28 

where the GNR unit cell near the interface is strained to match half of the face diagonal distance 

of the TiC unit cell. In Ref. 29, two FCC crystals with mass ratio and force constant ratio 

inherited from Si and Ge are used for the study of phonon transmission across rough interfaces 

and the lattice constants of the two crystals are adjusted to match each other. In the lattice-

matched systems, perfect atomic bonds similar to the ones in their constituent materials are 

formed at the interface, with no bond breaking or reconstruction, since the inter-atomic distance 

is the same for both materials at the interface.  

However, realistic material interfaces are usually lattice-mismatched. For example, Si and 

Ge have a 4% mismatch in lattice constants (Si: 5.43 Å and Ge: 5.65 Å). Such lattice mismatch 

complicates the phonon transport processes across the interface than that being ideally simulated 

without lattice mismatch. Pettersson and Mahan33 were probably the first ones who realized the 

importance of lattice mismatch on phonon transport across interfaces in 1990's. By studying 

phonon transport across unrelaxed lattice-mismatched interfaces formed from model materials 

with cubic lattices using the lattice dynamics method, they found that: (1) more phonons can be 

generated when phonons are scattered at the lattice-mismatched interfaces than that across 

lattice-matched ones because of the enhanced phonon mode conversion; (2) the phonon 

transmission coefficient across lattice-mismatched interfaces is smaller than that across lattice-



matched interfaces due to the weakening of bond strength. However, the atomic model system 

they used was not relaxed. In addition to lattice mismatch, vacancies, defects and species mixing 

could all happen in material interfaces due to manufacturing/processing constraints, which could 

significantly change the phonon scattering at interfaces. There is not much work using either 

lattice dynamics25, 34 or other methods to study phonon transmission across realistic material 

interfaces due to the physical and numerical complexity. 

In this paper, we develop an integrated atomistic simulation method to study frequency-

dependent phonon transmission across lattice-mismatched interfaces with and without defects 

and species mixing. MD simulation is used first to simulate the relaxed interfacial structure and 

then the AGF approach is used to simulate the phonon transmission across these relaxed 

interfaces. Although the AGF approach is relatively easier to implement and is more efficient for 

the calculation of phonon transmission comparing to other methods (such as the lattice dynamics 

and the wave packet methods),30 the computational challenge is still significant for realistic 

material interfaces. In section II, a recursive AGF method is applied for the first time and 

discussed in details to address the computational challenges for the phonon transmission 

calculation across lattice-mismatched interfaces with relatively large cross-sectional area. In 

section III.A, phonon transmission across relaxed interfaces formed from two semi-infinite bulk 

materials with different percentages of lattice mismatch are studied. In section III.B and III.C, we 



compare the calculated phonon transmission across lattice-matched and lattice-mismatched 

interfaces with defects and species mixing. In section III.D, we compare the interface thermal 

conductance of Si/Ge interface from our AGF simulations with the ones obtained from 

experiments and MD simulations. The effect of annealing temperature on the interface thermal 

conductance was elucidated. Section IV concludes this work. 

 

II. SIMULATION METHODS 

Modeling phonon transmission across lattice-mismatched material interfaces with defects 

and species mixing is challenging because a relatively large cross-sectional area must be used for 

the AGF simulations. The numerical challenges are analyzed based on a brief introduction of the 

general AGF approach in section II.A. In section II.B, AGF approach with recursive method is 

discussed in detail to address the numerical challenges in calculating phonon transmission for a 

relatively large cross-sectional area with reduced computational cost. 

A. General AGF approach 

Usually periodic boundary conditions need to be applied in atomistic simulations for an 

infinitely large cross-section if there is translational symmetry along the interface directions. 

Different from the real-space periodic boundary conditions applied in MD simulations, in AGF 

simulations the periodic boundary conditions can be realized using the wavevector 



representation27 in the momentum space. For lattice-matched system, the cross section along the 

interface direction can be as small as one unit cell using the wavevector representation 

technique.27, 30 However, a much larger cross section which contains multiple unit cells needs to 

be used as the basic period for a lattice-mismatched system. For example, 25 unit cells of Si are 

needed as the basic period along the interface direction for matching the cross-sectional area of 

Si/Ge interface so that an infinite size Si/Ge interface can be formed considering that there is 4% 

lattice constant mismatch for Si and Ge. In addition, the atoms reconstruct near the interfaces of 

the lattice-mismatched systems. The reconstruction extends to several unit cells away from the 

interface, which further complicates the computation. In this work, MD simulation under NVE 

ensemble (constant number of atoms, volume, and energy) is applied to relax the lattice-

mismatched interface with atomic reconstruction.  The AGF approach is then applied on the 

reconstructed interface structures to simulate the frequency-dependent phonon transmission 

across the interfaces.  

Figure 1 illustrates a lattice-mismatched atomic system for the calculation of phonon 

transmission across an interface using the AGF approach. The system consists of three parts: two 

reservoirs (1 and 2) and the interfacial region. The two reservoirs are semi-infinite regions with 

bulk material properties. The interfacial region is where phonons transmit, convert, and reflect 

from reservoir 1 (material 1) to reservoir 2 (material 2).  



With force constants obtained under the harmonic approximation, the phonon waves in the 

lattice system shown in Fig. 1 can be described by the dynamical equation,30  

0)()( 2 =− ωω ΦHI ,     (1) 

where ω is the angular frequency of lattice vibration (phonons), H  is the harmonic matrix, Φ(ω) 

is the magnitude of the vibrational modes, and I is the identity matrix. Here bold letters are used 

to present matrices. In this paper,  the harmonic matrix is derived from the Tersoff empirical 

potential35 which predicts reasonable well the mechanical and thermal properties for the Si and 

Ge materials.30, 36, 37  

Instead of solving the dynamical equation directly for the phonon waves as that in the 

linear lattice dynamics simulations,Error! Bookmark not defined. the atomistic Green’s function 

method is used for obtaining the dynamical response of the lattice system under small 

perturbation, i.e., small displacement or small force acted on the atoms, 

IGHI =− )( 2ω ,     (2) 

where G is the Green’s function. The Green's function of the whole lattice system as shown in 

Fig. 1 can be written in its component form as,   
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where the subscripts 1, 2 and d correspond to the reservoirs 1, 2, and interfacial region, 

respectively. The key for the calculation of phonon transmission across the interfacial region is 

to find the Green’s function Gd,d for the response of the lattice vibration in the interfacial region. 

Gd,d  can be calculated from Eq. (2) through the following matrix inversion by expanding H and 

G in their component forms,30 

[ ] 1
21,

2
,

−−−−= ΣΣHIG dddd ω ,    (4) 

where dd ,H  represents the harmonic matrix of the whole interfacial region as shown in Fig. 1,30 

and 1Σ  and 2Σ  are the self-energy matrices which represent the energy change to the interfacial 

region when the reservoirs are connected with the interfacial region.  The self-energy matrices 

1Σ  and 2Σ  can be calculated by27 

dd ,111,1 HgHΣ = ,      (5) 

and  

dd ,222,2 HgHΣ = ,     (6) 

where 1,dH , d,1H , 2,dH  and d,2H  represent the interactions between the reservoirs and the 

interfacial region. 1g  and 2g are the uncoupled Green’s functions of reservoir 1 and 2, 

respectively, when the  reservoirs are disconnected from the interfacial region, and can be written 

as,  

[ ] 1
1,1

2
1 )( −−+= HIg iδω ;     (7) 



[ ] 1
2,2

2
2 )( −−+= HIg iδω ,    (8) 

where 1,1H  and 2,2H  are the harmonic matrices of reservoir 1 and 2, respectively. Here a small 

imaginary number δi is added in Eqs. (7) & (8), which physically represents the broadening of 

the phonon energy. In practice, finite-sized reservoirs are usually used in numerical simulations 

to save the computation cost, which induces a discrete phonon density of state (DOS) with finite 

energy spacing. If there is no phonon energy broadening, the reservoir can behave poorly 

because the DOS is sharply varying with phonon energy. It is important to choose a value of the 

δ parameter which is greater than the phonon energy spacing in the finite-sized reservoirs38 to 

make the reservoirs well-behaved. In calculations, the value of δ is reduced until the converged 

1g  and 2g  are obtained. δ is chosen to be six orders of magnitude smaller than the phonon 

frequency in our studies.  

With the Green’s function dd ,G , the total phonon transmission across the interfacial region 

is then calculated as,  

][)( ,2,1
+=Ξ ddddTrace GΓGΓω .    (9) 

where )( 111
+−= ΣΣΓ i , )( 222

+−= ΣΣΓ i , and “+” denotes the conjugate transpose of the matrix. 

Considering that there are multiple phonons at a specific frequency (mode), we use transmission 

per phonon )(ωξ  to present our results in this paper, which is related to the total phonon 

transmission through, 



)()()( ωωξω M=Ξ ,      (10) 

where )(ωM  is the total number of phonon modes at frequency ω from material 1. )(ωM  can be 

calculated from lattice dynamics simulation by counting the number of phonon branches at 

frequency ω in the phonon dispersion curves. )(ωM  can also be called total phonon transmission 

in a pure material when the AGF simulation system is set up for the pure material system since 

)(ωξ  equals 1 in a pure material. 

In the general AGF method described above, there are two computationally challenging 

steps for the calculation of phonon transmission in lattice-mismatched systems: (a) calculation of 

the uncoupled Green’s function for semi-infinite reservoirs 1 and 2 with Eq. (7) and (8), 

respectively; and (b) solving of Eq. (4) for the Green’s function of the interfacial region.  

To make sure that the size of the reservoirs is large enough that satisfies the semi-infinite 

assumption, the decimation technique39 is usually used to solve Eqs. (7) and (8) instead of direct 

solutions. However the efficiency of the decimation technique is still low for the large-size 

matrix operation in the lattice-mismatched systems. For example, with a cross-sectional area of 

25×25 unit cells which satisfies the minimum size requirement for matching the cross-sectional 

area of the 4% lattice-mismatched Si/Ge interface, a square matrix (A) with a size twice (to keep 

the periodicity, A includes both the dynamical matrices of the unit cell itself and the interactions 

between the neighboring unit cells) of 25×25×8×3=15000 (8 atoms per unit cell and 3 degrees of 



freedom) needs to be constructed in the decimation technique. An iterative procedure is used to  

solve the uncoupled Green’s function ( 1g  and 2g ) by increasing the size of the reservoirs until 

the converged 1g  and 2g  are obtained.39 In this solution procedure, the inverse of A is used to 

solve the Green’s functions. Although A is a sparse matrix, the inverse of A is a full matrix, 

which demands a large amount of memory (~6 GB). The matrix operation is computationally 

prohibitive even if the iterative solving procedure is applied in decimation technique. In order to 

reduce the computational cost, we use the recursive AGF method40 in this paper, which 

calculates the response of the whole system from the responses of separated sub-systems and 

uses matrices only 1/4 size of the ones in decimation technique for the calculations (the details 

will be discussed shortly in section II.B). For example, for a simulated system with cross-

sectional area of 9 unit cells, our method is about 13 times faster than the decimation technique. 

A relatively thick interfacial region needs to be considered in the lattice-mismatched 

systems, which results in significant challenges in solving Eq. (4). The atomic reconstruction 

extends the interfacial region to be many layers of atoms rather than a sharp interface with 1-2 

atomic layers.  For example, if the interfacial region has a thickness of 5 unit cells, the square 

matrix corresponding to the interfacial region used in solving the Green’s function in Eq. (4) is a 

sparse matrix with a size of about 75000 and a bandwidth of about 15000, which demands a 

large amount of memory and high computational cost for obtaining the inverse of the matrix. 



Instead of solving Eq. (4), we can again use the recursive method based on matrices with reduced 

size and bandwidth.  

B. AGF approach with recursive method 

One great advantage of using the AGF approach to calculate phonon transmission is that 

the response of the whole system can be calculated from the responses of separated sub-systems. 

Assuming that separated sub-systems have uncoupled Green’s function 0G , the response G  of 

the whole system can be calculated by treating the interactions V  between the sub-systems as 

small perturbations41 using the Dyson equation,40  

VGGGG 00 += ,      (11) 

As mentioned in section II.A, the challenges in the calculation of the phonon transmission 

across lattice-mismatched interfaces are due to the computation-costly large-size matrix 

operation. The application of the Dyson equation by obtaining the Green’s function of a whole 

system based on divided sub-systems with reduced size using the recursive method can greatly 

reduce the size of the matrix and thus reducing the computational cost.   

Figure 2(a) illustrates the detailed procedure of recursive method for the calculation of 

coupled Green’s function. For the systems studied in this paper, we can divide the system into 

layered structures as sub-systems, as shown in step 1 in Fig. 2(a). The separated layers can then 

be connected together one by one using the Dyson equation, if the division of layers ensures that 



the interaction extends to the nearest-neighboring layers only. For the lattice system studied, 

such a criterion is essentially governed by the cutoff distance the potential function used. Since 

the cutoff distance of the Tersoff potential for Si and Ge used in this study is about one unit 

cell,35 the layer thickness can be as small as half unit cell along the Z direction in the reservoirs. 

In the interfacial region, although the atomic interactions are different from that in the reservoirs 

due to the reconstruction, we can still divide the whole interfacial region into separated layers for 

the calculations of Green’s functions using the recursive method. The thickness of each layer is 

determined by searching the atoms that have interactions with the atoms at the other end across 

the layer, but with the largest distance. In order to apply the recursive method, the uncoupled 

Green’s function of each divided layer needs to be calculated first as shown in step 2 in Fig. 2(a). 

For the layers in the reservoir, the uncoupled Green’s function is obtained using ,  

IGHI =−+ 0
,,

2 ])[( jjjjiδω ,     (12) 

where jj ,H is the harmonic matrix for each divided layer and a small imaginary number δi is 

added for the caculation of the uncoupled Green's function 0
, jjG  with the same reason as 

discussed for Eq. (7) and (8). In each reservoir, each unit cell is divided into two layers. Equation 

(12) only needs to be solved twice for these two distinguishable layers. In the interfacial region, 

the uncoupled Green’s function 0
,kkG  is calculated from the harmonic matrix kk ,H  for each 

divided layer k, 



IGHI =− 0
,,

2 )( kkkkω .      (13) 

which needs to be solved for all the layers.  

The coupled Green’s function in the reservoirs and the interfacial region can then be 

calculated using the Dyson equation. Since only the nearest-neighboring layers have interactions, 

any two neighboring layers can be connected together first without involving a third layer based 

on Eq. (11) for the calculation of the coupled Green’s functions. Using this method, the divided 

layers can be connected together in sequence, and only the Green’s functions corresponding to 

the first and last layer are recorded for the next step calculations as illustrated in step 3 in Fig. 

2(a). Figure 2(b) shows the detailed calculation of the coupled Green’s function after adding a 

layer. Assuming that layer a to p have been already connected together and the Green’s functions 

recorded for the next step calculation are: 0
,aaG , 0

, paG , and 0
, ppG , we can now add another layer q 

to the system. With the uncoupled Green’s function 0
,qqG  of layer q and the interaction qp,V  

between layer p and q, the coupled Green’s functions ( aa,G , qa,G , and qq,G ) for the connected 

layer a to q can be solved through the following equations, which are the component forms of Eq. 

(11),  
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where += qppq ,, VV , += qaaq ,, GG . In the equations set (14) above, the equation for qpG ,  is added to 

make the set of equations complete, but not recorded for the next step calculation. The coupled 

Green’s functions ( aa,G , qa,G , and qq,G ) are then used for the next step calculation. The whole 

system including the reservoirs and the interfacial region can be connected in such a manner to 

calculate the coupled Green’s function in the interfacial region for the phonon transmission. 

The phonon transmission across the interfacial region can then be calculated from the 

response (or the Green’s function) between the first and last layer without knowing the Green’s 

function of the whole interfacial region, which significantly reduces the computational cost by 

using the recursive method. Assuming the first and the last layer in the interfacial region are 

layer d1 and dn, the total phonon transmission is then calculated as, 

][)( ),(),(2),(),(1 1111

+=Ξ
nnnn ddddddddTr GΓGΓω ,   (15) 

where ),( 1 nddG  is the Green’s function corresponding to the first and last layer in the interfacial 

region, )( ),(1),(1),(1 111111

+−= dddddd i ΣΣΓ , and )( ),(2),(2),(2
+−=

nnnnnn dddddd i ΣΣΓ . ),(1 11 ddΣ  and ),(2 nn ddΣ

are the submatrices in the self-energy 1Σ  and 2Σ  corresponding to the layer d1 and dn (the first 

and last layer in the interfacial region). 

The division of the layers in the recursive method is not unique as long as it meets the 

division rule: the interaction extends to the nearest-neighboring layers only. Figure 2(c) verified 

that the recursive method with different thicknesses of divided layers gives exactly the same 



phonon transmission results as those from direct method, when this method is applied for the 

calculation of phonon transmission across a lattice-matched Si/Ge-like interface.  

Using the Landauer formalism, the thermal conductance K can then be easily calculated 

with the obtained total phonon transmission,22  
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where S is the cross-sectional area perpendicular to the heat flow direction; ),( Tf ω  is the 

phonon occupation number and T is temperature. Within linear response regime, the calculation 

using equation (16) is performed in the limit of infinitely small temperature difference. 

We shall note that harmonic approximation is assumed in the above description of the AGF 

approach for the calculation of phonon transmission. In principle, the anharmonicity could also 

be included in the AGF approach, as shown in the few recent studies on low-dimensional 

systems, where the  Feyman diagrams is used to consider the multiple-phonon scattering process 

due to the anharmonic force constants at the interfacial region.42, 43 However, this method has not 

been applied for more complex systems due to the computational challenges. The recursive 

method described in this paper can potentially be used to solve some of the computational 

challenges. Similar to MD, another significant limitation of the AGF approach is the availability 

of the empirical potential for materials and the accuracy of the empirical potentials. Although 



there have been significant efforts in developing empirical potentials for materials of interests, 

the empirical potential for a large number of materials and interfaces are not available. The 

recent work on obtaining the force constants of crystals from the first principles calculations44, 45 

can significantly expand the power of AGF method, although there might be challenges on 

obtaining force constants across material interfaces using the first principles calculations.  

 

III. RESULTS AND DISCUSSIONS 

The effects of lattice-mismatch on frequency-dependent phonon transmission across Si/Ge-

like material interfaces are presented in this section. We start with the relaxed interfaces formed 

between two semi-infinite bulk materials with different percentages of lattice mismatch in 

section III.A. Section III.B and C present the results for lattice-mismatched interfaces with 

defects and species mixing. Finally, in section III.D, we compare the interface thermal 

conductance of Si/Ge interface predicted using AGF simulations with the ones from experiments 

and MD simulations.  

A. Relaxed interface formed between two semi-infinite bulk materials 

In this study, Ge with the Tersoff empirical potential is modified to create new Ge-like 

materials with different lattice constants so that the relaxed interfaces with different percentage 

of lattice mismatch can be formed between semi-infinite bulk Si and Ge-like materials to 



systematically study the effect of lattice mismatch on phonon transmission. The modification of 

Tersoff empirical potential for Ge-like materials is show in detail in the Appendix.  Si is used as 

material 1 and Ge-like material is used as material 2 as shown in Fig. 1. The interface is formed 

by connecting the (1 0 0) plane of the two materials together with the distance calculated from 

the average nearest-plane distance of the two materials. The cross-sectional area for the basic 

period is determined by the percentage of the lattice mismatch with the detailed parameters listed 

in Table 1. Ten unit cells are used for the length in the Z direction (heat transport direction) for 

each material, which is sufficiently long that the atomic reconstruction near the interface is not 

affected by the choice of a larger length. Initially, the constructed structure has a large strain at 

the interface, due to the lattice mismatch. MD simulations under a constant pressure (0 Pa) and a 

constant temperature (300 K) are performed to relax the structure until the potential energy of the 

system reaches its minimum. 

Figures 3(a) and (b) show part of the cross section (perpendicular to the interface) of the 

interfacial structures the Si/Ge-like system with an 8% lattice mismatch before and after the 

system is relaxed. In Fig. 3(a), the two materials with their original bulk lattice structures are 

brought together into contact. After relaxation, the atoms over several unit cells across the 

interface are redistributed so that they slightly deviates from their equilibrium position due to the 

lattice mismatch, as shown in Fig. 3(b). Figure 3(c) shows the reconstructed interface of the Ge-



like material (the left-most atomic plane of the Ge-like material). The atoms with large 

displacements concentrate mainly at areas around the dash lines as shown in the figure. The 

dashed line appears to be the longest path which involves the largest number of atoms in the 

structure for energy minimization due to the periodic boundary condition used in the transverse 

directions.  

Figure 4(a) shows the frequency-dependent phonon transmission per phonon across the 

relaxed interfaces with different percentages of lattice mismatch. The transmission of low-

frequency phonons from Si to Ge-like materials has relatively large value due to the larger DOS 

of low-frequency phonons in Ge-like material than that in Si.30 It is interesting to note that even 

though there are multiple phonons in Ge-like material side to closely match a similar frequency 

phonon from the Si side, the transmission is still less than 1 (about 0.85). This is due to the 

mismatch of phonon spectra. After all, the frequency and wavevector of phonons supported by 

the two materials at different side of the interface is always different and can never find a perfect 

match for any specific phonons.   

When a low frequency phonon transmits from Si to Ge-like materials, there can be multiple 

phonons in Ge-like material side with similar frequency to match the incoming phonons from the 

Si side. In contrast, the phonon transmission at low frequency from Ge-like to Si will be much 



smaller (about 0.45, not shown here) due to the much less phonons at similar frequencies 

available in Si side to match those from Ge-like materials side.25, 30  

Figure 4(a) clearly shows that phonon transmission decreases with the increasing 

percentage of lattice mismatch. Phonon transmission across the relaxed lattice-mismatched 

interfaces is affected by several factors. Phonon mode conversion would probably increase with 

the inclusion of lattice-mismatch, which essentially increases the phonon transmission.33 

However, the atomic disorder at the interface after relaxation decreases the phonon transmission. 

The larger the lattice mismatch, the higher is the atomic disorder. Such a competition results in 

reduced phonon transmission with the increase of lattice mismatch. 

  When an interface is formed from two materials, energy will be released due to the 

formation of atomic bonds, which is defined as the adhesion energy, 1221 EEEE −+=Δ  with E1 

and E2 as the energy of the bulk material 1, 2 before the formation of the interface and E12 as the 

energy of the relaxed interface system. Figure 4(b) shows that the adhesion energy decreases 

with the increasing percentage of lattice mismatch. With the increase of lattice match, the atomic 

disorder increases, which results in higher energy (E12) of the system due to higher residual 

strains across the lattice-mismatched interface. It is interesting to correlate the interface thermal 

conductance as a function of the adhesion energy as shown in Fig. 4(c). The interface thermal 



conductance deceases linearly as the adhesion energy decreases across the lattice-mismatched 

interface.  

B. Interfaces with vacancy defects 

Vacancies around an interface can greatly affect the phonon transmission and interface 

thermal conductance. In this section, we consider Si/Ge-like material interfaces with spherical 

vacancy defects at fixed lattice mismatch of 8%. In this study, the centers of the spherical 

vacancy defects are randomly distributed in the two atomic layers near the interface (one layer 

from Si and the other layer from the Ge-like material). We can then characterize the vacancy 

defects at an interface with two parameters: defect size (d) and defect density (f). Initially, the 

vacancy defects are formed by removing atoms within a radius of d/2 around the spherical defect 

centers. The total number of defects created is calculated from the defect density and the total 

number of atoms in the two atomic layers near the interface. The structure is then relaxed by 

performing MD simulation under NVE ensemble with average temperature at 300 K and average 

pressure at 0 Pa. Figure 5(a) and 5(b) show the initial and final structure of the defected interface 

(Ge-like material side) with a defect size of 0.6nm (about 40 atoms per vacancy) and defect 

density of 3%. Atomic reconstruction occurs at the interface due to both the formation of 

vacancy defect and the lattice mismatch. However, the size of the defects remains the same as 

the one before relaxation. In other words, no diffusion of such large vacancy defects into smaller 



ones were observed as otherwise would be for real material interfaces. This is likely due to the 

low temperature MD relaxation process that cannot capture the real physics, which is not the 

focus of this paper. We also note that the large vacancy defects at the interfaces can also be 

viewed as interface roughness. Nevertheless, this study can be viewed as an idealized model to 

study the scattering of phonons at the interface due to the characteristic size change ofscattering 

centers.    

Figure 6(a) shows the frequency-dependent phonon transmission as a function of defect 

density when the vacancy defect size is kept at one-atom size. The phonon transmission 

decreases only slightly with increasing defect density, especially when the defect density is low. 

The phonon-defect scattering greatly depends on the phonon wavelength and the defect size. 

With a very small one-atom defect size d considered here, which is much smaller than the 

phonon wavelength λ (the smallest phonon wavelength is twice of the nearest atomic plane 

distance), the phonons experiences Rayleigh scattering, where the scattering cross section can be 

written as 46 /~ λσ d .46 At low defect density, such one-atom-size defects do not scatter strongly 

and frequently with phonons, which results in only slight decrease of the phonon transmission. 

Earlier MD simulation work reported slightly affected interface thermal conductance with point 

vacancies at a density of 1%, which also  indicates that phonon transmission changes only 

slightly at low defect density when defect size is small.8  



Figure 6(b) shows that phonon transmission decreases when the defect size is increased 

from one atom to 0.6nm when the defect density is fixed at 3%.The defect size changes the 

transmission of low frequency phonons remarkably compared to the effect of defect density 

when the defects are only in the size of only one atom in Fig. 6(a). This is because the phonons 

with longer wavelength (or lower frequency) comparable to the defect size are strongly scattered 

when the defect size increases. Figure 6(c) compares the interface thermal conductance across 

the lattice-matched and lattice-mismatched interfaces (8% lattice mismatch to Si) with varying 

defect size at a fixed defect density of 3%. The difference in the interface thermal conductance 

decreases between the lattice-matched and lattice-mismatch interfaces when the defect size 

increases. With the increasing defect size, the phonon transmission is more affected by the defect 

than the lattice mismatch.  

C. Alloyed interface 

Species can diffuse into each other at material interfaces, especially under high temperature 

and after extended time. In this section, phonon transmission across alloyed interfaces with an 8% 

lattice mismatch is studied. MD simulations are conducted to form the alloyed interfaces. The 

lattice-mismatched interface is constructed first by connecting the semi-infinite Si and Ge-like 

materials. The section with with a thickness of L near the interface (half from each material) is 

then melted locally at 4000 K and quenched at 300 K to form the alloyed interface using MD 



simulation under NVE ensemble for each process. Figure 7 shows one of the alloyed Si/Ge-like 

interface structures with L = 1.13 nm. Si and Ge-like atoms at the interface within the 1.13 nm 

region are fully mixed and form an amorphous layer. The calculation results for the frequency-

dependent phonon transmission presented below is for the interface section that includes both the 

L = 1.13 nm totally mixed region and the distorted lattice nearby.   

Figure 8(a) shows the frequency-dependent phonon transmission across alloyed interface 

with varying thickness L. Phonon transmission decreases only slightly across a 0.28 nm alloyed 

layer. Similar to the scattering of phonons across interfaces with point vacancy defects presented 

in section III.B, 0.28 nm of the alloyed layer is far too thin to scatter phonons with longer 

wavelength than the alloyed layer thickness. With the increase of the alloyed layer thickness, the 

transmission of high frequency phonons can be reduced to a very low value. For example, the 

phonon transmission across a 2.27 nm alloyed interface layer is below 0.1 for the phonon 

frequency ranging from around 0.3×1014 rad/s to 0.6×1014 rad/s. With the same alloyed interface 

layer thickness, the low frequency phonons have a relatively large phonon transmission value (> 

0.5 for phonon frequencies lower than 0.15×1014 rad/s), which is due to the low scattering rate 

for the long wavelength phonons at the small scattering centers in the alloyed layer. As the layer 

thickness increase, the peaks in the phonon transmission disappear, due to the loss of the original 



momentum and random traveling directions of the phonons after scattering within a thick alloyed 

layer, i.e., strong mode conversion of the phonons across the alloyed layer.  

Figure 8(b) compares the interface thermal conductance across both lattice-matched and 

lattice-mismatched interface (8% lattice mismatch to Si) with species mixing. The effect of 

lattice mismatch on the change of phonon transmission becomes small with increasing alloyed 

layer thickness due to the random phonon scattering across the alloyed layer. For the lattice-

mismatched interface, the interface thermal conductance is 0.1 GW/m2K across a 2.27 nm 

alloyed layer. The thermal conductivity of the Si-Ge alloy formed in the interfacial region 

(Si0.54Ge0.46) is about 10 W/mK.47 The thermal conductance of the 2.27 nm alloy layer itself is 

estimated to be ~4.4 GW/m2K, which is significantly larger than the overall thermal conductance 

from our calculation. This indicates that the interface thermal resistance across the alloyed 

interface is mainly governed by the adjacent regions between the bulk materials and the alloyed 

layer, where atoms slightly deviate from their original position in a bulk crystal. The reduction of 

interface thermal conductance due to species mixing has also been reported experimentally.48, 49 

For example, the measured interface thermal conductance across a C/TiN interface decreases 

from 0.2 GW/m2K to 0.084 GW/m2K after anealing at high temperature,49 which can clearly be 

explained as the effect of species diffusion at the interface after annealing. Reduced interface 

thermal conductance across Cr/Si interfaces with species mixing was reported in Ref. 48.  



D. Interface thermal conductance of Si/Ge interface 

Figure 9 shows the comparison of the interface thermal conductance of the Si/Ge interface 

obtained from different simulation methods and extracted from experiments. The interface 

thermal conductance across a strained lattice-matched Si/Ge interface is calculated using 

nonequilibrium MD (NEMD) simulation following the direct method for the calculation of 

interface thermal conductance in Ref. 10. The average lattice constant of Si and Ge along the 

interface direction is used to form the interface and the average stress perpendicular to the 

interface direction is relaxed to zero. Similar to other reported studies, the calculated interface 

thermal conductance greatly depends on the simulation domain length of Si and Ge, and 

eventually it converges with a length greater than 100 unit cells. The converged value is plotted 

in Fig. 9 for comparison. The interface thermal conductance calculated using AGF agrees 

reasonably well with the NEMD results at low temperature (100 K) and the discrepancy becomes 

evident with increasing temperature. This could be due to the fact that AGF simulations are 

based on the harmonic approximation and do not consider the inelastic phonon scattering while 

the MD simulation considers inelastic phonon scattering. This also points to the importance of 

including arharmonic terms for the future development of AGF approach.  

To best of our knowledge, direct measurement of the interface thermal conductance of a 

single Si/Ge interface is not available. However, we can extract the values from superlattices by 



assuming that the measured thermal resistance of superlattices50, 51 is a series resistance of 

interface thermal resistance and intrinsic layer resistance. With small superlattice period 

thickness (3 nm ~ 6.5 nm in Ref. 50 and 4.4 nm in Ref. 51), the interface thermal conductance 

extracted from experiments50, 51 is about 4 - 8 times larger than the results from NEMD and AGF 

simulations. With a larger period thickness (27.5 nm in Ref. 50 and 14nm in Ref. 51), the 

experimental results are about 0.3 - 1.5 times of the simulation results as plotted in Fig. 9, which 

can be regarded as reasonable agreement since our calculations are on interfaces formed from 

two perfect bulk materials and should be compared with larger period thickness. The larger 

experimental results of interface thermal conductance with small period thickness could be 

attributed to the coherent phonon transport in the superlattice and deserves further studies.52  

Si/Ge Superlattices are expitaxially grown at relatively high temperature, i.e., about 1000 K 

in Ref. 50, which can induce atomic reconstruction in the lattice-mismatched Si/Ge interfaces.  

We thus anneal the Si/Ge interface at a different temperature and then bring the temperature back 

to 300 K for the AGF calculation of phonon transmission and the interface thermal conductance. 

In the annealing process, the temperature of the whole system is elevated to the target value and 

the system is kept at this high temperature and zero pressure until the potential energy of the 

system becomes stable. The system is then cooled down to 300 K at a cooling rate of 1 K/ps by 

rescaling the system temperature. As expected, the interface thermal conductance for the lattice-



matched interface is found not to vary with the annealing temperature up to 1500 K, because 

there is essentially no atomic reconstruction across the lattice-matched interface with perfect 

bonding. For the lattice-mismatched interface, there is about 6.8% reduction in interface thermal 

conductance at 300 K if the system is relaxed at 300 K compared with the results for the lattice-

matched interface. Another 3% reduction is observed if the annealing temperature is increased to 

1000 K. However, a much larger decrease of interface thermal conductance is observed if the 

annealing temperature is further increased to 1500 K, due to the significant increase in the atomic 

disorder observed in the interfacial structure. Such numerical results on the reduced interface 

thermal conductance across the lattice-mismatched interface under high temperature annealing 

could possibly explain the lower experimental value of interface thermal conductance of the 

Si/Ge interface extracted from superlattice experiments than that of the theoretical calculations. 

Literature also suggests that alloyed Si-Ge layer can form across Si/Ge interface during the 

epitaxial growth process at high temperature because atoms with high velocity could knock off 

the ones on the substrate.53 Our simulation in section III.C shows that the thermal conductance of 

the Si/Ge interface can be further lowered if alloyed interface is formed, which can be another 

important reason to explain the low thermal conductance of superlattice from experiments.    

 

 



IV. Conclusion 

In this paper, an integrated MD simulation and AGF approach has been developed to study 

phonon transmission across lattice-mismatched interfaces with atomic reconstruction. MD 

simulation was used to simulate the atomic reconstruction for lattice-mismatched interfaces. The 

recursive AGF approach was employed for the first time to calculate phonon transmission across 

lattice-mismatched interfaces with defects and species mixing, which addresses the numerical 

challenge in calculating phonon transmission for a relatively large cross-sectional area. Lattice 

mismatch increases the lattice disorder and decreases the adhesion energy, which in turn lowers 

phonon transmission and reduces the interface thermal conductance across lattice-mismatched 

interfaces. Further studies show that low frequency phonons can be significantly scattered by 

increasing the defect size across the interface while high frequency phonons can be scattered 

almost completely (phonon transmission <0.1) across an alloyed layer as small as 2.27 nm. The 

lattice-mismatch effects become smaller for interfaces with defects and species mixing. The 

effect of annealing temperature on the Si/Ge interface thermal conductance was studied. A 

significant reduction of the Si/Ge interface thermal conductance was observed for a lattice-

mismatched interface when annealed at high temperature, which agrees well with the available 

experimental data in literature.  
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APPENDIX 

The Tersoff empirical potential35 is used in this paper for describing the atomic interaction 

in the Si/Ge and Si/Ge-like material system. The potential between atoms i and j can be 

expressed as, 

)]exp()exp()[( ijijijijijijijcij rBbrArfV
ji μλ −−−=    (A.1) 

where rij is the distance between atom i and j; )( ijc rf  is a cutoff function; 
jib  is a function 

related to the bond angle formed between i, j and other neighboring atoms of atom i; A, B, λ, and 

µ are parameters that can be found in the Ref. 35. In our calculation, the Ge potential is modified 

to form Ge-like materials with different lattice constants so that we can examine the effect of 

different lattice mismatch percentage on phonon transmission. The Ge-like materials with 

modified potential have the same phonon spectra as Ge. Since the Ge-like materials have the 

same crystal structure as Ge but with different lattice constant, the bond angles between any pair 



of atoms in the Ge-like materials is the same as that in Ge and no modification of the function of 

jib  is needed. The other parameters for Ge-like materials can be derived from the following 

equations by comparing the second derivative of function Vij over distance rij,  

ijijijijijijijij rrrr μμλλ == '''' ,      (A.2) 

22''22'' , ijijijijijijijij BBAA λλλλ ==     (A.3) 

where '
ijA , '

ijB , '
ijλ , and '

ijμ  are the parameters for the Ge-like materials. From Eq. (A.2), the 

value of '
ijλ  and '

ijμ  can be determined with the value of ijr  and '
ijr  taken from the lattice 

constants of Ge and Ge-like, respectively. Then from Eq. (A.3), '
ijA  and '

ijB  can be determined. 

With the new parameters for Ge-like materials, the phonon dispersion and the Grüneisen 

parameter are calculated. For example, Fig. 10 shows the phonon dispersion and the Grüneisen 

parameter of Ge-like material with lattice constant of 5.9 Å. Both phonon dispersion and 

Grüneisen parameter of the Ge-like materials agree well with the ones of Ge. 

However, the anharmonic force constants (3rd order and higher orders) could be different 

for the Ge and Ge-like materials. In Fig. 11, the thermal conductivity of Ge-like materials with 

different lattice constant is calculated using the spectral analysis54 of the Green Kubo’s relation 

from equilibrium molecular dynamics. Apparently, the thermal conductivity of Ge-like material 

is different from that of Ge, which indicates that the anharmonic force in the modified potential 

is different although the phonon spectra are the same. 



We note that the AGF simulations presented here is based on the harmonic approximation 

and only the harmonic force constant is used in the simulation. The anharmonic terms will not 

directly affect the phonon transmission results, but through the structure change due to the 

difference in higher order force constants. Considering this, these anharmonic terms would affect 

the result in a minor way compared with the harmonic terms. 
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TABLE I. Lattice constant and the size of the cross-sectional area (N unit cell in each transverse 

direction) of Ge or Ge-like materials for the structure shown in Fig. 1 with different percentages 

of lattice mismatch. The percentage of lattice mismatch of S/Ge system is 4.2%. 

 

Percentage of lattice mismatch N Lattice constant of Ge or Ge-like (Å) 
4.2% 24 5.6729 
5.6% 18 5.7486 
8.3% 12 5.8998 
16.7% 6 6.3537 



FIGURE CAPTIONS 

FIG. 1. (Color online) Illustration of a general lattice-mismatched system used in AGF approach 

for phonon transmission calculation. With different lattice constants, the smallest period to 

represent an infinite-size interface in the transverse direction is created by using N+1 unit cells in 

each transverse direction for the materials with smaller lattice constant (a1) and N unit cells for 

the one with larger lattice constant (a2). For a Si/Ge interface, 25 unit cells (N=24) of Si is 

needed to match the cross-section of 24 unit cells of Ge. 

FIG. 2. (Color online) (a) Illustration of the recursive method. The interfacial region is first 

divided into separated layers. The uncoupled Green’s function of each separated layer is 

calculated. The separated layers are then connected in sequence for the calculation of the coupled 

Green’s function. (b) The detailed calculation of the coupled Green’s function after adding a 

layer in step 3 as shown in (a). In general, assuming that layers a to p have already been 

connected together, we add another layer q to the system through the interaction qp,V  between 

layer p and q. Since 
ndd ,1

G  are needed for the phonon transmission calculation, only the Green’s 

functions related to the first and last layer are recorded for the next step calculation. (c) 

Verification of the recursive method through the calculation of phonon transmission across Si/Ge 

lattice-matched interface. Same results are obtained from the direct method and the recursive 

method with the thicknesses of the divided layers at 0.5 and 1 unit cell. 



FIG. 3. (Color online) Relaxed interfaces formed between Si and Ge-like materials with an 8% 

lattice mismatch. (a) The initial structure. (b) The structure after relaxation with MD simulation. 

(c) The reconstructed interface of the Ge-like material (the left-most atomic plane of the Ge-like 

material).  

FIG. 4. (Color online) (a) Frequency-dependent phonon transmission across the relaxed 

interfaces formed between Si and Ge-like material with different percentages of lattice mismatch. 

(b) Adhesion energy of the relaxed interface as a function of different percentages of lattice 

mismatch. (c) The thermal conductance as a function of the interface adhesion energy. 

FIG. 5. (Color online) (a) Initial structure, and (b) final structure after MD relaxation, of the 

interface with defect size of 0.6 nm and defect density of 3%. 

FIG. 6. (Color online) Phonon transmission across 8% lattice-mismatched interface with: (a) 

different defect density when defect size is kept at one atom; and (b) different defect size when 

defect density is kept at 3%. (c) Thermal conductance with different defect size and fixed defect 

density at 3% for both lattice-matched and 8% lattice-mismatched interface. 

FIG. 7. (Color online) The alloyed Si/Ge-like interface structure with thickness L of 1.13 nm. 

The percentage of lattice mismatch between Si and Ge-like material is 8%. The alloyed interface 

is formed by locally melting the region at 4000 K and quenched at 300 K using MD simulation.   

 



FIG. 8. (Color online) (a) Phonon transmission across alloyed Si/Ge-like lattice-mismatched 

interface with different alloyed layer thickness. (b) Interface thermal conductance across alloyed 

Si/Ge-like lattice-mismatched and lattice-matched interfaces with different alloyed layer 

thickness. The result without melting is the one across the relaxed interface formed from two 

semi-infinite bulk materials.  

FIG. 9. (Color online) Comparison of the interface thermal conductance of Si/Ge interface from 

our AGF simulation with the results from experiments and MD simulations. The value from 

experiments are extracted from measurement of thermal conductivity of the superlattice 

described in Ref. 50 and 51. The NEMD simulation is on the strained lattice-matched Si/Ge 

interface. AGF simulations have been performed based on the structures annealed at different 

temperatures for both lattice-matched and lattice-mismatched Si/Ge interfaces.  

FIG. 10. (a) Phonon dispersion, and (b) Grüneisen parameter of Ge with lattice constant of 5.67 

Å and Ge-like material with lattice constant of 5.9 Å. The results show the new Ge-like material 

has the same phonon spectra as that in Ge. 

FIG. 11. Thermal conductivity of Ge-like materials with different lattice constants. 
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FIG. 2. (Color online) (a) Illustration of the recursive method. The interfacial region is first 

divided into separated layers. The uncoupled Green’s function of each separated layer is 

calculated. The separated layers are then connected in sequence for the calculation of the coupled 

Green’s function. (b) The detailed calculation of the coupled Green’s function after adding a 

layer in step 3 as shown in (a). In general, assuming that layers a to p have already been 

connected together, we add another layer q to the system through the interaction qp,V  between 

layer p and q. Since 
ndd ,1

G  are needed for the phonon transmission calculation, only the Green’s 

functions related to the first and last layer are recorded for the next step calculation. (c) 

Verification of the recursive method through the calculation of phonon transmission across Si/Ge 

lattice-matched interface. Same results are obtained from the direct method and the recursive 

method with the thicknesses of the divided layers at 0.5 and 1 unit cell.  
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FIG. 3. (Color online) Relaxed interfaces formed between Si and Ge-like materials with an 8% 

lattice mismatch. (a) The initial structure. (b) The structure after relaxation with MD simulation. 

(c) The reconstructed interface of the Ge-like material (the left-most atomic plane of the Ge-like 

material).  
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FIG. 4. (Color online) (a) Frequency-dependent phonon transmission across the relaxed 

interfaces formed between Si and Ge-like material with different percentages of lattice mismatch. 

(b) Adhesion energy of the relaxed interface as a function of different percentages of lattice 

mismatch. (c) The thermal conductance as a function of the interface adhesion energy. 

 

  



FIG. 5 

 

 

 

FIG. 5. (Color online) (a) Initial structure, and (b) final structure after MD relaxation, of the 

interface with defect size of 0.6 nm and defect density of 3%. 



FIG. 6 

 

 

 

 



 

 

 

 

FIG. 6. (Color online) Phonon transmission across 8% lattice-mismatched interface with: (a) 

different defect density when defect size is kept at one atom; and (b) different defect size when 

defect density is kept at 3%. (c) Thermal conductance with different defect size and fixed defect 

density at 3% for both lattice-matched and 8% lattice-mismatched interface. 

 

 

 

 

 



FIG. 7 

 

 

        

FIG. 7. (Color online) The alloyed Si/Ge-like interface structure with thickness L of 1.13 nm. 

The percentage of lattice mismatch between Si and Ge-like material is 8%. The alloyed interface 

is formed by locally melting the region at 4000 K and quenched at 300 K using MD simulation.   

 

 



FIG. 8 

 

 

 

 

 

FIG. 8. (Color online) (a) Phonon transmission across alloyed Si/Ge-like lattice-mismatched 

interface with different alloyed layer thickness. (b) Interface thermal conductance across alloyed 



Si/Ge-like lattice-mismatched and lattice-matched interfaces with different alloyed layer 

thickness. The result without melting is the one across the relaxed interface formed from two 

semi-infinite bulk materials.  

 

  



FIG. 9 

 

 

 

 

FIG. 9. (Color online) Comparison of the interface thermal conductance of Si/Ge interface from 

our AGF simulation with the results from experiments and MD simulations. The value from 

experiments are extracted from measurement of thermal conductivity of the superlattice 

described in Ref. 50 and 51. The NEMD simulation is on the strained lattice-matched Si/Ge 

interface. AGF simulations have been performed based on the structures annealed at different 

temperatures for both lattice-matched and lattice-mismatched Si/Ge interfaces.  

 



FIG. 10 

 

 

 

 

FIG. 10. (a) Phonon dispersion, and (b) Grüneisen parameter of Ge with lattice constant of 5.67 

Å and Ge-like material with lattice constant of 5.9 Å. The results show the new Ge-like material 

has the same phonon spectra as that in Ge. 



FIG. 11 

 

 

 

FIG. 11. Thermal conductivity of Ge-like materials with different lattice constants. 

 


