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Abstract

We have calculated the ideal strength of aluminum at finite temperatures by implementing an

ab initio molecular dynamics (AIMD) method that treats elastic instability, dynamic instability

and thermodynamics in a unified first-principles approach. The results reveal significant changes

in fundamental mechanical properties of aluminum: (i) the ideal strength drops precipitously with

increasing temperature, by as much as 60% at room temperature compared to T=0 K; (ii) the struc-

tural instability modes change qualitatively from dynamic phonon softening at low temperature

to elastic failure at high temperature; (iii) the highly anisotropic low-temperature tensile strength

becomes considerably more isotropic with rising temperature. Phonon calculations predict the dis-

appearance of soft phonon modes near room temperature due to phonon anharmonic interactions,

in excellent agreement with the AIMD results. This work sets key benchmarks for aluminum and

opens a new avenue for studying material deformation and strength at finite temperatures.

PACS numbers: 62.20.-x, 81.40.Jj, 61.50.Ah, 63.20.-e
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Accurate prediction and analysis of the stability of crystal lattices is fundamentally im-

portant in materials science; it holds the key to understanding the mechanism for material

deformation and strength. Recent developments in computational physics have enabled first-

principles calculations of peak stresses (i.e., ideal strengths) in the stress-strain relations of a

crystal lattice along specific deformation paths and the structural deformation modes lead-

ing to elastic instabilities1–11. Meanwhile, dynamic instability of a crystal lattice has been

studied via separate calculations of the phonon spectra of the crystal lattice at each step

along every deformation pathway. The appearance of imaginary frequencies in the phonon

spectra indicates the beginning of the dynamic instability of the crystal lattice12–15. These

calculations, however, are all performed at T=0 K, thus ignoring thermodynamic effects

that are expected to alter material behavior at high temperatures. It is highly desirable

to develop a method that can treat different lattice instabilities and thermodynamics in a

unified first-principles approach.

Here we explore the finite-temperature mechanical behavior of aluminum (Al), which

is one of the most wildly used metals owing to its unique properties of light weight, high

corrosion resistance, good electric and thermal conductivities, and large plasticity. Despite

numerous past studies1,3,8,9,12,16–25, there remain questions on the fundamental properties of

Al, such as how the temperature would affect the strength under various loading conditions

and whether the lattice instability behaviors predicted at T=0 K would change with rising

temperature. Previous first-principles calculations (at T=0 K) predict that under the<001>,

<011>, <111> uniaxial tension and the {111}<112> shear deformation, dynamic phonon

instabilities always precede the elastic instabilities determined by the peak stresses in ideal

strength calculations12. More interestingly, all the unstable phonon modes in Al at T=0 K

are shear in nature, which suggests that inhomogeneous shear failure may be an intrinsic

property of Al under plastic deformations12. The effect of temperature on the properties of Al

has been examined by several molecular dynamics (MD) calculations with various empirical

potentials20–22,25. However, the complex electron distribution and directional bonding in

Al3,23 make it difficult to construct an empirical potential that can accurately describe the

bond distortion or rebonding at large plastic deformations in all crystallographic directions.

Consequently, the stress-strain relations of Al generated by empirical MD (at T=0 K) cannot

reproduce the results by first-principles methods in the peak stresses and/or the critical

strains where the peak stresses appear3,8,12,21,25. This situation underscores the urgent need
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for a first-principles approach that can set key benchmarks on fundamental mechanical

properties of Al at finite temperatures and, in a broader sense, provide a reliable method

for studying the temperature effect on the behavior and mechanism of material deformation

and strength.

In this paper, we report on a study of the ideal strength and lattice instability of Al at

finite temperatures by implementing an ab initio molecular dynamics (AIMD) method, in

which the forces among atoms are calculated directly at every MD step from the electronic

structure of the deformed Al lattice from first principles. The AIMD incorporates the ther-

modynamic motions of atoms in the ideal strength calculations and treats the ideal strength

(elastic instability) and phonon softening (dynamic instability) in one unified calculation.

The structural failure modes of Al at different temperatures obtained from AIMD are then

compared with the phonon spectra of the deformed Al lattice calculated at finite temper-

atures. Our calculations reveal a qualitative change of mechanism for lattice instability in

Al in that under the <001>, <011>, <111> uniaxial tension and the {111}<112> shear

deformation, the dynamically unstable phonon modes at T=0 K12 disappear at room or

higher temperature, due to phonon anharmonic interactions in Al, and the elastic instabil-

ity determined by the peak stresses becomes dominant. The temperature also has sensitive

effects on the reduction of both the magnitude and directional (anisotropic) nature of the

ideal strength of Al compared to its T=0 K results12.

The stress-strain relations of Al at finite temperatures under tensile and shear deforma-

tions are calculated using the AIMD package of the VASP code26, in which the temperature

dependent total free energy of the electron subsystem is directly minimized at each AIMD

step; the gradient of the total free energy gives the forces (the Hellmann-Feynman forces at

finite temperatures) that dictate the motion of the atoms which are coupled to a Nosé ther-

mostat (canonical ensemble) to maintain a constant temperature of the system27. A cubic

supercell with 32 Al atoms and a 7×7×7 Monkhorst-Pack (MP) k-point grid are used in the

AIMD calculations28, adopting the projector augmented-wave potentials (PAW)29 and the

Wang-Perdew generalized gradient approximation (GGA) exchange-correlation functional30

with a 140 eV energy cutoff (higher energy cutoffs tested up to 250 eV produce stress vari-

ations of less than 0.1 GPa). The quasistatic stress-strain relations of Al along various

deformation paths at a constant temperature are determined using a method similar to the

one described previously1. The lattice vectors of the Al supercell are incrementally deformed
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in the direction of the applied strain. At each deformation step the structure is relaxed such

that all the AIMD average residual components of the Hellmann-Feynman stress tensor or-

thogonal to the applied strain and the average force on each atom are less then 0.1 GPa

and 0.01 eV/Å, respectively, while keeping the applied strain fixed. The shape of and the

average atomic positions in the supercell are determined by the (constrained) atomic re-

laxations. The AIMD average at each deformation step is performed by the integration of

the equations of motion of the atoms in the deformed Al lattice with a time step of 2 fs

and 2000 AIMD steps where the initial atomic positions at each step are determined by

the AIMD average atomic positions of the previous deformation step. The last 1500 steps

are used to calculate the average stresses and atomic positions. The average stress-strain

relations and atomic motions of the Al lattice under the <001>, <011>, <111> uniaxial

tension and the {111}<112> shear deformations are determined at different temperatures.

The AIMD testing runs for the equlibrium structures of Al at different temperatures give

a thermal expansion coefficient of 23.5 (in nuit of 10−6/K) at T=300 K, in good agreement

with the experimental result 23.6.31. We also calculated the phonon spectra of the Al lat-

tice at specific deformation strains and different temperatures using the SCAILD code32,

which includes phonon anharmonic interactions in the calculation that makes the phonon

frequencies temperature-dependent, with a 5×5×5 supercell of 125 atoms and 4×4×4 MP

k-point gride. The phonon frequencies with wave vectors commensurate with the supercell

and the forces induced by the atomic displacements of these phonon modes, which are used

to determine the new phonon frequencies, are calculated using the VASP code, adopting

the same PAW potential and GGA functional as those in the AIMD calculations. At least

40 iterations between the phonon frequencies and induced forces are needed to obtain the

converged phonon frequencies that include the anharmonic interactions of the Al lattice

vibrations at room or higher temperatures33.

In Fig. 1, we plot the AIMD calculated average stress-strain relations of Al under various

tensile and shear deformation directions at different temperatures. The AIMD stress-strain

curves at T=0 K agree well with previous first-principles results12. Drastic reductions in

the peak stresses and the corresponding critical strains occur in the tensile <001> and

<111> directions at room or higher temperatures. The ratio of the peak stresses under the

<001>, <011> and <111> tensions at T=0, 300 and 700 K are 11.5/4.2/10.0, 4.7/3.2/5.2

and 2.3/2.1/3.5, respectively. It is surprising that even at room temperature, the tensile
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strengths have reduced by about 60%, 24%, and 48%, respectively, in these three directions

compared to the T=0 K results. Increasing temperature also leads to a drastic reduction

in the large stress anisotropy in the tensile strengths of Al at T=0 K12. Perhaps the most

intriguing result unveiled by our AIMD calculations is the qualitative change in the structural

instability modes of Al as temperature rises: at T=0 K, phonon instabilities happen before

the stress peaks under both the tensile and shear deformation12; at high temperatures (at

or above room temperature), however, the stress peaks much sooner, which precedes the

phonon instabilities and, as we will show, the elastic instabilities become the dominant

mechanism for structural failure of Al at or above room temperature.

Two distinct types of stress-strain curves are observed at finite temperatures (see Fig.

1): one with a sharp drop in stress past the peak stress (see the tensile <001> curves

at T=100 and 300 K) and the other with a gradual decrease in stress past the peak (all

the remaining curves in Fig. 1 at T6=0 K). They correspond to different failure modes of

lattice instabilities under structural deformation. In Fig. 2(a), we plot the AIMD calculated

motion trajectory (solid curves) of atoms in Al under the tensile [001] deformation in the S1,

S2 · · · layers [defined in Fig. 2(b)] perpendicular to the [001] direction at T=300 K. When

the [001] tensile strain is at ǫ ≤ 0.14 before the drop of stress, the tension only causes a

slight reduction of the lattice constants in the (001) plane (the Poisson effect). As the [001]

tensile strain reaches ǫ=0.15 (at T=300 K), which is slightly smaller than the critical strain

(ǫ=0.155) where the phonon instability occurs at T=0 K (see Fig. 1), a (inhomogeneous)

structural transformation of shear character in the (001) plane sets in and transforms the

“square” lattices in the S1, S2 · · · layers into “hexagonal” ones. The average shifts of atomic

positions relative to their positions prior to the structural transformation are consistent with

the eigen-vectors of the unstable phonon mode under the [001] tensile deformation predicted

at T=0 K12. It shows that the unified AIMD approach for ideal strength calculations at finite

temperatures can indeed capture the unstable phonon induced dynamic lattice instability.

The final structure of Al under the [001] tensile strain at T=300 K after this shear-type

structural transformation at ǫ =0.15 is a close-packed stacking of the “hexagonal” layers.

For the 2×2×2 cubic supercell, we obtain an ABCBA · · · stacking structure. However, this

stacking is the result of an artificial constraint in the 2×2×2 cubic supercell that requires

that the atomic motions in the S1 and S5 layers be identical due to the periodic condition

imposed by the supercell [see Fig. 2(b)]. To avoid any AA stacking of the hexagonal

5



layers which increases the total energy, the low energy structure consistent with the 2×2×2

cubic supercell is the ABCBA · · · stacking structure. We performed the same tensile [001]

calculation at T=300 K using a 2×2×6 cubic supercell, which is commensurate with both

the ABCBA · · · and ABCABC · · · stacking. We obtained the same stress peak and the

critical strain at which the shear-type structural transformation happens, which shows that

the 2×2×2 supercell can adequately describe the ideal strength and deformation mode in Al;

but the final structure after the transformation at ǫ = 0.15 has the ABCABC · · · stacking,

which is the structure of the equilibrium Al structure in the [111] direction. The calculated

atomic inter-layer distance of Al in the [001] direction at the [001] tensile strain ǫ = 0.15

(T=300 K) is 2.365 Å, which is close to the calculated atomic inter-layer distance (2.352

Å) of Al in the [111] direction at the equilibrium structure (T=300 K). So the shear-type

structural transformation under the [001] tensile strain at ǫ = 0.15 (T=300 K) transforms

the highly stressed Al structure in the [001] direction into the equilibrium Al structure in the

[111] direction, which has the lowest total energy, and releases all the stress in the lattice.

In Fig. 2(d), we plot the calculated AIMD average atom positions in the S1, · · ·, S4 layers

for the 2×2×6 cubic-supercell at T=300 K and under the [001] tensile strain at ǫ = 0.15.

The results show a good hexagonal lattice with an ABCABC · · · stacking.

In Fig. 3(a), we plot the AIMD calculated motion trajectory (solid curves) of atoms in Al

under the tensile [101] deformation in the S1, S2 · · · layers [defined in Fig. 3(b)] perpendicular

to the [101] tensile direction at T=300 K with the strain ǫ=0 (at the equilibrium), ǫ=0.1 (at

the stress peak) and ǫ=0.12 (after the stress peak). Apart from the tensile stretching in the

[101] direction, no shear-type structural transformation is found even at ǫ = 0.12, which is

far beyond the critical strain (ǫ =0.095) at which the unstable phonon modes corresponding

to a (inhomogeneous) shear sliding in the (111)[112] direction is predicted at T=0 K12 (see

also Fig. 1). We also tested our results by increasing the AIMD steps from 2000 to 10000 at

ǫ =0.1 and 0.12. The obtained average stresses and atomic positions are almost identical,

which indicates the convergence of our calculations with the number of the AIMD steps.

Similarly, no (inhomogeneous) shear-type structural transformation is found for the [001]

tensile deformation at T=500 and 700 K, the tensile [101] deformation at T=700 K, the

[111] tensile deformation at T=300 and 700 K, and the (111)[112] shear deformation at

T=300 and 700 K at the strains near their peak stresses, while the T=0 K calculations12

predict such (inhomogeneous) shear-type unstable phonon modes in all these deformations
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before the stress peaks are reached (see also Fig. 1).

To understand the disappearance of the unstable phonon modes which give rise to the

dynamic shear instabilities at T=0 K for Al under tensile and shear deformations12, we

calculate the phonon spectra of Al under the <001>, <011>, <111> uniaxial tension and

the {111}<112> shear deformations at T=0 K with the harmonic approximation at each

deformation step and the phonon spectra of Al including the phonon anharminic interactions

at high temperatures deformed along the various tensile and shear directions at the strains

after imaginary phonon frequencies appear at T=0 K. Our T=0 K calculations determine

the onset of the phonon instability as shown in Fig. 1, and the obtained phonon spectra

(not shown here) agree well with those of the previous calculations12. In Fig. 4, we compare

the calculated phonon spectra of Al at temperatures T=0 (harmonic approximation), 300

and 700 K under the <001>, <011>, <111> uniaxial tension and the {111}<112> shear

deformations at the strains after imaginary phonon frequencies appear at T=0 K. The results

show clearly that, except for the tensile [001] deformation, all the unstable phonon modes

found at T=0 K stabilize due to the phonon anharmonic interactions near room temperature.

Even for the [001] tensile, the unstable phonon mode disappears above room temperature.

These results agree well with our AIMD results presented above in that the (inhomogeneous)

shear-type structural transformations related to the unstable phonon modes exist in Al at the

room temperature only in the [001] tensile deformation, while in other deformation directions

the unstable phonon modes all disappear. At higher temperatures, all the unstable phonon

modes in Al stabilize, and the structural failure modes of Al are dominated by the elastic

instabilities.

In summary, we have implemented AIMD simulations to determine the ideal strength and

structural instability modes of Al at finite temperatures. The dynamic phonon instabilities

under the <001>, <011>, <111> uniaxial tension and the {111}<112> shear deformations

predicted at T=0 K disappear at or above room temperature, and the elastic instabilities

determined by the peak stresses become the dominate failure modes. Rising temperature

also induces significant reduction in the magnitude of the ideal strength and makes the

tensile strength of Al much more isotropic. We also have performed phonon calculations

and found that the phonon anharmonic interactions stabilize the low-temperature dynamic

phonon instabilities near or above room temperature, which agrees with the AIMD calcu-

lations. These results set key benchmarks for fundamental mechanical properties of Al at
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finite temperatures. Though in practice the strengths of crystalline materials are controlled

by many effects, such as defects and diffusion processes, the ideal strength calculaions pre-

dict the crystal incipient plasticity.17 The present work advances computational materials

research by opening a new avenue for determining the ideal strength and lattice instability

at finite temperatures in a unified first-principles approach.
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Figure Captions

Fig. 1 (Color online) The AIMD calculated average stress-strain relations of Al in a cubic

supercell with 32 Al atoms under various tensile and shear deformation directions at different

temperatures. The (red) solid circles indicate the phonon instability (PI) determined at T=0

K, which begins at the strains equal to 0.155, 0.095, 0.145 and 0.145, respectively, for the

<001>, <011>, <111> uniaxial tension and the {111}<112> shear deformation.

Fig. 2 (Color online) (a) The calculated AIMD motion trajectory (solid lines) of atoms

in an Al 2×2×2 cubic-supercell at T=300 K under the [001] tensile strains ǫ=0 (at the

equilibrium), ǫ=0.14 (before the stress drop) and ǫ=0.15 (just after the stress drop) in the

atomic layers S1, S2, · · · perpendicular to the [001] tensile direction. The (blue) squares

and (red) circles indicate the initial and AIMD average atomic positions at each strain

deformation step. For clarity, the atomic displacements relative to the average positions are

enlarged by a factor of 3 and 2 for ǫ = 0 and 0.14, respectively. (b) A 1×1×2 cubic-supercell

of Al that defines the S1, S2, · · · atomic layers perpendicular to the [001] tensile direction.

(c) The enlarged motion trajectory of an Al atom in the S2 layer. (d) The calculated AIMD

average atomic positions in the S1, · · ·, S4 layers for a 2×2×6 cubic-supercell at T=300 K

and under the [001] tensile strain at ǫ = 0.15.

Fig. 3 (Color online) (a) The calculated AIMD motion trajectory (solid lines) of atoms

in an Al 2×2×2 cubic-supercell at T=300 K under the [101] tensile strains ǫ=0 (at the

equilibrium), ǫ=0.1 (at the stress peak) and ǫ=0.12 (after the stress peak) in the atomic

layers S1, S2, · · · perpendicular to the [101] tensile direction. The (red) circles indicate the

AIMD average positions of the atoms at each strain deformation step. For clarity, the atomic

displacements relative to the average positions are enlarged by a factor of 3. (b) A 1×1×2

cubic-supercell of Al that defines the S1, S2, · · · atomic layers perpendicular to the [101]

tensile direction. (c) The enlarged motion trajectory of an Al atom in the S2 layer.

Fig. 4 (Color online) The calculated phonon spectra of Al in the Brillouin zone of a fcc
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unit cell at temperatures T=0 (harmonic approximation), 300 and 700 K deformed along

various tensile and shear directions at the strains after imaginary phonon frequencies appear

at T=0 K. The imaginary frequencies are represented by the negative frequencies. The lattice

vectors of the Al fcc unit cell at the equilibrium structure are ~a1 = a(~j+~k)/2, ~a2 = a(~i+~k)/2,

and ~a3 = a(~i +~j)/2, which will change under structural deformations. The k points in the

phonon spectra are defined as Γ = (0, 0, 0), L = (0.5, 0.5, 0.5), K = (0.625, 0.625, 0.25),

X = (0.5, 0.5, 0), L′ = (0.5, 0, 0), K ′ = (0.625, 0, 0.375) and X ′ = (0.5, 0, 0.5), in units of the

reciprocal lattice vectors {~bi} associated with {~ai}. The k points (L,K,X) and (L′, K ′, X ′)

become nonequivalent under structural deformations.
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FIG. 3: (Color online) (a) The calculated AIMD motion trajectory (solid lines) of atoms in an Al

2×2×2 cubic-supercell at T=300 K under the [101] tensile strains ǫ=0 (at the equilibrium), ǫ=0.1

(at the stress peak) and ǫ=0.12 (after the stress peak) in the atomic layers S1, S2, · · · perpendicular

to the [101] tensile direction. The (red) circles indicate the AIMD average positions of the atoms at

each strain deformation step. For clarity, the atomic displacements relative to the average positions

are enlarged by a factor of 3. (b) A 1×1×2 cubic-supercell of Al that defines the S1, S2, · · · atomic

layers perpendicular to the [101] tensile direction. (c) The enlarged motion trajectory of an Al

atom in the S2 layer.
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FIG. 4: (Color online) The calculated phonon spectra of Al in the Brillouin zone of a fcc unit cell at

temperatures T=0 (harmonic approximation), 300 and 700 K deformed along various tensile and

shear directions at the strains after imaginary phonon frequencies appear at T=0 K. The imaginary

frequencies are represented by the negative frequencies. The lattice vectors of the Al fcc unit cell at

the equilibrium structure are ~a1 = a(~j+~k)/2, ~a2 = a(~i+~k)/2, and ~a3 = a(~i+~j)/2, which will change

under structural deformations. The k points in the phonon spectra are defined as Γ = (0, 0, 0),

L = (0.5, 0.5, 0.5), K = (0.625, 0.625, 0.25), X = (0.5, 0.5, 0), L′ = (0.5, 0, 0), K ′ = (0.625, 0, 0.375)

and X ′ = (0.5, 0, 0.5), in units of the reciprocal lattice vectors {~bi} associated with {~ai}. The k

points (L,K,X) and (L′,K ′,X ′) become nonequivalent under structural deformations.
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