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In this article, we present a new analytical model that describes the plowing coefficient of fric-
tion for sliding, elastic-plastic contacts between a conical tip with a spherical extremity and a flat
substrate. The model includes the effects of adhesion and bridges the gap between models which
are based solely on dislocation activity and those based solely on interfacial effects scaling with the
contact area. The DMT approximation for adhesive contact stress is used in our description of the
contacts. Our model shows excellent agreement with large scale molecular dynamics simulations
and AFM experiments of nanoscratching on copper single crystals. One important result of our
study is that the model predicts coefficients of friction that are an order of magnitude higher than
typically reported for nanoscale elastic contacts. Furthermore, the coefficients of friction described
by the model are very close to values typical of macroscale sliding contacts.

PACS numbers: 68.35.Af,07.05.Tp, 68.37.Ps

I. INTRODUCTION

With the reduction in size of electronic devices to
nanometer regime, factors such as the increased adhesive
interactions, atomic-scale corrugation, and limited ap-
plicability of continuum mechanics approaches limit our
ability to design new devices for predictably reliable op-
eration1. For example, single-asperity, nanometer-scale
friction experiments in the absence of wear typically show
very low friction coefficients1–3. However, the typical
wearless friction coefficients reported in multi-asperity,
large scale sliding experiments are approximately one or-
der of magnitude higher4. Interestingly, Bowden himself
suggested that even in the so-called “wearless” regime in
multi-asperity sliding experiments, microscopic damage
and plasticity occurs at the length-scale of individual as-
perities5. However, relatively few studies have focused
on the understanding of friction in single asperity sliding
contacts when wear is observed. For such contacts it has
been shown by both molecular dynamics (MD) simula-
tions6,7 and experiments8,9 that friction forces and spe-
cific mechanisms of deformation are strongly dependent
on tip geometry and crystallographic orientation of the
sample surface and sliding direction. At relatively low
loads, wear can occur by removal of individual atoms
from the surface, and atom by atom attrition models
have been proposed to explain atomic force microscopy
(AFM) experiments in this early stage of wear10. While
these studies provide useful insights into friction and
wear mechanisms at very low normal loads, they do not
address the question of how to quantify contributions
from plastic deformation to friction in single asperity
contacts. Fundamental understanding of single asper-
ity friction for nanoscale elastic-plastic contacts is also
required for promising nanolithography techniques using
AFM11. In addition, with the reduction of contact sizes
to the nanometer length scale, adhesive forces between
the tip and sample begin to play an increasingly impor-

tant role1. However, there is currently a lack of analytical
models for elastic-plastic contacts that can describe the
interplay between adhesion and plastic deformation at
the sliding interface. Development of such models and
understanding of the underlying phenomena are at the
forefront of tribological research.

There are two general approaches to modeling friction
in the elastic-plastic regime: one based on subsurface dis-
location activity12,13 and the other based on the interfa-
cial contact area14,15. Although it is possible to iden-
tify the specific mechanisms of dislocation activity dur-
ing single asperity sliding16–18, the contact area based ap-
proaches are particularly powerful because they are based
on geometry of the tip-sample interface and therefore do
not require knowledge of mechanisms underlying friction,
which can be complicated and are material specific.

In the contact area based approach, the total coef-
ficient of friction (µtotal) is decomposed into two com-
ponents: shear (µS) and plowing (µP)

14,15. The shear
contribution is related to surface chemistry whereas the
plowing contribution is related to plastic deformation of
the sample. In this paper, we present a new analytical
model for predicting the plowing coefficient of friction
for sliding, elastic-plastic contacts that includes adhe-
sive interactions across the sliding interface and a tip
geometry that closely matches the typical shape of tips
used in AFM experiments. The new model is based on
our recently developed formalism for the plowing coef-
ficient of friction for non-adhesive contacts between a
spherical asperity and a flat substrate19. Here, we first
present the derivation of the analytical model by cal-
culating friction forces and normal loads during sliding
with elastic and plastic deformation in section II. We
have performed MD simulations and AFM experiments
to compare with the analytical model; the methods are
described in section III. The new analytical model is
then validated against MD simulations and AFM scratch-
ing experiments on single crystal copper samples in sec-
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tion IV.

II. DERIVATION OF THE ANALYTICAL

PLOWING MODEL

For non-adhesive contacts, the plowing friction force
and normal load for a spherical asperity sliding on a flat
surface can be calculated as19

FfrictionP = pmAVtotal, (1)

Fnormal = pmAHtotal, (2)

with

AVtotal = AVep + αVAVpileup, (3)

AHtotal = AHep + αHAHpileup. (4)

where AVep and AHep, respectively, are the vertical and
horizontal projections of the contact area with elastic
recovery and no pileup. Correspondingly, AVpileup and
AHpileup are the vertical and horizontal projections of
the pileup area. Parameters αH and αV, respectively,
are pre-factors for horizontal and vertical projections of
the pileup contact area and represent the distribution of
radial stress at the pileup/tip interface19. pm is the mean
contact pressure at the tip sample interface. This pres-
sure is approximated as being equal to the hardness of the
sample for elastic-plastic contacts since the model explic-
itly assumes that plasticity in the contact is well devel-
oped. AVep, AHep, AVpileup and AHpileup are calculated
analytically using the geometry of tip sample interface
and are schematically shown in Figures 1(A)-(D).
The contact area projections (eqs. 3-4) are calculated

using two physical paramters: elastic recovery and height
of pileup. The elastic recovery parameter represents the
change in the contact area projections due to recovery of
the elastic component of deformation in the back of the
sliding tip. The height of the pileup represents the contri-
bution to the contact area projections from the material
displaced to the front of the sliding tip. For a detailed
derivation of the contributions from these two parame-
ters, see Ref19. For calculation of the tip-pileup contact
area, the height of the pileup is approximated as

hpileup = γh(
AVep

AVp

), (5)

where h is the depth of cut, γ is a fitting parameter, AVep

is the vertical projection of contact area with elastic re-
covery and AVp is the vertical projection of contact area
assuming no elastic recovery. γ represents the shape of
pileup distribution around the sliding tip. Analytical ex-
pressions for the contact area projections for a conical tip
with a spherical extremity are provided in appendix A.
We estimate the adhesive interactions between the tip

and sample using the DMT model20. The DMT model
assumes that adhesive forces only act in a ring-shaped

(A) Tip sample interface

(C) without adhesion (D) with adhesion
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Vpileup

Adhesive stress, σ
0

Horizontal projection

A
Hep

A
Hpileup

A
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(B) Vertical projection

FIG. 1. (Color online) Schematic showing (A) the tip-sample
contact interface, (B) vertical projections of contact areas and
(C)-(D) horizontal projections of contact area without and
with adhesion, respectively.

region outside the actual contact area and the adhesive
contact stress is given by the Dugdale approximation21

σ0 =
w

h0

, (6)

where w is the work of adhesion and h0 is the range of ad-
hesive interactions. The Dugdale approximation assumes
a state of constant adhesive stress over a cutoff length h0

at the gap between a contacting asperity and a flat sur-
face. Figure 1(D) shows the additional ring shaped region
on the horizontal contact area projection due to adhesive
stresses. The area of adhesive zone, Aadh, can be calcu-
lated based on geometry of the contact and a derivation
of an analytical expression is provided in supplementary
materials. The work of adhesion, w, used in our model
was measured in AFM experiments and nanoindentation
simulations. Specifically, the pull-off force measured dur-
ing unloading during a normal force versus sample dis-
placement measurement is related to the work of adhe-
sion through

Fpull-off = −2πwR, (7)

where R is the radius of spherical extremity of the con-
ical tip. The range of adhesive interactions used in the
Dugdale approximation, h0, is determined again from
nanoindentation simulations by subtracting the tip dis-
placement at zero load from the tip displacement at pull-
off during retraction. Once w and h0 are known, adhesive
stress σ0 is calculated using eq. 6. Using the adhesive
stress σ0 and area of the adhesive zone Aadh, the to-
tal normal load acting on the sliding tip can be written
as22,23

Fnormal-adh = pmAHtotal − σ0Aadh. (8)
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The plowing coefficient of sliding friction is then calcu-
lated as

µP =
FfrictionP

Fnormal-adh

(9)

where FfrictionP and Fnormal-adh are given by eq. 1 and
eq. 8, respectively.

III. METHODS

A. MD simulations

FIG. 2. Sliding tip used in (A) simulations and (B) experi-
ments.

In order to validate our model, we performed large
scale MD simulations of single asperity sliding on single
crystal copper samples. MD is an excellent tool for test-
ing of the model as the model parameters, such as work
of adhesion, can be explicitly specified for the tip-sample
interface. Also, by calculating the atomic stress distri-
butions on the tip-sample contact area, plowing contri-
butions to friction can be calculated explicitly and com-
pared to predictions of the analytical model. The interac-
tion potential for Cu is taken from Finnis and Sinclair24.
Simulations of sliding friction were performed on (110)

surface of single crystal copper using a conical tip with
spherical asperity as shown in Figure 2(A). The conical
half angle is 12◦ and the radius of spherical extremity
R = 10 nm. The tip is made infinitely rigid and the
Cu sample has the dimensions 390× 350× 400 Å3. Slid-
ing velocity of 50m/s is used and the temperature of the
system is maintained at 300K using Nose-Hoover thermo-
stat25. Simulations were carried out at 8 different depths
of cut in the range 0.2-3.5 nm. Depth of cut is defined as
the distance between the lowest atom in the tip and the
average height of the sample surface before deformation.
The pairwise interactions across the tip-sample inter-

face are given by

Uinterface = S
e−κr

r
−

A

r6
(10)

where Uinterface is the interaction energy for atoms in-
teracting across the tip-sample interface and r is the dis-
tance between interacting atoms. The first term in eq. 10
represents repulsive interactions where S and κ, respec-
tively, control the magnitude of repulsion and the decay

of repulsive interactions. Values of S = 1000 eV Å and
κ =3.0 are taken from the study of non-adhesive sliding
contacts on Cu19. This functional form of repulsive inter-
actions is not unique and it was chosen for computational
efficiency. The second term in eq. 10 represents adhesive
interactions where A is the coefficient for adhesive van
der Waals forces. Several simulations of nanoindentation
on Cu sample were perfomed by varying the parameters
for adhesive interactions in eq. 10. The largest value of
work of adhesion obtained from the nanoindentation sim-
ulations is w = 1.9 J/m2 when the interaction parameter
for adhesion A =70 eV Å6. These values of parameters
then determined the tip-sample interactions the during
sliding simulations.
To calculate the work of adhesion, separate simulations

of nanoindentation were performed. The work of adhe-
sion w is calculated by fitting the normal load (Fn) and
contact radius (a) from nanoindentation simulations to
the expression20

Fn =
4Era

3

3R
− 2πRw (11)

where R is the radius of the spherical extremity of the
conical tip. Er is the reduced Young’s modulus for the
interface given by the relation 1/Er = (1− ν2s )/Es+(1−
ν2t )/Et, where Es and Et are the Young’s moduli for the
sample and the tip, respectively. νs and νt represent Pois-
son’s ratios for the sample and tip, respectively. Work of
adhesion is w = 1.9 J/m2, as obtained from nanoinden-
tation simulations, is used to obtain adhesive stress (σ0)
using eq. 6.

FIG. 3. (Color online) Schematic showing the tip-sample in-
terface with the distribution of radial stress σrr along with
the adhesive interaction range h0. The area element shows
the atomic stress tensor on the contact area in the spherical
coordinate system. The solid lines show the bounds of inter-
action without the adhesive forces. The dashed lines show
the adhesive interaction forces acting outside the tip-sample
contact interface.

The plowing components of friction force and normal
load during sliding are calculated directly based on the
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distribution of stresses on the contact area in simula-
tions. First, the stress tensor on the contact surface is
calculated in the Cartesian xyz coordinate system. The
tensor is then transformed to spherical rθφ coordinate
system with the origin at the center of the spherical ex-
tremity of the sliding tip, as shown in Figure 3. In the
spherical coordinate system, contact stresses on the tip-
sample contact area are: radial component σrr, which is
perpendicular to the contact interface and shear compo-
nents τrθ and τrφ, which are tangential to the contact
interface. The plowing friction force FfrictionP is calcu-
lated by projecting the radial force Frr onto the cutting
direction, where Frr is obtained by integrating σrr over
the entire contact area. The normal load (Fn) is calcu-
lated by projecting Frr along the direction normal to the
undeformed sample surface. The plowing coefficient of
friction µP is then calculated as the ratio of the plowing
friction force and the plowing normal load.
For calculation of shear friction force Ffs, the shear

friction force Fs is projected along the cutting direction
where Fs is calculated as the vector sum of forces ob-
tained by separately integrating the two shear stresses
τrθ and τrφ over the entire contact area. The shear coef-
ficient of friction µs is calculated as the ratio of the shear
friction force and normal load.

B. AFM scratching experiments

To test the applicability of our analytical model for
AFM experiments of elastic-plastic sliding friction and
wear, we perform wear experiments on oxide-free sur-
faces of a Cu(100) single crystal using an AFM in ultra-
high vacuum (UHV). A diamond coated AFM tip is
used for scratching along [100] direction at a velocity of
150 nm/s. A home-built UHV-AFM was used for all
experiments discussed in this paper26. The AFM oper-
ates inside of a commercial UHV chamber produced by
Omicron Nanotechnology and is maintained at a pressure
of < 2 × 10−10 mbar. Atomically flat Cu(100) surfaces
were prepared in the UHV chamber by repeated cycles
of argon ion sputtering (1 keV) and annealing (725 K)
of a polished (100) face of a Cu single crystal (MaTecK
GmbH). The cleaning process resulted in flat terraces
up to several 100 nm in width. A stiff, nanocrystalline
diamond coated lever with integrated tip (Nanosensors,
CDT-NCLR, normal spring constant ∼20-40 N/m) was
used in all experiments. These tips, once introduced into
the vacuum, were heated at 120◦C for 1 hr and then
sputtered for 1 min with Ar+ ions at 1 keV. The stiffness
of the cantilevers in both the lateral (twisting) and nor-
mal (bending) directions were individually determined
by the beam geometry method27, using the resonant fre-
quency of the first normal bending mode to determine
the thickness of the cantilever. Wear scars were created
by pressing the cantilever into the surface at constant
load. The tip was then moved along the surface, per-
pendicular to the long axis of the cantilever, for one line

in both the forwards and reverse directions. The static
bending and twisting signals of the cantilever were mea-
sured at a frequency of 8 kHz during scratching. The
zero-load force was defined as the deflection measured by
the position sensitive detector (PSD) when the tip was
out of contact and the cantilever was not bent. Adhesive
loads are then a result of the cantilever bending towards
the surface, yielding a negative normal force and com-
pressive loads are a result of the cantilever being pushed
away from the surface, yielding a positive normal force.
Lateral forces are defined as the measured twisting of
the cantilever during an experiment. Friction force is
defined as the average of the lateral force over forward
and backward scan. The surface topography was exam-
ined before and after the creation of a wear scar using
the non-contact/frequency modulation mode28. Switch-
ing between non-contact AFM for imaging and contact
mode for wear production was automated, such that the
rest time of the tip at the beginning and end points of the
scratching experiment was minimized. This technique is
described in Ref.18. During scratching, the sample was
moved in the direction parallel to the cantilever beam us-
ing the scheme discussed by Cannara et al. to remove dis-
placements of the tip relative to the surface with changes
in the normal force29. This displacement is a result of
the 12◦ angle of the long axis of the cantilever with re-
spect to the sample. AFM images were analyzed with
the WSXM software30.

IV. RESULTS

A. Simulation Results

Figure 4 shows the coefficients of friction determined
from sliding simulations. The plowing coefficients of fric-
tion from our analytical model (solid line) are calculated
using spherical tip radius R =10 nm, conical half angle
α =12◦, work of adhesion w =1.9 J/m2, hardness of Cu
H = 5.2 GPa and range of adhesive interactions h0 =
0.3 nm. The specific value of hardness is measured di-
rectly from MD and it is determined by the details of
MD force field24. The excellent agreement between the
analytical model and simulation results for plowing coef-
ficients of friction (Figure 4) demonstrates the validity of
our analytical model for single asperity adhesive contacts.
It is interesting to note from Figure 4 that for normal
loads higher than a crtical load (Fn > 160 nN), plowing
is the dominant contribution to total coefficient of fric-
tion and µshear << µP. Specifically, we found that for
Fn > 160 nN, µshear = 0.046± 0.02. This value for shear
coefficient of friction will be used later to compare with
experimental results from AFM nanoscratching, where
plowing and shear contributions to coefficient of friction
cannot be calculated separately. For normal loads below
the critical load (Fn < 160 nN), deformation is primarily
elastic with a small contribution from plastic deformation
and thus the plowing model, which assumes plasticity to
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be fully developed, shows deviations from the simulation
results for the plowing coefficient of friction.
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FIG. 4. Coefficient of friction as a function of normal load
from simulations. Total coefficients of friction (circles) and
plowing coefficients of friction (triangles) are shown along
with results from analytical model (solid line).

B. Experimental Results

Figure 5 (A) shows the surface approximately 12 hrs
after sputter cleaning the surface. Flat terraces of several
100 nm can be clearly observed, where individual terraces
are separated in height by one atomic layer, or 1.8 Å. A
white arrow marks a reference topographic feature on the
surface located on a large terrace. This area was chosen
as the scratching site due to the low number of defects on
this terrace and the large atomically flat area. Following
scratching, a wear scar is observed in Figure 5 (B), as well
as the same reference topographic feature, highlighted by
the white arrow. At the site where the surface has been
scratched, copper has been displaced. In the copper ter-
races surrounding the scratch site, no change in any of
the topographic features has occurred. Therefore, it is
likely that subsurface dislocations have been nucleated,
but they have not reached the surface, and are therefore
not visible in topographic images of the scratch. This
result is in contrast to AFM-based indentation studies
on Cu(100)31 and nanoscratching studies of KBr(100)18,
where topographic evidence of dislocation activity has
been shown. The lateral force measured during scratch-
ing is shown in Figure 5 (C), indicating is significant fric-
tional dissipation. The friction coefficient measured in
Figure 5 (C) was 0.42 ± 0.06, in contrast to the result
of Gosvami et al., who measured a friction coefficient on
Cu(100) of 0.004 ± 0.001 before the onset of wear32.

(A) (B)

(C)

FIG. 5. (Color online) AFM topographic images of the
Cu(100) surface (A) directly before scratching and (B) af-
ter with the same Z-height scale. The scratch shown in (B)
corresponds to the lowest normal load, which is 78 nN. Im-
age (A) and (B) were acquired at a rotation angle of 90◦ to
better acquire the topographic image of the scratch, and have
been rotated back to 0◦ in the processed image shown here.
An arrow is pointing to a surface defect near the beginning
point of the scratch in both the before and after images. The
step height between each atomic terrace corresponds repre-
sents a single atomic step or 1.8 Å. (C) Lateral force data in
the forwards (left to right) and reverse (right to left) sliding
directions acquired during scratching.

C. Comparison between Experiment and

Simulation

Figure 6 shows the results of both the AFM scratch ex-
periments and the analytical model. For the model, we
use R = 12 nm and the AFM conical half angle α =22◦,
measured from tip images acquired in the scanning elec-
tron microscope. A work of adhesion of w =3.1 J/m2

is calculated using the DMT model based on the pull-
off force measured in AFM experiments. Hardness of
Cu is taken as H = 3.5 GPa33 and range of adhesive
interactions is h0 = 0.3 nm (the same as in MD simula-
tions). The total coefficients of friction calculated from
experiments (squares) show an excellent agreement with
our analytical model. It should be noted that the ex-
perimental Cu samples have a lower hardness value than
used in the MD simulations. Consequently plasticity is
well developed at lower normal loads, where the the MD
simulations begin to deviate. As a result, the analytical
model shows agreement with experimental results even
for low normal loads.

Further comparison between simulation and experi-
ment scratching experiments is provided in Figure 7. Fig-
ure 7 (A) and (C) show the surface topography in sim-
ulation and experiment after scratching. Both scratches
are performed at similar normal loads, and show a simi-
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FIG. 6. Total coefficient of friction (filled squares) from AFM
experiments plotted as a function of normal load during slid-
ing. Also shown are plowing (dashed line) and total (solid
line) coefficients of friction calculated using the model with
work of adhesion = 3.1 J/m2. Shear coefficient of friction is
assumed to be 0.05 as calculated from simulations for normal
load in the range 160-730 nN. Error bars in the experimental
results indicate the standard deviation of the measured mean
friction.
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FIG. 7. (Color online) Topographic image of a simulated
scratch (A) on copper. In (A), the surface was scratched at a
normal load of 658 nN. A profile (B) of the section marked by
the dashed line in (A) shows in more detail, the depth of the
scratch. Experimental topographic image (C) of a scratch. In
(C), the surface was scratched at a normal load of 587 nN.
(D) Line profile of the topographic image indicated with a
black line in (C) with the same scale as (B).

lar scratch grove width. Furthermore, the overall shape
of the scratch and the pileup surrounding the scratch is
similar in both simulation and experiment. Closer exam-
ination of Figures 7 (B) and (D) show that the depth of
the scratch in the experimental results is smaller. One
complication of the experimental multi-mode approach

in determining the scratch depth, since the same tip was
used to both scratch the surface and then subsequently
image the scratch. A result of this procedure is a strong
tip convolution in topographic images when imaging the
scratched region. In addition, the long range attractive
forces measured in non-contact AFM imaging28 further
complicate image reconstruction and limit the accuracy
of the scratch depth measurement. The tip convolution
effect leads to an under-estimation of the scratch depth
and consequently experimental images provide a lower
bound for the scratch depth. On the other hand, the ex-
perimental procedure used in this study provides a good
estimate of the pileup height surrounding the scratch. It
is therefore somewhat surprising that pileup height cal-
culated from experiments and MD exhibit deviations, as
shown in Figure 7 (B) and (D). Specifically, the simula-
tion results show a pileup height of 3-4 copper atoms (or
5.4-7.2 Å) compared to the typical pileup of 1-2 atoms
(1.8-3.6 Å) in experiment. A possible source of the dis-
crepancy in pile-up height may stem from the different
time scales involved in AFM experiments and MD sim-
ulations. In AFM, topographic images are acquired on
the time scales of hours after the scratch has been per-
formed, and in this case ∼0.5 hrs for the first image to
be acquired. It has been reported that on these time
scales a significant diffusion of evaporated copper atoms
on copper surfaces is expected34. It is likely that similar
high diffusion rates of the copper atoms in the pileup may
occur after scratching. However, in simulation, the topo-
graphic images are acquired within 25-30 ps of scratching
the site. At this time scale, there is not sufficient time
for diffusion processes to occur. The effect of diffusion is
further visible in the comparison between simulation and
experiment as the pileup in experiments typically extends
further laterally from the scratch site itself in comparison
with the simulated scratch.

V. DISCUSSION

The comparison with experimental and MD results
demonstrates that our analytical model for single asper-
ity elastic-plastic sliding can describe the coefficient of
plowing friction in presence of adhesion. It is interest-
ing to note that the position of the minimum in the µP

vs. Fn plot (Figure 6) is controlled by relative contribu-
tions to friction from adhesive and plowing forces. In the
DMT theory20, used to describe adhesive interactions in
our model, the adhesive zone is a ring-shaped area out-
side the tip-sample contact area. As the normal load
decreases, the area of the adhesive zone becomes larger
relative to the total horizontal contact area and adhesive
forces dominate the contribution to µP. At larger loads,
an increase in the pileup height increases the contribution
to friction from deformation, which eventually becomes
the dominant contribution to µP. Since adhesion con-
trols µP at low loads, a large value of work of adhesion
will shift the minima to larger loads. This observation is
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consistent with our results (Figure 4 and Figure 6) where
a higher value of work of adhesion in experiments shifts
the minima in the µP vs. Fn plot towards higher normal
loads as compared to simulations.
In order to include the effects of pileup and adhesive

interactions on coefficient of friction, the analytical model
introduces two parameters: γ (eq. 5) and h0 (eq. 6). The
fitting parameter (γ) represents the shape of the pileup in
contact with the sliding tip. A large value of γ is obtained
when a significant fraction of the displaced material is
in front of the sliding tip whereas a small value of γ is
obtained when a large fraction of the displaced material
moves to the side of the sliding tip19. Thus γ is a material
specific parameter and is also dependent on the direction
of sliding on crystalline surfaces19.
The agreement of the analytical model with the exper-

imental results is independent of the choice of the model
parameter h0. The range of adhesive interactions h0 de-
termines the adhesive stresses and the area of adhesive
zone (given by eq. 6). A larger value of h0 increases
the area of adhesive contact and decreases the adhesive
stress. Thus the choice of h0 has a small effect on the
final results of the model for a given work of adhesion
value as shown in fig. 8.
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FIG. 8. (Color online) Results of the analytical model for
three different values of h0 along with the results from AFM
experiments. Work of adhesion w=3.1 J/m2 is used for all
three cases.

An important observation from Figure 4 and Fig-
ure 6 is that the coefficients of friction for single asperity
elastic-plastic contacts are an order of magnitude higher
than for elastic contacts on Cu3. This increase in the co-
efficient of friction due to plastic deformation and wear
observed in experiments confirms findings from our sim-
ulations that µS << µP. Interestingly, in presence of
plastic deformation and wear, the nanoscale coefficients
of friction for Cu are comparable to values typical of
macroscale contacts (0.4− 0.9)35,36.

VI. CONCLUSIONS

We have developed an analytical model for elastic-
plastic friction in the presence of adhesion and for pa-
rameters relevant to AFM experiments. The plowing co-
efficient of friction is modeled as the ratio of vertical and
horizontal projections of contact area between a conical
tip with a spherical extremity and a flat surface. The
model is validated against the plowing coefficients of fric-
tion calculated from MD simulations of sliding friction
on crystalline Cu. For conditions of fully developed plas-
ticity under the sliding tip, plowing is shown to be the
dominant contribution to friction and µshear << µP. The
model shows excellent agreement with the coefficients of
friction from AFM nanoscratching experiments on single
crystal Cu. Our new model is the first analytical model
that can describe the interplay between adhesive forces
at the interface and subsurface plastic deformation for
single asperity sliding contacts.
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Appendix A: Contact stresses and contact area

projections for a conical tip with spherical asperity

In order to evaluate the friction force and the normal
load using eqs. 1-8 , one needs to calculate the contact
area projections of the tip sample interface and stress dis-
tribution on the contact area interface. The AFM sliding
tip can be modeled as a conical tip with a spherical as-
perity as shown in Figure 2. The contact stress on the
elastic plastic contact area projections (AVep and AHep)
can be approximated by hardness of the sample which is
H = 5.2 GPa as obtained from simulations and is com-
parable to experimental results for Cu33. As shown in
Ref19, the contact radial stress on the pileup surface can
be approximated as a linear function that decreases from
the value of hardness at the sample surface to zero on the
top of the pileup-tip contact area. For the calculation of
parameters αH and αV for a spherical tip, see Ref19. For
the conical part of the tip, αH=0.5 and αV=0.5.
For a conical tip with a spherical extremity sliding on

a flat sample, the expressions for contact area projections
are given below. The exact expressions for contact areas
depend on whether the sample surface is in contact with
only the spherical extremity or with both the spherical
and conical surfaces of the sliding tip.
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The vertical projection of contact area of elastic plastic
contact is written as

AVep =























ρ2 sin-1 (ar/ρ)− ar
√

ρ2 − a2r if h ≤ hsp

ρ2 sin-1 (ar/ρ)− ar
√

ρ2 − a2r
+(h− hsp)

2 tanα if h>hsp

+(h− hsp)asp

(A1)

where hsp is the height of the spherical extremity (Fig-

ure1 in the main text) and asp =
√

(2Rhsp − h2
sp). h is

the depth of cut, α is the conical half angle, R is the ra-
dius of the spherical extremity, ar = a cosω and ω is the
elastic recovery angle. ω is the angle made by the elasti-
cally recovered contact area at the back of the sliding tip.
For a detailed derivation of elastic recovery angle ω using
tip geometry and hardness of the sample, see Ref.19. In
eq. A1, ρ and contact radius a can be written as:

ρ =







√

(R2 − a2 sin2 ω) if h ≤ hsp
√

(R2 − a2sp sin
2 ω) if h>hsp .

(A2)

and

a =

{ √

(2Rh− h2) if h ≤ hsp

asp + (h− hsp) tanα if h>hsp
(A3)

Horizontal projection of contact area of elastic plastic
contact can be written as

AHep = 0.5a2(π + 2ω + sin (2ω)) (A4)

where a is calculated using eq. A3.
Similarly, as the expressions for AVep and AHep (eq. A1

and A4, respectively), the expressions for projections of
tip-pileup contact area depend on whether the pileup in
front of the sliding is in contact with the spherical surface,
conical surface or both the conical and spherical surfaces
of the tip. If average height of the pileup hpileup (see
Ref.19) is known, vertical projection of tip-pileup contact
area is given by:
if (h+ hpileup) ≤ hsp

AVpileup = R2 sin−1(a2p/R)− ap
√

(R2 − a2p)

−R2 sin−1(a2/R)− a
√

(R2 − a2) (A5)

where ap is the contact radius with pileup given as:

ap =







√

2R(h+ hpileup)− (h+ hpileup)2 if h ≤ hsp

asp + (h+ hpileup − hsp) tanα if h>hsp

(A6)

and if h ≤ hsp and (h+ hpileup)>hsp

AVpileup = R2 sin−1(a2ap/R)− aap

√

(R2 − a2ap)

− R2 sin−1(a2/R)− a
√

(R2 − a2)

+ (h+ hpileup − hsp)asp

+ (h+ hpileup − hsp)
2 tanα (A7)

and if h ≥ hsp

AVpileup = (h+ hpileup − hsp)asp

+ (h+ hpileup − hsp)
2 tanα. (A8)

The horizontal projection of pileup area is written as:

AHpileup = 0.5π(a2p − a2) (A9)

where a and ap are given by eq. A3 and A6, respectively.
Similarly as the pileup contact areas (eq. A5 and

eqs. A7-A9), the horizontal projection of adhesive con-
tact area also depends on whether the sample is in adhe-
sive contact with conical or spherical part of the sliding
tip. The total adhesive contact area can be written as

Aadh = Aadh-front +Aadh-back (A10)

where Aadh-front and Aadh-back, respectively, represent ad-
hesive contact area in front and back of the sliding tip.
For adhesive interaction range h0, adhesive contact area
in front is given as:
if (h+ hpileup + h0) ≤ hsp

Aadh-front = 0.5π{2R(h+ hpileup + h0)

− (h+ hpileup + h0)
2 − a2p}, (A11)

if (h+ hpileup + h0)>hsp and (h+ hpileup)<hsp

Aadh-front = 0.5π{[asp + (h+ hpileup + h0 −

hsp) tanα]
2 − a2p}. (A12)

and if (h+ hpileup) ≥ hsp

Aadh-front = 0.5π{[asp + (h+ hpileup + h0 − hsp) tanα]
2

− [asp + (h+ hpileup − hsp) tanα]
2}. (A13)

The adhesive contact area in the back is given as,
if (h+ h0) ≤ hsp

Aadh-back = 0.5(2ω + sin (2ω))

{ 2R(h+ h0)− (h+ h0)
2 − a2},

if (h+ h0)>hsp and h<hsp

Aadh-back = 0.5(2ω + sin (2ω))

{[asp+(h+ h0−hsp) tanα]
2 − a2}, (A14)

and if h ≥ hsp

Aadh-back = 0.5(2ω + sin (2ω))

{ [asp + (h+ h0 − hsp) tanα]
2

− [asp + (h− hsp) tanα]
2}. (A15)
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