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We study the tunneling transport through a mesoscopic tunnel junction in the far-from-
equilibrium regime at relatively low temperatures. We show that the current-voltage characteristics
is significantly modified as compared to the usual quasi-equilibrium result by lifting the suppres-
sion due to the Coulomb blockade. These effects are important in realistic tunnel junctions. We
study the high-impedance case in detail to explain the underlying physics and construct a more
realistic theoretical model for the case of a metallic junction taking into account dynamic Coulomb
interaction. This dynamic screening further reduces the effect of the Coulomb blockade.

PACS numbers: 73.63.-b, 73.63.Rt, 73.23.Hk

I. INTRODUCTION

Great efforts in contemporary materials science re-
search focus on transport properties of advanced nano-
materials. In particular in arrays of nano particles, the
interest is motivated by the fact that these can be treated
as artificial solids with programmable electronic proper-
ties1. The ease of adjusting electronic properties of gran-
ular materials is one of their most attractive assets for
fundamental studies of disordered solids and for targeted
applications in nanotechnology. The parameters of gran-
ular materials are in many ways determined by the prop-
erties of their building blocks: grains and tunnel junc-
tions. The equilibrium properties of single grains and
single junctions are well understood2. However, much
less is known about the far-from-equilibrium properties of
those systems, by which we mean that the system proper-
ties cannot be described by just a perturbed equilibrium
(or quasi-equilibrium) considerations. The understand-
ing of far-from-equilibrium effects in tunnel junctions, the
building blocks of most advanced nano-materials, is espe-
cially important for practical applications. This defines
an urgent quest for a quantitative description of far-from-
equilibrium properties of a single tunnel junction.

In this paper we investigate the far-from-equilibrium
current-voltage characteristics of a tunnel junction (see
Fig. 1a). Electron transport in tunnel junctions is en-
sured by the energy exchange between the tunneling elec-
trons and energy reservoirs: since the electronic energy
levels at the leads are unequal, tunneling is only possible
if a subsystem of excitations capable of accommodating
this energy difference exists. At not very high temper-
atures, where the phonon density is small, the role of
the energy reservoir is played by an electromagnetic en-
vironment comprised of electron-hole pairs self-generated
by the tunneling electrons. Here we concentrate on this
low-temperature situation where phonons (bath) are ir-
relevant for the tunneling transport. In our approach

the interaction time between electrons and environment
needs to be much smaller than the one between environ-
ment and bath, in order to have a fully developed envi-
ronment. In addition, we assume that the characteristic
size of the tunnel barrier does not exceed the electron
energy relaxation length.

II. PHYSICAL DESCRIPTION OF

NON-EQUILIBRIUM EFFECTS IN A TUNNEL

JUNCTION

We start by expressing the tunneling current through
a single junction as the difference of the electrons go-
ing from the left [L] to the right [R] electrode and the
ones traversing the junction from right to left2,4 (see also
Fig. 1a)

I = e
[−→
Γ (LR) −←−Γ (RL)

]

. (1)

Here the tunneling current obeys the symmetry I(−V ) =

−I(V ) and
−→
Γ (LR)

[←−
Γ (RL)

]

is the tunneling rate from the
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FIG. 1. (color online) a) Sketch of the tunnel junction with
two leads and b) illustration of the electron-hole environment
inside the tunnel junction. The tunneling electrons together
with the probability to interact with the environmental modes
inside the junction determine the total tunneling current.
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FIG. 2. (color online) Current-voltage characteristics of tun-
nel junctions at low temperatures (T/Ec = 0.1, with Ec being
the Coulomb energy of the tunnel junction) for the equilib-
rium case “eq.” (red, dashed curve, see also [3]) and the
non-equilibrium case “non-eq.”, which shows a clear enhance-
ment of the current and reduced suppression due to Coulomb
blockade at low voltages. This is in particular clear in the plot
of the ratio δ = Inon−eq.,highimp.(V )/Ieq.(V ) in the inset. The
linear (green, solid) curve shows the high temperature ohmic
regime, which is independent of non-eq. or eq. considerations.
The two non-eq. curves correspond to the high impedance
case (blue, solid) and the dynamic Coulomb interaction case
(dashed, turquois); see text for detailed explanations.

left (right) to the right (left)

−→
Γ (LR) =

1

RT

+∞
∫

−∞

+∞
∫

−∞

dεdε′f (L)
ε (1− f

(R)
ε′ )P (ε− ε′ + eV )

=
1

RT

+∞
∫

−∞

dε (ε− eV )Nε(−eV )P (ε), (2)

where f
(L,R)
ε are the electronic distribution functions

within the leads, RT is the tunnel resistance, and V is

the voltage difference across the junction. The terms f
(L)
ǫ

and (1− f
(R)
ǫ′ ) correspond to the occupied electron state

with energy ǫ in the left lead and the hole state with en-
ergy ǫ′ in the right lead, respectively. The function P (ε)
determines the probability that the tunneling electron
loses [gains] the energy ε to [from] environment modes in

the junction. In general, both f
(L,R)
ε and P (ε) are out-

of-equilibrium functions. In the second line of Eq. (2)
we introduced a bosonic distribution function, Nε(eV ),
which describes an electron-hole excitations across the
junction, Fig. 1b). Explicitly it is given by Nε(eV ) ≡
(ε+ eV )

−1 ∫ +∞

−∞
dω f

(L)
ω+(ε+eV )/2

(

1− f
(R)
ω−(ε+eV )/2

)

. If

the distribution functions at the electrodes are Fermi
functions with equal temperatures T , then Nε(eV ) =
NB(ε+eV, T ), with NB(ε, T ) being the equilibrium Bose
distribution function.
The corresponding backward rate in Eq. (1) is

←−
Γ (RL) = 1

RT

∫

dεdǫ′
(

1− f
(L)
ǫ

)

f
(R)
ε′ P (ε′ − ǫ − eV ) =

1
RT

+∞
∫

−∞

dε (eV −ε)N−ε(eV )P (−ε). Here we note, that the

bosonic distribution function Nε(eV ) depends in general
on both lead temperatures; and the bosonic form of the

backward rate
←−
Γ (RL) can be written in this form only if

f
(L)
ε and f

(R)
ε have the same functional dependence on

energy and temperature.
Using the bosonic description of the environment, the

current-voltage characteristics Eq. (1) can be written ex-
plicitly as

I = e

∫ +∞

−∞

dε (ε−eV ) {Nǫ(−eV )P (ε) +N−ε(eV )P (−ε)} .
(3)

This expression is general and we only assumed
that the electron distribution functions in the contact
leads have the same functional dependence on tem-
perature and energy. In the out-of-equilibrium sit-
uation the tunneling electrons also interact with the
environment inside the junction. This environment
is self-generated by the tunneling electrons and ther-
mal fluctuations, and its influence on the tunneling
transport is implicitly taken into account through the
probability function P (ε) in Eq. (3). In the case of
heat transport, the situation is different, since heat
can dissipate inside the junction, see Ref. [5] and the
environment needs to be taken into account explic-
itly, having its own distribution function nenv(ε, eV ) =
[(ε− eV )Nǫ(−eV ) + (ε+ eV )Nǫ(eV )] /(2ε), Refs. [5,6].
As mentioned before, if the leads are in equilibrium

(which is mostly the case due to their bulk nature) and
in addition the temperatures at the leads are the same,
Nǫ(eV ) in Eq. (3), becomes a Bose distribution func-
tion. In the following we assume that this is the case,
but emphasize that the junction environment is always
far-from-equilibrium if a finite voltage is applied.
Besides the distribution function Nǫ(eV ), the main

distinguishing feature of our out-of-equilibrium consid-
eration is the presence of the probability function P (ε),
which takes into account the interaction with the envi-
ronment, determining the probability for the tunneling
electrons to exchange the energy ε, which is the excess
energy of the electrons compared to the potential dif-
ference of the leads. It is clear that this probability
should decay for large energies and have a maximum
when the energy matches the energy at which the en-
vironment resonates. A second observation is that at
large voltages this probability should get smeared out
and the current is mostly determined by the distribu-
tion function Nε(eV ) rather than P (ε) which therefore
determines only the resistance of the junction in the
Ohmic regime. Furthermore, high temperatures also
broaden the probability. Both effects can be conveniently
described by the introduction of an effective electron
temperature Te = (eV/2) coth(eV/(2T )) [derived from
Te = limε→0 nenv(ε, eV )], which is equal to T for small
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FIG. 3. (color online) Far-from-equilibrium current-voltage
characteristics of a tunnel junction depending on voltage and
junction temperature. Here Ec is the Coulomb energy of
the junction. One clearly sees the crossover from the sup-
pressed current at small voltages and temperatures to the
Ohmic regime at high temperatures.

voltages and proportional to eV/2 for eV ≫ T .5–7 There-
fore, the probability function P (ε) can be approximated
by a Gaussian function where the electron temperature
Te determines its width in the high resistive case, which
we will discuss in detail in the next section.

III. TUNNEL JUNCTION WITH HIGH

IMPEDANCE ENVIRONMENT

We now turn to the experimentally important case of
an environment with a high impedance as compared to
the quantum resistance, RQ. In this limit, the tunneling
electrons easily excite the environment modes. The prob-
ability function P (ǫ) for electron-hole pairs with energy
ǫ to appear in the junction in Eq. (3) can be written as

P (ε) = (1/
√
2π∆2) exp

[

−(ε− 2Ec)
2/2∆2

]

. (4)

Here ∆ = 2(EcTe)
1/2 is the characteristic width of the

distribution function with Ec being the Coulomb energy
of the tunnel junction. We note that this form of the
probability function P (ǫ) in Eq. (4) depends on the elec-
tron temperature Te and not on the lead temperature T ,
as in the quasi-equilibrium case3.
Substituting this function P (ǫ) into Eq. (3), we ob-

tain our first main result for the current-voltage char-
acteristics of a tunnel junction. In particular, Fig. 2
represents the I − V characteristics at low temperatures
(T/Ec = 0.1) for the equilibrium case “eq.” (red, dashed
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FIG. 4. (color online) Far-from-equilibrium probability func-
tion P (ε) at different voltages eV/Ec = 0, 0.5, 1 for both the
high-impedance and the dynamic Coulomb interaction cases.
The temperature is T/Ec = 0.1 and α = 100, where the pa-
rameter α = e2dν is defined below Eq. (8). Here Ec is the
Coulomb energy of the junction.

curve, see also Ref. 3) and the non-equilibrium case “non-
eq.”. It shows a clear enhancement of the current and re-
duced suppression due to Coulomb blockade at low volt-
ages. This is in particular clear in the plot of the ra-
tio δ = Inon−eq.(V )/Ieq.(V ) in the inset. The (green,
solid) linear curve shows the high temperature ohmic
regime, which is independent of non-eq. or eq. consider-
ations. The full temperature and voltage dependence of
the current-voltage characteristics of tunnel junction is
shown in Fig. 3. This figure clearly shows the crossover
from the suppressed current at small voltages (eV ≪ Ec)
and temperatures (T ≪ Ec) to the ohmic regime at high
temperatures.

IV. TUNNEL JUNCTION WITH DYNAMIC

COULOMB INTERACTION

Next, we discuss the current-voltage characteristics,
Eq. (1), of a tunnel junction comprised of two thin two-
dimensional (2D) disordered conductors (leads) taking
into account the effect of Coulomb interaction explicitly.
To this end we need to calculate the distribution function
P (ε), appearing in the tunneling rate, Eq. (2) from first
principles.
In general this function can be written as P (ε) =

∫∞

−∞
dt exp[J(t) + iεt], where the function exp[J(t)] ac-

counts for the interaction with the Bosonic environment.
The far-from-equilibrium function J(t) can be written
as6

J(t)

2
=

∞
∫

τ−1

e

dω

ω
ρ(ω)

[

Nωe
iωt + (1 +Nω)e

−iωt −Bω

]

,

(5)
where the terms proportional to Nω and 1 + Nω cor-
respond to the absorbed and emitted environment ex-
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FIG. 5. (color online) Far-from-equilibrium phase function
J(t), Eq. (5), at different voltages eV/Ec = 0, 0.5, 1 for
the dynamic Coulomb interaction case. The temperature is
T/Ec = 0.1 and α = 100, where the parameter α = e2dν
is defined below Eq. (8) and Ec is the Coulomb energy of
the junction. The real and imaginary parts are plotted sep-
arately and the inset shows the behavior of the real part of
function J(t) for small times (in the zero voltage case). The
latter demonstrates that the high-impedance expansion works
in this regime.

citations, respectively, and Bω = 1 + 2Nω. (Here we
concentrate on the simplest case when the temperature
of absorbed and emitted excitations is the effective elec-
tron temperature Te determined by the environment.)
In equilibrium Nω reduces to the Bose-function and the
functional P (ω) recovers the result of Ref. [2]. The en-
ergy relaxation time τe in the expression for J(t) deter-
mines the low energy cut-off, since the electrons start to
equilibrate on larger time scales, i.e. the non-equilibrium
description does not hold anymore.
The spectral function ρ(ω) in Eq. (5) is the probability

of the electron–environment interaction. We assume that
leads are identical and have the same diffusion coefficients
D(L) = D(R) ≡ D and densities of states, ν(L) = ν(R) ≡
ν. For the dynamic Coulomb interaction the spectral
function ρ(ω) can be found, following Ref. [8], as

ρij(ω) =
ω

2π
Im

∑

q

(

2π
L

)2
(2δij − 1)Ũij(q, ω)

(D q2 − iω)2
, (6)

where i, j = 1, 2 are the lead indices for the left and
right side respectively, and Ũij(q, ω) are the dynamically
screened Coulomb interactions within (across) the elec-
trodes. The form of spectral probability ρ(ω) [ρ(ω) =
2ρ12+ρ11+ρ22] depends on the structure of the environ-
mental excitations spectrum and, thus, on the external
bias.
The screened Coulomb interaction in Eq. (6) in

Fourier space has the form Ũ(q, ω) = {[U (0)(q, ω)]−1 +

P(q, ω)}−1, where U (0)(q, ω) = u(q)I+v(q)σx is the bare
Coulomb interaction and P(q, ω) the polarization matrix
respectively with Pij = νD q2(D q2 − ıω)−1δij.
Below we consider quasi-two-dimensional (2D) infinite
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FIG. 6. (color online) Spectral density function ρ(ω) for dif-
ferent values of dimensionless parameter α = 1, 10, 50, 100 in
double-log representation. The parameter α = e2dν is defined
below Eq. (8). The data are plotted for the case when Thou-
less energy, Eth is equal to the Coulomb energy, Eth = Ec.

leads meaning that a < l≪ L, where a is the lead thick-
ness, l the electron mean free path, and L the lead size
in the x and y directions. In this case the bare Coulomb
interaction has the form

U
(0)
ij (ri−rj) = e2

∫

dzi dzj
δ(zi − z

(0)
i )δ(zj − z

(0)
j )

|ri − rj |
, (7)

with z
(0)
i = (1/2 − δi1)d and d being the junction size

(distance of the contacts), leading to u(q) = 2πe2/q and
v(q) = 2πe2e−qd/q. In our consideration, the distance d
is smaller than the electron energy relaxation length such
that the junction is out of equilibrium. This relaxation
length is typically of order 0.1µm.
The dimensionless matrix elements Ũij of the dynam-

ically screened Coulomb interaction (in units of e2d) are
then given by

Ũii =
4π

q̃

χ(q̃)

χ2(q̃)− coth−2(q̃)
, Ũi 6=j =

Ũii

χ(q̃) coth(q̃)
(8)

where q̃ = dq and ω̃ ≡ ω(d2/D) with the dimensionless

function χ(q̃) ≡ 1+coth(q̃)+ 4παq̃
q̃2−iω̃ and α = e2dν. Using

these notations, we can write Eq. (6) as

ρ(ω̃) =
2e2d

D ω̃ Im

∞
∫

0

q̃dq̃
Ũ11

[

1− (χ(q̃) coth(q̃))
−1

]

(q̃2 − iω̃)2
.

(9)
The spectral function ρ is plotted in Fig. 6 as a func-
tion of frequency for different values of the dimensionless
parameter α = 1, 10, 50, 100. Notably, the ρ-function de-
pends only weakly on frequencies in the low frequency
limit and decays algebraically as ρ ∼ 1/ω1/2 at very high
frequencies. Here, we remark that the parameter α has
a typical value of 100 in the metallic case we are consid-
ering here.
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Using Eq. (9) we numerically evaluate the behavior of
the J(t)-function, Eq. (5), which accounts for the inter-
action with the environment. Its behavior for a typical
parameter value of α = 100 at different electron tem-
peratures is presented in Fig. 5. The imaginary part of
J-function is antisymmetric and almost voltage indepen-
dent, while the slope of the real part is voltage depen-
dent. The imaginary part contributes to the oscillatory
factor in the expression for probability function P (ε) in-
troduced above Eq. (5). The behavior of real part is
more important, since it describes the interaction with
the environment and makes the P -integral convergent.
At small dimensionless times (tEc ≪ 1) the real part of
J(t) function has quadratic behavior (see the insert in
Fig. 5), which corresponds to the high impedance limit
for the environment discussed in detail before. However,
at larger time scales the J-function shows linear behavior,
which modifies the probability function P significantly.
The behavior of P (ε)-function is crucial for calculation

of current-voltage characteristics in Eq. (1). We present
the normalized probability function P (ε) versus dimen-
sionless energy in Fig. 4. In the case of dynamic Coulomb
interaction, the P -function has two distinct features: i)
a peak at low energies and ii) a long tail at high en-
ergies. The first feature is related to the fact that in
the limit of dynamic Coulomb interaction the screening
effects are very pronounced and thus the original bare
interaction Ec is completely screened. This is in con-
trast to the behavior of the P (ε)-function in the high
impedance environment, which has a peak at energies of
order of Coulomb energy Ec, see Fig. 4 for comparison.
The second feature of probability function P (ε), the ap-
pearance of a long tail, increases the number of available
states for energy absorption/emission of the environment
enhancing the overall tunneling probability through the
junction. This in combination with screening effect re-
sults in a significant enhancement of the current at low
voltages as compared to the high-impedance case for the
metallic value of α = 100. If parameter α is decreased,
i.e. the density of states lower, the Coulomb blockade
gets restored, but also the resistance in the Ohmic regime
increases. A current-voltage characteristics for α = 50
is plotted in Fig. 2 (dashed, turquois), showing the en-
hancement of the current at low voltages compared to
the high impedance case.

V. DISCUSSIONS

Here we discuss the behavior of probability function
P (ε) in Eq. (4) and comment on the validity of our ap-
proach at low temperatures. From Eq. (4) follows that
the probability function P (ε) for zero temperature is
proportional to the delta-function, P (ε) ∼ δ(ε − 2Ec),
meaning that no electron transport is possible below the
Coulomb threshold. This is a consequences of our con-
sideration of the tunneling transport in Eq. (1) being
described in the lowest order in tunneling Hamiltonian.

In this approximation higher order effects like electron
co-tunneling9,10 is not taken into account. Co-tunneling,
introduced in Ref. [11], provides a conduction channel
at low applied biases and temperatures, where otherwise
the Coulomb blockade arising from electron-electron re-
pulsion would suppress the current flow. The essence
of a co-tunneling process is that an electron tunnels via
virtual states thus bypassing the huge Coulomb barrier.
There are two mechanisms of co-tunneling processes,
elastic and inelastic. At very low temperatures only elas-
tic co-tunneling exists meaning that electrons propagate
through all virtual states without emitting/absorbing en-
ergy.
In this paper we only consider low (but not very low)

temperatures were a bath (phonons) is inefficient (the
typical validity temperature range would be between 1K
and 100K). Therefore our approach is valid when the
interaction time between electrons and many-body exci-
tations (environment) is much smaller than the one be-
tween environment and bath, which is the case at not
very high temperatures where the number of phonons
is small. If the environment interacts strongly with
the bath, relaxation is provided by phonons (bath) and
P (ε) = δ(ε). In that case Eq. (1) reproduces Ohm’s law.
Last, we mention that transport through a mesoscopic

quantum-material can be reduced to the single junction
problem with an effective medium that plays also the role
of a thermostat. This work is currently in progress, but
requires in contrast to the single junction also to consider
heating effects of the medium5.
In conclusion, we studied the tunneling transport

through a mesoscopic tunnel junction in the far-from-
equilibrium regime at relatively low temperatures. We
showed that the current-voltage characteristics is sig-
nificantly modified as compared to the usual quasi-
equilibrium result and demonstrated that for two cases:
the high impedance and the dynamic Coulomb interac-
tion case. One can expect that our results will be impor-
tant for electron transport in junction arrays, which will
be the subject of a forthcoming work.
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