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Within a simple model we discuss spin inelastic currents in molecular ring junctions. We gener-
alize considerations of the spin-flip inelastic electron tunneling spectroscopy (IETS) to the case of
multi-site molecular system, and formulate a conserving approximation, which takes into account
renormalization of elastic channel. We also extend recent studies of circular currents in molecular
junctions beyond scattering theory formulation. We demonstrate control of the spin-flip IETS signal
and discuss spin polarization of total and circular currents in a benzene ring junction.

PACS numbers: 85.65.+h, 85.35.Ds, 85.75.Mm, 71.70.Gm

I. INTRODUCTION

Advances in experimental techniques at nanoscale
shift focus of research in molecular electronics1–5

from ballistic transport6,7,99 to inelastic effects9,10,12,93

(and closely related energy transfer processes13–18),
to noise characteristics19–21 and optical response22–26

in current carrying junctions. Recent spin-transport
experiments27,28 demostrated potential possibility of us-
ing organic molecules to construct molecular spin devices,
indicating the emergence of molecular spintronics30–35

(see Ref. 29 for a comprehensive review).
The small size of molecules implies potential impor-

tance of coherence in molecular junctions. Interfer-
ence effects in molecular systems were observed exper-
imentally for electron transfer36 and molecular junction
currents37 involving derivatives of benzene connected in
the meta or para positions. Effects of exciton coherence
in photosynthesis were demonstrated in Ref. 38. Coher-
ent control in molecular junctions was extensively dis-
cussed in the theoretical literature.39–45 In particular,
quantum interference plays a decisive role in conduction
through molecular ring structures. Magnetic field control
of electron conduction in such systems was considered
in Refs. 46,47. Possibility to utilize interference effects
in nanosized rings for constructing molecular spin filters
was also discussed in the literature.48–51

Another closely related issue in spintronics is the
control of a local spin. In particular, spin control
with electric currents achieved in experiments on sin-
gle atoms52 and single-molecule magnets,53 was studied
theoretically in Refs. 54,55 On the other side, charac-
teristics of local spin in junction conductance manifest
themselves in spin-flip inelastic electron tunneling spec-
troscopy (IETS). Like in the usual IETS where electron
coupling to molecular vibration results in appearance of
step-like features in conductance on the scale of molecu-
lar vibrations (0.01− 0.1 eV), energy exchange between
tunneling electrons and the local spin system yields sim-
ilar IETS signal in the meV range. Such spin-flip spec-
troscopy was demonstrated using STM on single atoms,56

atomic structures,57,58 and molecular thin films.59 Model
based60–65 and ab initio66 theoretical treatments are
available in the literature for STM setup, where electron

tunneling between tip and substrate interacts with a sys-
tem of local spins via spin-spin exchange. A nonequi-
librium Green function (NEGF) formulation for a model
explicitly including system (single level) coupled to two
electronic reservoirs (tip and substrate) with treating
spin-spin exchange interaction taken into account within
the first Born approximation (BA) was presented in
Ref. 67.

In this paper we study spin inelastic current in a junc-
tion formed by a molecular ring (benzene) coupled to
two metal leads. The spin-flip IETS signal is due to
exchange interaction between conduction electrons and
a local spin placed at the center of the ring. Thus the
model combines consideration of quantum interference ef-
fects inherent in electron conduction in the molecular ring
structures with spin-flip IETS due to interaction with lo-
cal spin. We note that magnetic impurity placed at the
ring center is an idealization, the only condition for the
practical relevance of our model requires impurity in the
vicinity of the benzene ring, which induces the spin-spin
exchange interaction. Such structures have been studied
both experimentally68,69 and theoretically.70–74

We study inelastic effects in the (spin-resolved) total
and circular currents within the NEGF approach. Circu-
lar currents are defined following the procedure outlined
in Ref. 75. Since BA is a non-conserving approximation
a more advanced treatment is required for any system
beyond single level (see e.g. Ref. 77 for discussion). Here
we consider the spin-spin exchange interaction within the
self-consistent BA (SCBA). The SCBA enforces conser-
vation laws76 and accounts for the renormalization of the
elastic channel disregarded in Refs. 60–65,67. We also
discuss effects of the lead-molecule configuration (para,
meta or ortho positions) on transport characteristics of
the junction.

The paper is organized as follows. In Section II we in-
troduce the model and formulate the NEGF scheme. Nu-
merical results for inelastic (total and circular) currents
are presented and discussed in Section III. Section IV
concludes and outlines directions for future study.
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FIG. 1: (Color online) A tight-binding model for current con-

duction through a molecular ring M with a spin impurity ~S
at its center coupled to metal leads L and R in a meta po-
sition (sites of ortho and para configurations are indicated

in the figure). External uniform magnetic field ~B is applied
perpendicular to the ring plane.

II. MODEL AND METHOD

We consider benzene molecule, M , connected to two
metal leads, L and R, at either para, meta, or ortho
positions. The molecule is described by a tight-binding
model with on-site energy αM and the elastic hopping
matrix element βM . The metal leads are modeled as
semi-infinite one-dimensional tight-binding chains with
the on-site energy αK and hopping βK (K = L,R). The
leads are reservoirs of free electrons, each at its own ther-
mal equilibrium. Coupling between molecule and leads
is characterized by tunneling matrix elements βLM and
βRM for L −M and R −M interfaces, respectively. An

impurity atom with spin ~̂S is placed at the center of the
ring. Following Ref. 67 we disregard dynamics of the local
spin, and assume fast thermalization. Figure 1 presents
a sketch of the model. The Hamiltonian of the model is
(here and below |e| = ~ = me = 1)

Ĥ = ĤM +
∑

K=L,R

(

ĤK + V̂KM

)

+ V̂SM (1)

≡ Ĥ0 + V̂SM

where ĤM and ĤK introduce electronic degrees of free-
dom in the molecule and in the contact K (K = L,R),

respectively. V̂KM is coupling between molecule and con-
tact K and V̂SM describes exchange interaction of con-
duction electrons with the local spin. Explicit expressions

are

ĤM =
∑

m∈M,σ

αM (Vg) d̂
†
mσ d̂mσ (2)

+
∑

〈m1<m2〉∈M,σ

(

βM d̂†m1σ
d̂m2σ +H.c

)

ĤK =
∑

k∈K,σ

αK ĉ†kσ ĉkσ (3)

+
∑

〈k1,k2〉∈K,σ

(

βK ĉ†k1σ
ĉk2σ +H.c.

)

V̂KM =
∑

σ

(

βKM ĉ†kKσd̂mKσ +H.c.
)

(4)

V̂SM =
∑

m1,m2∈M,σ1,σ2

Jm1m2

(

~̂S · ~σσ1σ2

)

d̂†m1σ1
d̂m2σ2

(5)

Here d̂†mσ (d̂mσ) and ĉ†kσ (ĉkσ) are the creation (annihi-
lation) operators for an electron of spin σ (↑, ↓) at site
i in the molecule and site k in the lead, respectively.
αM (Vg) ≡ αM +Vg is the gated molecular on-site energy

(Vg is the gate voltage). ~̂S is vector spin operator of the
impurity and ~σσ1σ2

is σ1σ2 matrix element of the vector
of Pauli spin matrices ~σ ≡ (σx, σy, σz). 〈i, j〉 indicates
that i and j are the nearest neighbors. kK is the site in
the atomic chain in the immediate neighborhood of the
molecular site mK (K = L,R); mL = 1 and mR = 5 for
meta configuration shown in Fig. 1. Jm1m2

is the spin-
spin exchange interaction coupling strength. Below we
consider two types of this interaction: the s-d model78

Jm1m2
= δm1,m2

J (6a)

and the spin-dependent tunneling matrix element
model79

Jm1m2
= δ〈m1,m2〉J (6b)

Here δ〈m1,m2〉 indicates that m1 and m2 are nearest
neighbors.
We note that the molecular Hamiltonian, Eq.(2), is a

standard Pariser-Parr-Pople (PPP) model routinely used
in quantum chemistry as a semi-empirical quantum me-
chanical method for description of conjugated and aro-
matic hydrocarbons.80,81 Note also that spin-spin ex-
change coupling of the type given in Eq.(5) was em-
ployed in a number of theoretical considerations of similar
systems.64,65,67,82,83

A static uniform magnetic field ~B is applied perpen-
dicular to the ring plane.101 We assume that the field is
confined to the molecule region only. In the presence of
the field on-site energy αM becomes spin dependent (the
Zeeman effect) and hopping matrix element βM acquires
phase factor θ46,47

αMσ ≡ αM − 2µBBtotσ (7)

βM → βMeiθ θ ≡ 2π
φBtot

6φ0
(8)
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where µB = e~/2me is the Bohr magneton, Btot ≡ B +
Bind is the total magnetic field (external plus current
induced), φ0 = h/|e| is the flux quantum, and φBtot

is
the total magnetic flux through the benzene ring. The
magnetic field also removes degeneracy of the local spin
eigenstates |SMS〉

ESMS
= −2µBBtotMS (9)

We assume quick relaxation of the local spin, so that
probability PSMS

for the eigenstates occupations follows
the Boltzman distribution. Note that fast thermaliza-
tion of the local spin is a reasonable approximation as
long as the spin-spin exchange is relatively weak and the
impurity is strongly coupled to a bath (the latter may
be represented, e.g., either by chain of atoms, or metal-
lic surface with the impurity chemisorbed on it). This
assumption has also been considered in a number of pre-
vious studies.60–65,67

The central quantity of interest is single-particle elec-
tronic Green function, defined on the Keldysh contour
as

Gmσ,m′σ′(τ, τ ′) = −i〈Tc d̂mσ(τ) d̂
†
m′σ′(τ

′)〉 (10)

where Tc is the contour ordering operator. Note that in
the absence of spin-spin correlations in the zero-order
Hamiltonian Ĥ0, Eqs. (2)-(4), and within the SCBA

treatment of the spin-spin interaction V̂SM , Eq.(5), the
electron Green function, Eq.(10), is block diagonal in the
spin space102

Gmσ,m′σ′ (τ, τ ′) = δσ,σ′Gmm′,σ(τ, τ
′) (11)

It satisfies the Dyson equation

Gmm′,σ(τ, τ
′) = G

(0)
mm′,σ(τ, τ

′)

+
∑

m1,m2∈M

∫

c

dτ1

∫

c

dτ2 G
(0)
mm1,σ

(τ, τ1) (12)

× Σ(S)
m1m2,σ

(τ1, τ2)Gm2m′,σ(τ2, τ
′)

where G
(0)
mm′,σ is the electron Green function in the ab-

sence of the spin-spin exchange interaction V̂SM , Eq.(5),

and Σ
(S)
m1m2,σ is the electron self-energy due to this in-

teraction. Note that the free electron Green function
G

(0)
mm′,σ incorporates self-energies due to coupling to the

contacts (see Appendix A for details)

Σ(K)
m1m2,σ

(τ1, τ2) = δm1,mK
δm2,mK

|βKM |2gkK ,σ(τ1, τ2)
(13)

where gkK ,σ(τ1, τ2) ≡ −i〈Tc ĉkKσ(τ1) ĉ
†
kKσ(τ2)〉 is the sur-

face Green function of the contact K. Note also that the
Dyson equation in the form of Eq.(12) is valid only within
the non-crossing approximation.85 Indeed, Eq.(12) as-
sumes that the coupling to contacts, Eq.(4), and spin-
spin exchange, Eq.(5), contribute additively to the total
electron self-energy.

The spin-spin exchange interaction, Eq.(5), is treated
within the SCBA. Corresponding expression for the self-
energy is (see Appendix B for derivation)

Σ(S)
m1m2,σ

(τ1, τ2) = δ(τ1, τ2)Σ
(S) δ
m1m2,σ

(14)

+ Σ(S) el
m1m2,σ

(τ1, τ2) + Σ(S) inel
m1m2,σ

(τ1, τ2)

where

Σ(S) δ
m1m2,σ

= Jm1m2
σ
∑

MS

PSMS
MS (15)

Σ(S) el
m1m2,σ

(τ1, τ2) =
∑

m3,m4∈M

Jm1m3
Gm3m4,σ(τ1, τ2)Jm4m2

×
∑

MS

PSMS
[1− PSMS

]M2
S (16)

Σ(S) inel
m1m2,σ

(τ1, τ2) =
∑

m3,m4∈M

Jm1m3
Gm3m4,σ̄(τ1, τ2)Jm4m2

×
∑

MS ,M ′

S

(|MS−M ′

S
|=1)

BMS
(τ1, τ2)BM ′

S
(τ2, τ1)

(17)

× (S + ξMS)(S − ξMS + 1)

2
[1− ξσ]

with ξ ≡ sgn(MS −M ′
S), σ̄ ≡ −σ, and

BMS
(τ1, τ2) ≡ i

(

PSMS
−θC(τ1, τ2)

)

e−iESMS
(t1−t2) (18)

Here θC(. . .) is the Heaviside step function defined on
the contour, and t1,2 are the real times corresponding to
the τ1,2 contour variables. Eqs. (12) and (14) are then
solved self-consistently. The self-consistency results from
inter-dependence of the Green function, self-energy, and
magnetic field induced by circular current in the ring.
The converged Green function, Eq.(11), is used to cal-

culate currents in the molecule. In particular, within
the same effective second order perturbative expansion
in V̂SM the spin-resolved molecular bond current is (see
Appendix C for derivation)

Iσm1→m2
(t) ≈ 2e

~
Re
[

βm1m2,σ G
<
m2m1,σ

(t, t)
]

(19)

where

βm1m2,σ ≡ βM +Σ(S) δ
m1m2,σ

(20)

with m1,m2, the nearest neighboring sites.
Following Ref. 75 we can write an approximate ex-

pression for the spin-resolved circular current (see Ap-
pendix C for a short discussion)

Iσc (t) ≈
∑

〈m1,m2〉∈M

Iσm1→m2
(t)

ℓ〈m1,m2〉

L
(21)

Here counterclockwise direction is taken as positive (see
Fig. 1), the sum is over all bonds of the molecular
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ring, ℓ〈m1,m2〉 is the length of the bond 〈m1,m2〉 (here

length of the C − C bond in benzene, 1.4Å), and L ≡
∑

〈m1,m2〉∈M ℓ〈m1,m2〉.

The spin-resolved current at the molecule-contact in-
terface K is88

IσK(t) =
2e

~

∑

m1,m2∈M

Re

∫ t

−∞

dt1

[

Σ(K)<
m1m2,σ

(t, t1)G
>
m2m1,σ

(t1, t) (22)

−Σ(K)>
m1m2,σ

(t, t1)G
<
m2m1,σ

(t1, t)
]

Our consideration below is restricted to steady-state,
where projections of the electron Green function (11)
and self-energies (13) and (14) depend only on time dif-
ference, thus it is convenient to make the Fourier trans-
formation to energy space. Currents (21)-(22) are time-
independent, and the current at the interface K is given
by the Kirchhoff’s law as a sum of currents in bonds
connected to the site mK . Note, however, that circu-
lar current expression, Eq.(21), is approximate, while ex-
pression for the terminal current, Eq.(22), is exact. Thus
a priori there is no guarantee that the Kirchhoff’s law is
strictly fulfilled even when GFs in these expressions are
evaluated within a conserving approximation.
In summary, Eqs. (12) and (14) set up a self-consistent

procedure at the SCBA level. Converged results are uti-
lized in Eqs. (21) and (22) to calculate circular and ter-
minal currents, respectively.

III. RESULTS AND DISCUSSION

We now present results of steady-state simulations of
the circular and terminal currents for the model (1)-(5)
with local spin chosen as S = 1. Unless stated oth-
erwise, parameters for the calculations are T = 0.5 K,
αM = −2 eV and βM = 2.5 eV, αK = 0 and βK = 6 eV
(K = L,R), βLM = βRM = 0.3 eV, and J = 5 meV.
For these parameters electron escape rate due to cou-
pling to contacts is ΓK = 2|βKM |2/|βK | = 30 meV. The
Fermi energy is taken in the middle of the conduction
band, EF = 0, and the bias V is applied symmetrically
µL,R = EF ±V/2. Calculations are performed on energy
grid spanning the range from −1.5 to 1.5 eV in steps of
10−5 eV.
We note that the parameters are chosen to represent

a realistic molecular junction. In particular, the hop-
ping matrix element βM is chose to represent the carbon-
carbon bond in benzene within the PPP model.80,96 The
onsite energy αM is chosen to set the lowest unoccupied
molecular orbital (LUMO) at ∼ 0.5 eV above the Fermi
in the metal following Ref. 97.103 The unphysically large
value of hopping matrix element βK we consider for con-
tacts is just a way to enforce wide band limit (bandwidth
24 eV). The onsite energy in contacts αK defines origin of
the energy scale. Strength of molecule-contacts coupling
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FIG. 2: (Color online) Inelastic transport in a meta-connected
benzene ring molecular junction. Shown are (a) conductance
dI/dV (IL = IR ≡ I) vs. bias for several magnetic field
strengths (negative B represents a field pointing into the plane
of the ring), (b) circular conductance dIC/dV vs. bias at B =
−10 T for several values of electron-spin exchange parameter
J .

βKM is not well-controlled in realistic junctions, and may
change by up to 3 orders of magnitude for the same de-
vice depending on experimental setup (compare, for ex-
ample, experimental data on benzenedithiol molecular
junction reported in Refs. 98 and 99). Thus we choose
these parameters utilizing data of Ref. 67. Interestingly,
results for conductance in the low bias region obtained
with these parameters (see Fig. 2) are in agreement with
the experimental data reported in Ref. 99. Finally, spin-
spin exchange coupling parameter J is taken within the
range considered in similar previous studies.82,83

The self-consistent iterations of Eqs. (12) and (14)
are performed till currents, Eqs. (19)-(22), are converged
with a tolerance of 0.01%. We note in passing that for
the chosen parameters both models (6) yield qualitatively
similar results. Below we present results of calculations
for the tunneling model (6b). Note also that for these pa-
rameters currents calculated using Eq.(22) and as a sum
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of bond currents at the junction (the Kirchhoff’s law) are
identical.

First we present inelastic features in the total current
IL = IR ≡ I, Eq.(22), for a meta connected benzene
ring molecular junction (results for the para- and ortho-
connected rings are qualitatively similar). Fig. 2a depicts
the conductance (dI/dV ) at low bias for several values of
applied magnetic field B. The conductance step, an in-
dication of opening of an inelastic channel, demonstrates
linear shift towards higher voltages with increase of the
magnetic field strength. The effect is due to increase of
level separation in the local spin system, Eq.(9). Note
that the field reversal, B → −B, does not affect the
conductance spectra. Results presented in Fig. 2a are
similar to experimental data,56–58 where spin-flip IETS
was observed for atomic structures studied with STM,
and corresponding theoretical simulations.60,64–67

Inelastic effects are observed also in circular current.
Figure 2b shows circular conductance at low bias for
several spin-exchnage coupling strengths. As expected,
stronger inelastic coupling strength results in a more pro-
nounced step in the conductance. Note steeper increase
of circular compared to total current (note, solid curve
in Fig. 2a is calculated for the same parameters as in
Fig. 2b). This can be understood by considering that
for a small molecule-contact coupling electrons entering
the ring spend a long time circulating in the ring, before
being escaped to the other terminal,91 which results in
large circular currents in the ring.

Note that IETS signal presented in Fig. 2 in principle
should be observable also for B = 0 due to the magnetic
field induced by the circular current. However, realistic
estimate of the induced field yields Bind ∼ 0.2 T, which
results in splitting of spin states of the local impurity
of the order of 0.01 meV. Thus observation of inelastic
effects in the absence of external magnetic field is not
feasible.

Renormalization of elastic scattering with opening of
inelastic channel may lead to either increase or decrease
of the total current (step up or down in the conductance)
at the threshold.92 Previous considerations,60,63–65,67

which employed lowest order perturbation theory, have
not accounted for the renormalization of the elastic chan-
nel. For a model of single molecular level ε0 coupled to
single molecular vibration change in conductance near
the threshold is proportional to (see Eq.(36) in Ref. 92)

[µ− ε0 − ReΣr
inel(µ)]

2 − (Γ/2)2

[µ− ε0 − ReΣr
inel(µ)]

2 + (Γ/2)2
(23)

where µ is electro-chemical potential and Σr
inel is re-

tarded projection of the self-energy due to coupling to
molecular vibration. Thus, transition between the two
features in vibrational IETS can be achieved either by ap-
plying gate voltage (i.e. changing µ− ε0) or equivalently
by changing strength of the molecule-contacts coupling Γ
(e.g. in STM experiment). Figure 3a demonstrates this
transition for spin-flip IETS of the model (1)-(5).
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FIG. 3: (Color online) Elastic channel renormalization in a
meta-connected benzene ring molecular junction. Shown is
conductance dI/dV (IL = IR ≡ I) vs. bias (a) at B = −10 T
for two different values of gate voltage: Vg = 0.486 V (solid
line, black) and 0.490 V (dashed line, red); (b) at Vg = 0.488 V
for two different values of applied magnetic field: B = −5 T
(solid line, black; left and bottom axes) and −10 T (dashed
line, red; right and top axes).

Contrary to vibrational spectroscopy, where inelastic
channel threshold is set by frequency of the vibration, ex-
citation energy of a spin inelastic process can be adjusted
by magnetic field. This allows tuning of the correspond-
ing self-energy (see e.g. Σr

inel in Eq.(23)). Figure 3b
shows control of conductance behavior at the threshold
by external magnetic field.
Peaks and dips in IETS spectrum were observed ex-

perimentally in vibrational IETS measurements (see e.g.
Refs. 93,94), and should be expected also in the spin-flip
IETS. Since external magnetic field is a simpler control
than either gate potential or molecule-contacts coupling
strength observation of transition between the two types
of the IETS signal should be easier for spin-flip IETS .
We now turn to resonant tunneling regime with LUMO

entering the bias window at V ∼ 1 V. Spin-spin exchange
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FIG. 4: (Color online) Current-voltage characteristics of a
meta-connected molecular ring junction. Shown are (a) ter-
minal current IL = IR ≡ I , Eq.(22), and (b) circular current
Ic, Eq.(21), at B = −5 T for spin-up (dashed line, red), spin-
down (dash-dotted line, blue), total charge (solid line, black),
and total spin (dash-double-dotted line, green) currents. The
inset in panel (a) shows the spin resolved local density of
states Dσ(E), Eq.(24), at V = 1 V (spin-up - dashed line,
red, spin-down - dash-dotted line, blue)

coupling VSM , Eq.(5), induces spin-dependent renormal-
ization of the local density of states

Dσ(E) ≡ − 1

π
ImTr [Gr

σ(E)] (24)

Figure 4a shows terminal current IL = IR ≡ I, Eq.(22),
as function of bias. Spin polarization at the resonant
threshold, V ∼ 1 V, is due to splitting of the local density
of states (see inset in the Figure).
The effect of the renormalization is even more dras-

tic for circular current (see Fig. 4b). Here the polar-
ization above the threshold differs qulitatively: spin-up
and spin-down components move in opposite directions
(compare dashed and dash-dotted lines). As a result cir-
cular charge current is suppressed, while simultaneously

large spin circular current is observed in the ring. The
effect can be understood in terms of orbital momentum
states (degenerate for an isolated ring) represented by
Bloch waves going in opposite directions. As discussed
in Ref. 75 molecule-contacts coupling removes this degen-
eracy. In the presence of the spin-spin exchange interac-
tion the corresponding states appear to be spin polarized
(see inset in Fig. 4a). It is interesting to note that in
contrast to the symmetrically connected ring that lacks
biased induced circular current and the associated mag-
netic field, the spin resolved currents in the asymetrically
connected rings remain spit around 1 V bias even when
applied field is removed due to magnetic field induced by
circular current.
Possibility of experimental detection of charge circu-

lar current at resonant threshold by measuring current-
induced magnetic field was discussed in Ref. 75. Presence
of spin-spin exchange interaction yieds almost pure spin
circular current above the threshold. In principle spin
circular current may be measurable by e.g. detecting its
induced electric field as discussed in Ref. 95, however, we
are not aware of experimental feasibility of such measure-
ment.
To delve further into the spin resolved currents in the

rings, we define spin polarization of the total current as

P = (I↑ − I↓)/(I↑ + I↓) ≡ η↑ − η↓ (25)

where ησ ≡ Iσ/I is spin filter efficiency. Figure 5a shows
spin polarization in the ring with leads at para, meta
and ortho positions for bias voltage tuned for level res-
onance transmission. The insets depict polarizations at
bias above and below 1V. Several points are notewor-
thy. First, polarization at resonant bias is far larger than
that at off-resonant bias. Second, the asymmetrically
connected rings offer better control of spin resolved cur-
rents over a symmetrically connected ring. Third, the
renormalization in the density of states (in particular,
which spin projection have a peak at lower energy) dic-
tates change of sign of the polarization with the field
reversal. Fourth, positive polarization for meta (nega-
tive for ortho) coupling above the resonance irrespective
to sign of the magnetic field indicates leading role of in-
terference effect induced by phase θ, Eq.(8), rather than
the renormalization of the local density in this regime.
Figure 5b shows spin filter efficiency as function of

strength of molecule-contacts coupling. As expected
stronger coupling between the ring and paramagnetic
contacts reduces spin selectivity. Non-monotonic be-
havior for meta and ortho and fast drop in polariza-
tion for para coupled ring at weak coupling strengths,
βKM ∼ 0.05 eV, indicate presence of inelastic (spin-flip)
effects, which are pronounced at Γ ∼ J .
Note that terminal current polarization is easily mea-

surable experimentally. Inelastic effects are of secondary
importance here (although they are pronounced for weak
molecule-contacts coupling). We note that the use of
benzene substituted organic molecules as spin-filter de-
vices has recently been discussed in the literature.51 We
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FIG. 5: (Color online) Spin polarized transport in the para
(solid line, black), meta (dashed line, red) and ortho (dash-
dotted line, blue) connected molecular ring junctions. Shown
are: (a) Spin polarization P , Eq.(25), as a function of applied
magnetic field for at resonant bias (V = 1 V), and (b) Spin fil-
ter efficiency ησ, Eq.(25), as function of the molecule-contacts
coupling strength. Insets in panel (a) show spin polarization
for bias below (V = 0.8 V, upper inset) and above (V = 1.2
V, lower inset) the resonance.

see that the effect is robust with respect to decoher-
ence, and is sensitive to topology of the molecule-contact
coupling, which indicates a possibility of coherently con-
trolled molecular electronics.

IV. CONCLUSIONS

We present a study of spin inelastic currents in molec-
ular ring junctions. Within a simple model of a benzene
molecule coupled to paramagnetic contacts at meta, or-

tho and para positions, we discuss the role of external
magnetic field and local spin impurity placed at the cen-
ter of the ring on spin-flip IETS and spin polarization of
circular and total currents.

Our study extends recent considerations of spin-flip
IETS60–67 formulating a conserving approximation ap-
plicable to multi-site molecular systems. It also takes
into account renormalization of elastic scattering chan-
nel, which is known to cause a qualitative change in the
IETS signal.

This work is also an extension of recent studies of cir-
cular currents in molecular junctions.46,47,75 Our NEGF
formulation allows to go beyond previous scattering the-
ory consideration. The main results of the study are:
(a) Like vibrational also spin-flip IETS yields the possi-
bility of control of the IETS signal. Moreover, in addition
to gate bias and molecule-contacts coupling strength, also
magnetic field can be used as a control of the spin-flip
IETS spectrum. This feature should be measurable in
any junction with spin-spin exchange interaction.
(b) The spin-spin exchange interaction in ring structures
results in spin circular currents. The effect in principle is
detectable by measuring current induced electric fields.95

(c) Molecular ring structures may be used as sources of
spin-polarized terminal currents. Note that recently ben-
zene substituted organic molecules have been proposed as
molecular spin filters.51 Here we demonstrate that the ef-
fect is robust with respect to decoherence, and is sensitive
to topology of the molecule-contact coupling.

Although our consideration is restricted to simple theo-
retical model, the effects should be observable experimen-
tally. Indeed, we discuss two types of effects: (a) those
related to inelastic transport and (b) spin polarization
due to coherence in the molecule. First, opening of in-
elastic channel is a robust effect observed (in the case
of vibrational IETS) in many experimental studies (see
e.g. Refs. 93,94). In this respect experimental obser-
vation of the spin-flip IETS is similar to those of the
vibrational inelastic electron spectroscopy. Second, spin-
polarization of terminal currents is caused by the pres-
ence of molecular ring. Effects of coherence related to
ring molecular structures in junctions have been observed
experimentally in Refs. 36,37. Also recently similar spin
polarization in helical molecular junctions was reported
in Ref. 100.

Extension of the study to ab initio simulations of trans-
port in similar structures will be considered in the future
research.
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Appendix A: Electron self-energy due to coupling to

contacts

For the model of semi-inifinite atomic chain, Eq.(3), re-
tarded, lesser and greater projections86 of the self-energy
(13) in energy space

Σ(K) r
m1m2,σ

(E) = δm1,mK
δm2,mK

(A1)

×
(

ΛK(E)− i

2
ΓK(E)

)

Σ(K)<
m1m2,σ

(E) = iδm1,mK
δm2,mK

ΓK(E)fK(E) (A2)

Σ(K)>
m1m2,σ

(E) = −iδm1,mK
δm2,mK

× ΓK(E) [1− fK(E)] (A3)

are expressed in terms of the Newns-Anderson formula87

ΛK(E) =
|βKM |2
|βK |











ǫ+
√
ǫ2 − 1 ǫ < −1

ǫ |ǫ| ≤ 1

ǫ+
√
ǫ2 − 1 ǫ > 1

(A4)

ΓK(E) =
2|βKM |2
|βK |

{√
1− ǫ2 |ǫ| ≤ 1

0 otherwise
(A5)

Here ǫ ≡ (E − αK)/|2βK | and fK(E) is the Fermi-Dirac
distribution.

Appendix B: Electron self-energy due to spin-spin

exchange interaction

In the definition of the single-electron Green func-

tion, Eq.(10), operators d̂mσ(τ) and d̂†m′σ′(τ ′) are in the
Heisenberg representation. Transforming this expression
to the interaction representation with respect to the zero-
order Hamiltonian Ĥ0, Eq(1), yields

Gmσ,m′σ′(τ, τ ′) =− i〈Tc d̂mσ(τ) d̂
†
m′σ′(τ

′) (B1)

× e−i
∫
c
dτ1V̂

I

SM
(τ1)〉0

where V̂ I
SM (τ1) is operator of the spin-spin exchange in-

teraction, Eq.(5), in the interaction representation, and
subscript 0 indicates evolution governed by the zero-order
Hamiltonian. Expanding exponent in (B1) up to second-

order in V̂ I
SM , collecting and dressing connected diagrams

in the expansion,85 leads to the Dyson equation with self-
energy

Σ(S)
m1σ1,m2σ2

(τ1, τ2) = δ(τ1, τ2)Jm1m2
〈Ôσ1σ2

(τ1)〉S
+

∑

m′

1
,m′

2
∈M

σ′

1
,σ′

2

Jm1m
′

1
Gm′

1
σ′

1
,m′

2
σ′

2
(τ1, τ2)Jm′

2
m2

(B2)

× 〈Tc Ôσ1σ
′

1
(τ1) Ôσ′

2
σ2
(τ2)〉S

Here

Ôσ1σ2
(τ1) ≡

(

~̂S(τ1) · ~σσ1σ2

)

, (B3)

~σ is vector of the Pauli matrices, and 〈. . .〉S indicates
average over the equilibrium distribution of the local spin
system.

Following Ref. 67 we rewrite the operator ~̂S as

~̂S(τ) =
∑

MS ,M ′

S

〈SM ′
S | ~̂S|SMS〉 b̂†M ′

S

(τ) b̂MS
(τ) (B4)

with b̂†
M ′

S

and b̂MS
assumed to be Fermi operators, and

introduce quasiparticle Green function

BMSM ′

S
(τ, τ ′) ≡ −i〈Tc b̂MS

(τ) b̂†
M ′

S

(τ ′)〉 (B5)

which for unperturbed equilibrium local spin system
takes the form of Eq.(18).
Substituting (B4) into (B2), taking into account that

zero-order Hamiltonian does not contain spin-flip pro-
cesses, and utilizing Eq.(18) and89

〈SM ′
S| ~̂S|SMS〉 = δM ′

S
,MS

~ez~MS (B6)

+ δM ′

S
,MS±1(~ex ∓ i~ey)

~

2

√

(S ∓MS)(S ±MS + 1)

leads to Eqs. (14)-(17).

Appendix C: Bond current

To derive expression for the bond current we start from
equation of motion for the spin-resolved population at
site m1

− d

dt
〈n̂m1σ(t)〉 = − i

~

〈[

Ĥ; n̂m1
(t)
]〉

=
2

~
Re

∑

m2∈M,σ′

(

δ〈m1,m2〉βMG<
m2σ′,m1σ

(t, t) (C1)

+iJm1m2

〈

Ôσσ′ (t)d̂†m1σ
(t)d̂m2σ′ (t)

〉)

where n̂m ≡ d̂†md̂m, Ôσσ′ is defined in Eq.(B3), and we
used Eqs. (1)-(5).
Each term in the sum in the right of Eq.(C1) is a flux

from site m2 to site m1. Utilizing Eq.(11), expanding
the last term in the right of (C1) up to second order
in the spin-spin exchange interaction, Eq.(5), and ne-
glecting contribution from m2 beyond nearest neighbor
sites104 leads to Eq.(19) for the bond current.
Ref. 75 introduces circular current as the sole source of

flux through a ring, employing the Biot-Savart expression
for time-independent current in the derivations. Time-
dependent generalization of the Biot-Savart law is known
as Jefimenko’s equation90

~B(~r, t) =
µ0

4π

∫

d~r1

([

(

~J(~r1, t1)
)

ret
×

~R

R3

]

(C2)

+

[

(

∂J(~r1, t1)

∂t1

)

ret

×
~R

cR2

])



9

where ~R ≡ ~r−~r1 and (f(~r1, t1))ret ≡ f(~r1, t−R/c). Since
characteristic distance for benzene ring is R ∼ 1.4 Å,
the retardation effect is confined to times of the order
of R/c ∼ 10−18s, which may be safely disregarded for
currents in molecular junctions. Similarly, second term

in Eq.(C2) can be dropped. This results in expression
which has the form of the usual Boi-Svarat law, but with
time-dependent current in it. Under these assumptions
results of Ref. 75 can be utilized to introduce expression
for time-dependent circular current as given by Eq.(21).
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