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Abstract : We have demonstrated numerically by using of Fourier Modal Method(FMM) that 

the interface between a metal and a uniformly magnetized two-dimensional photonic crystal 

fabricated from a transparent dielectric magneto-optical(MO) material possesses a one-way 

frequency range in which a surface plasmon-polariton(SPP) is allowed to propagate only in one 

direction. The time-reversal symmetry breaking is implied by the MO properties of the photonic 

crystal material, namely bismuth iron garnet(BIG), which may be magnetically saturated by 

fields of the order of tens of mT. The results obtained by FMM have been validated by a 

theoretical model and a standard plane-wave method that yield separately a nonreciprocal 

dispersion relation for the SPP and the band structure of the 2D MOPhC, respectively. These  

spectra represent the key characteristics assuring the functionality of the one-way waveguide 

associated with the both underlying mechanisms, namely time-reversal symmetry breaking and a 

suppression of disorder-induced backscattering. By using a generalized finite-difference time-

domain(FDTD) method, which allows studying the propagation of electromagnetic(EM) waves 

through media with a tensor MO permittivity, we studied transport properties of the one-way 

waveguide. We examined the influence of specific types of boundary conditions on one-way 

functionality in the presence of a static external magnetic field and have shown that the SPP can 

be dynamically controlled by applying a time-dependent magnetic field. By evaluating the 

Fourier transform of the energy density we have analyzed the behavior of the field patterns 

observed in the waveguide in the case of ac magnetic field, and have interpreted new and 



 2

interesting features associated with the redistribution of the EM field that may offer new 

mechanisms for dynamical control of SPP flow. 

 
 

PACS. 42.70.QS, 41.20.Jb. 

 
 
1. INTRODUCTION.  

 
     Photonic crystals as photonic analogues of semiconductors[1]-[2] offer an unprecedented 

ability to manipulate light, which has led to many applications in nanophotonics. The 

equivalence between the behavior photons in photonic crystals and that of electrons in electronic 

systems have been systems has been recently extended by Raghu and Haldane [3] who predicted 

photonic analogues of quantum chiral edge states [4]. These EM modes that are confined at the 

edge of certain 2D MO photonic crystals, which break time-reversal symmetry, can propagate in 

only one direction, determined by the direction of an applied dc magnetic field. Since the time-

reversed modes do not belong to the spectrum of the system the backscattering is completely 

suppressed due to the absence of  backpropagating modes. However, this concept relies on a TE 

gap opening around a Dirac point in a triangular lattice via time-reversal asymmetry by the use 

of gyroelectric materials. It has been argued by Wang [5] that these gyroelectric corrections are 

rather weak, and as a result, the gap is not robust against disorder, and the resulting chiral edge 

modes scatter easily into bulk modes. To realize one-way chiral edge states experimentally he 

proposed to use gyromagnetic materials having orders of magnitude stronger effects. Using a 

photonic crystal consisting of a 2D periodic arrangement of ferrite rods, Wang et al. [6] observed 

such photonic edge states in a 2D MO photonic crystal at gigahertz frequencies. Ochiai proposed 

theoretically a similar effect in a photonic graphene analogue [7]. Obviously both examples 

profit greatly from the much stronger gyromagnetic effects (on the permeability tensor) that are 
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only accessible at microwave frequencies. At infrared and optical frequencies, there are only 

much weaker gyro-electric effects available. 

The experimental demonstration of the correspondence between photonic edge states and chiral 

edge states found in integer Hall effect opened the door to practical applications of non-

reciprocal photonic crystals.  Unlike traditional designs for nonreciprocal devices in which MO 

materials have been used as the basis for optical isolators and circulators in the bulk optics 

regime, non-reciprocal photonic crystals can provide means to extend MO-based nonreciprocal 

effects to domain of  integrated photonics and allow to develop a compact integrated analogs of 

one-way electronic devices such as diodes and transistors. On the other hand, the possibility of 

attaining ultra-low-loss light propagation with both absorption and scattering losses suppressed 

may be employed in construction of the ideal optical waveguide made of low-loss hollow core 

for telecom applications [8]. The prediction of  Haldane of Raghu[3] as well as its experimental 

verification  by Wang et al.[6] are based on a strict condition that requires breaking both space- 

and time-reversal symmetry [9] in order to ensure spectral nonreciprocity ω(-k) ≠ ω(k) .  To 

satisfy limitations on symmetry several different approaches based on proper spatial arrangement 

of magnetic and dielectric components with strong anisotropy have been proposed to achieve 

non-reciprocity in 1D MOPhCs[10]-[12]. More realistic 1D configuration in which 

nonreciprocity is achieved without anisotropy and with uniform magnetization has been 

proposed recently [13]. Simultaneously, nonreciprocity attracted great deal of interest in two 

dimensional structures. Various nonreciprocal devices such as one-way waveguides [14-15] and 

circulators [16-17] were proposed. Namely, the existence of one-way frequency range in a 

waveguide formed at the interface between a semi-infinite photonic crystal and a semi-infinite 

metal region under a static magnetic field has been demonstrated theoretically [14].   A 

possibility to achieve compact optical on-chip waveguide isolation has been demonstrated by 

Takeda [15] by using nonreciprocal waveguides fabricated from a magneto-optic material in 

which spatial inversion symmetry is broken. Similarly by judiciously reducing the symmetry of 
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the motif of the uniformly magnetized 2D MOPhC a unidirectional PhC mirror has been 

proposed, that perfectly reflects the light only in one direction of propagation for a total one-way 

mirror thickness of just tens of wavelengths [18]. Besides the 2D structures including in which 

nonreciprocity is a local property of guided or defect modes [14-17], the concept of 1D 

nonreciprocal geometry proposed in Ref. 13 has been extended to a 2D geometry to aim to 

design structures with nonreciprocity as a bulk property [19].  

In several papers published recently[20-24] authors claimed nonreciprocity on the basis of   

various effects observed in the behavior electromagnetic propagation in linear, time-independent 

structures consisting of materials described by symmetric (i.e. reciprocal) permittivities and/or 

permeabilities. It is well known that the Lorentz reciprocity theorem does not allow 

nonreciprocal behavior in such structures. Therefore, assigning the observed effects to Lorentz 

nonreciprocity obviously arise from a faulty interpretation of numerical or experimental data. 

Specifically, it has been argued by one of us (M.V.) [25] that in the interpretation of the behavior 

observed in silicon photonic circuit based on asymmetric mode conversion observed 

experimentally [24] the term “nonreciprocal” has been used incorrectly. Based on the validity of 

the Lorentz nonreciporocity theorem statement we believe that the interpretation of the effects 

observed in Refs. [20-24]  merit a critical reading. 

 In this paper we propose a modified one-way waveguide that takes advantage of the one-way 

waveguide configuration considered in Ref. 14 and have shown that the SPP can be dynamically 

controlled by applying a time-dependent magnetic field.  In our configuration we introduced an 

additional flexibility that enables overcoming a major drawback of previously the reported 

design, namely the need for an unrealistically high external magnetic field (~ several T) in order 

to achieve a sizable one-way bandwidth. The system we consider consists of a transparent 

dielectric MO material and a metal region. The nonreciprocity at the interface is introduced by 

the MO properties of the photonic crystal material assumed to be  bismuth iron garnet a 

ferrimagnetic oxide that can be magnetically saturated by fields of the order of tens of mT and 



 5

that has been reported to have record MO properties from the visible throughout the near IR [26]. 

Our paper is organized as follows: In Section II we implement a simple analytical model [27] 

that is used to calculate the nonreciprocal dispersion relation of the surface plasmon-polariton 

propagating along the interface between the metal and a homogeneous medium fabricated from 

the MO material. This dispersion relation which possesses one-way frequency range is 

superimposed on the band structure of the 2D MOPhC that has been calculated by a standard 

plane-wave method. In Section III we describe a generalized FDTD algorithm that allows 

calculating the propagation of EM waves through media with a tensor magneto-optic 

permittivity. In Section IV we present the results of numerical simulations that demonstrate the 

possibility of controlling the propagation of the SPP along the MOPhC/metal interface in the 

presence of a static and/or a time-dependent external magnetic field. We conclude in Sec. V with 

a discussion of the feasibility of employing such a design to fulfill non-reciprocal optical 

functionalities of an optical isolator and an optical circulator in a competitive integrated version, 

and of possible directions for further investigations of one-way waveguide systems.   

 
 
2.  ONE-WAY WAVEGUIDE MODEL. 

   
   In this paper we consider a waveguide that is formed by the interface between a metal 

characterized by the Drude free-electron model and a 2D magneto-optic photonic crystal subject to 

an externally applied magnetic field that is perpendicular to the plane of propagation  –  see Fig. 1. 

We show that such a configuration constitutes a non-reciprocal system provided that the frequency 

of the surface plasmon frequency propagating at the interface between the metal and the MOPhC 

lies within the band gap of the photonic crystal. The design of the structure relies on both the 

presence of the surface plasmon-polariton, which is independent of time-reversal symmetry 

breaking and the 2D magneto-optic photonic crystal under a static magnetic field. The role of the 

MOPhC is two-fold: it provides the non-reciprocity that is induced by the magneto-optic material 
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from which the photonic crystal is fabricated, while its periodicity gives rise to the band gap from 

which the radiation modes are eliminated, such a waveguide suppresses disorder-induced 

backscattering.  To this end it is important to point out that the absence of backpropagating mode 

is of crucial importance in nanodevices where the effects of disorder are dramatically sensitive to 

time-reversal symmetry properties. While in reciprocal devices in the presence of disorder, the 

forward and backward propagating modes that exist at given frequency, scatter into each other and 

give rise to backreflection, which can reduce forward transmission. Such backreflection can be of 

crucial importance in slow light systems where the scattering losses dominate over all other lossy 

mechanism in the limit of vanishing group velocity vg. 

  

2. A  BAND STRUCTURE CALCULATION. 

The presence of the band gap is a key feature of the studied one-way waveguide since it prevents 

backscattering via the reciprocal radiation continuum. Therefore, information on the spectrum of 

the Bloch modes is essential for the theoretical description of the system. As has been pointed 

out in Ref. 14, in order to achieve a true one-way propagation it is crucial that within a certain 

frequency range there appears a photonic band that has a single sign for its group velocity over 

the whole first Brillouin zone. This implies a band structure asymmetry, )()( kk ωω ≠−  and the 

simultaneous satisfaction of the Bloch theorem )/()/( aa πωπω =− , since the two equal 

frequency modes belong to different bands. To describe the underlying dispersion relation of the 

one-way EM waveguide we previously implemented a MO aperiodic Fourier Modal Method that 

has been described in Ref. 28. We have shown that by using an eigenmode scattering matrix 

technique one can deduce the response of an arbitrary finite system by solving a generalized 

eigenvalue problem, which for a Fourier order of M  leads, due to the anisotropy and non-

reciprocity to the solving of  4x(2M+1) coupled first order equations. After benchmarking this 

method by using the structure proposed in Ref. 14 we calculated the dispersion relation for the 

structure shown in Fig. 1 and found that within the frequency range 0.366  <  ω/ωp < 0.376 (ωp 
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being the Drude metal bulk plasma frequency) light can propagate only along one direction.  The 

magneto-optically induced one-way frequency range appears (in a first order approximation) via 

a nonreciprocal splitting of the characteristic surface plasmon-polariton frequency, 

MOSPSP ωωω Δ±=± 0,,  with 1/0, += εωω pSP  , where the +  and - signs correspond to the 

forward and backward propagating waves with wave vector k and –k, respectively, when the 

magnetic field is applied along the z-axis.  We note that the value of the nonreciprocal splitting 

MOωΔ  obtained by using the FMM is in excellent agreement with the result obtained from an 

analytical model – see Fig. 2(b) described in Section II.  Considering the plasma frequency ωp of 

typical metals, the permittivity of typical garnets and taking into account that the MO correction 

is easily several orders of magnitude smaller than the metal plasma frequency [26], the frequency 

range of the proposed one-way waveguide belongs to the UV part of the optical spectrum. It has 

been shown that one can decrease effectively the plasma frequency by controlled corrugation of 

the metal [29]. In this way a one-way waveguide according to this layout could operate in more 

standard frequency regimes. This possibility remains to be studied, and depends obviously also 

on the spectral properties of the magneto-optical strength of the considered MO material. 

To validate the results obtained by the MO aperiodic Fourier Modal Method [28] and to obtain 

deeper physical insight into the underlying mechanisms associated with one-way propagation we 

examine the band structure of the one-way waveguide shown in Fig. 1 by using a simple 

theoretical model and the plane-wave technique. These methods treat separately both key 

mechanisms assuring the functionality of the one-way waveguide, namely time-reversal 

symmetry breaking, which gives rise to the one-way frequency range, and a suppression of 

disorder-induced backscattering due to the presence of the band gap intrinsic to the photonic 

crystal. The theoretical model which we use in the first step is based on the analysis of the non-

reciprocal surface wave in the Voigt transverse configuration [27].  We assume a simplified 

waveguide where the photonic crystal in the configuration shown in Fig. 1 is replaced by an 

uniform MO medium, and we evaluate the dispersion relation for a TM-polarized surface 
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plasmon-polariton propagating at the interface between the semi-infinite metallic and MO 

materials. In the second step we neglect an external magnetic field and calculate the band 

structure associated with the 2D photonic crystal fabricated from the MO material by using a 

standard plane-wave method. The resulting band structure is obtained when the dispersion 

relation obtained from the equation for the surface wave propagating at the interface between the 

metal and the uniform MO material is superimposed on the underlying band structure associated 

with the 2D MOPhC.  

The uniform gyrotropic material in the case of the Voigt transverse configuration is characterized 

by the permittivity tensor  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

zz

yyxy

xyxx

ε
εε
εε

ε
00

0
0

,                             (1) 

which in the presence of a static magnetic field B in the z direction  for a specific MO material 

such as e.g. bismuth iron garnet is characterized by the permittivity tensor   
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where ε = εxx = εyy= εzz is the isotropic permittivity of the material and  g = gz  is the non-zero 

component of the gyrotropic vector g = g1M , while gx = gy  = 0.   Here 1M denotes the unit vector 

along the magnetization direction and g is the gyrotropic constant that enters the expression for 

the Faraday rotation ΦF = πg/nλ, where  λ denotes the wavelength and n the refractive index. 

We note that the signs of the gyrotropic vector components change with time reversal as they are 

proportional to the magnetization unit vector. We note that the permittivity of the gyrotropic 

material is chosen to be identical with that of the 2D MOPhC.  Since the component of the field  
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associated the surface wave propagation along the metal/MO interface decays exponentially 

away from the interface we do not use effective permittivity 0)1( εεε ff MOeff −+=  , where oε   

and  MOε  corresponds to the permittivity of the vacuum and of the 2D MOPhC, respectively, and 

f denotes the filling fraction of the MO material. 

The surface wave is assumed to propagate along the x-axis with the wave number kx, and the 

attenuation of the waves in the y-direction is defined by the quantities κ1,2 , where the indices 1,2 

indicate media in the upper and lower half-spaces, respectively.  In the case of TM polarization 

we consider electric and magnetic field vectors in the form  

E(r,t) = (Ex1 , Ey1 ,0) exp[i(kx-ωt)- κ1y)]    

H(r,t) = (0, 0, Hz1) exp[i(kx-ωt)- κ1y)]  for  y>0,                                                               (3) 

while  

E(r,t) = (Ex2 , Ey2 ,0) exp[i(kx-ωt)+κ2y)]   

H(r,t) = (0, 0, Hz2) exp[i(kx-ωt)+κ2y)]   for   y < 0.                                                           (4) 

Then Maxwell’s equations for the electric-field components reveal that the TM (Ex,Ey,Hz) and 

TE (Hx,Hy,Ez)  modes are uncoupled and only TM polarized modes are affected by  the off-

diagonal antisymmetric terms εxy = -εyx  giving rise to the nonreciprocity. By using the continuity 

of the x-components of the electric field E and the normal components of the displacement 

vector D one obtains the dispersion relation for a gyrotropic surface wave in the form   
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Here we introduced xxxyxx εεεεν /2+=  and 22 /1 ωωε pm −= which characterizes a lossless metal 

described by the Drude free-electron model dielectric function, where ωp  is the plasma 

frequency.  

By using the permittivity tensor (2) with the constant components ε = 6.25 and g = 0.1 [26], [30] 

and the Drude free-electron model dielectric function with, ωp =1.381x1016 rad/s, which 

corresponds to the bulk plasma frequency of silver one obtains from Eq. (5) the dispersion 

relation for the surface plasmon-polariton. In Fig. 2(b) we present part of the dispersion relation 

which possesses one-way frequency range within which the SPP can propagate only in one 

direction. The frequency 1/ += εωω pc associated with the center of the one-way frequency 

range 0.366 < ω/ωp < 0.376 corresponds to the frequency of the SPP propagating along the 

interface in the absence of the external magnetic field.  

We note that this one-way frequency range coincides with the one obtained by the Fourier modal 

method reported by us previously [28]. Thus our theoretical model confirms that the time-

reversal symmetry giving rise to magnetic field-induced non-reciprocity and the existence of a 

one-way frequency range solely relies on the material properties of magnetic medium and 

implies unidirectional propagation of the surface plasmon-polariton. On the other hand, one has 

to keep in mind that the periodicity of the MO medium plays a key role in the system. The 

functionality of the one-way surface waveguide is fully exploited if the radiation continuum is 

suppressed. Nanostructuring the MO material into a PhC layout that introduces a forbidden 

frequency gap which contains the one-way frequency range, effectively suppresses any 

backscattering loss into radiation modes. In order to achieve a sizeable band gap one has to 

replace a MO medium by a 2D suitable periodic arrangement. Specifically, we consider a 2D 

MOPhC  - see Fig. 1 - consisting of a square array of veins fabricated from bismuth iron garnet 

characterized by  ε=6.25, where the thickness of the veins is d = 0.23a , with a the  lattice 

constant,  while the square holes are filled with air.   
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To calculate the band structure for TM polarized waves propagating in the absence of the 

external magnetic field through an infinite 2D MOPhC we employed a standard plane wave 

method implemented in the MIT software package [31]. We have found that the band structure 

along the Γ-X direction in the first Brillouin zone reveals a band gap in the frequency range 0.25 

< ω/ωp < 0.4 – see Fig. 2(a) - which accommodates the one-way frequency range 0.366 < ω/ωp < 

0.376 shown in Fig. 2(b).  A simplification introduced in our model, namely that the photonic 

crystal component of the one-way waveguide is evaluated in the absence of the external 

magnetic field is based on the two following assumptions: i. the finite system consisting of 12 

layers that has been considered in the band structure calculations [28] produces a sufficiently 

accurate approximation of the band structure of the infinite 2D photonic crystal shown in Fig. 

2(a);  ii. the band structure is not significantly affected due to the presence of the magnetic field. 

In fact, on the basis of symmetry considerations, it is easy to prove that with the magnetization 

perpendicular to the plane of the crystal and the crystal motif itself possessing space inversion 

symmetry, the TM bands of the latter will merely acquire a second order energy correction [32]. 

A band asymmetry will not appear on these PhC bands themselves. That asymmetry is entirely 

enclosed in the SPP defect mode within the gap.  

The thickness of the veins d = 0.23a, which corresponds to the filling fraction of the MO 

material f = 0.41, is chosen to comply with the two-fold role of the MOPhC, namely to provide 

sufficiently thick veins to give rise to a unidirectional frequency range due to the breaking of 

time-reversal symmetry, and simultaneously to yield the band gap which the one-way frequency 

range falls within and which eliminates the radiation modes. To accommodate the SPP one-way 

frequency range within the band gap expressed in normalized units one has to scale the lattice 

constant a.  Specifically, we combine the expression for the midgap frequency ωc = 0.396x2πc/a 

determined from the band structure calculation [28] and the frequency of the SPP propagating 

along the metal/MOPhC  interface ωc = ωp/√ε+1= ωp /√7.25 to obtain an  appropriate value of the 
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lattice constant  a = 1.066λp, where λp denotes the wavelength corresponding to the bulk plasma 

frequency ωp. 

 

2. B  GENERALIZED FDTD METHOD. 

In this Section we describe the algorithm based on the standard FDTD [33] method that has been 

employed to investigate the transport properties of the one-way EM waveguide shown in Fig. 1. 

Our method implements the tensor form of the magneto-optic permittivity using approaches based 

on the Z-transform [34] and the ADE algorithm [35]. We assume that the permittivity tensor of the 

MO material, namely bismuth iron garnet in the presence of the magnetic field B in the z direction, 

i.e. in the Voigt configuration, is given by Eq. (2).  In the case of  TM polarization we consider 

time-dependent electric and magnetic fields  E(r,t) = (Ex , Ey ,0) exp(-iωt) and  H(r,t) = (0, 0, Hz) 

exp(-iωt).  Then  the Maxwell curl equations can be written in the form 

t
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where ε0  and μ0  are the permittivity and permeability of vacuum, respectively, and the 

conductivity tensor σ reads as  
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We discretize Eqs. (7) and (8) with respect to time and space and implement them according to the 

Z-transform scheme [34].  The metallic part of our one-way waveguide configuration shown in 

Fig. 1 is described by a Drude free-electron model dielectric function, which accounts for 

dissipation, and is given by 
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where ωp  is the Drude plasma frequency and γ = 1/τe is the inverse electron relaxation time. To 

implement the frequency-dependent dielectric function given by Eq. (10) within the FDTD method 

we employed the ADE algorithm [35]. 

 

 
 

3. NUMERICAL RESULTS. 
 

3. A  ONE-WAY PROPAGATION VS.  BOUNDARY CONDITIONS IN THE 
PRESENCE OF A STATIC MAGNETIC FIELD  

 
 
     Recently, we have demonstrated on the basis of numerical simulations [28]  that our  modified 

one-way waveguide shown in Fig. 1 supports a one-way frequency range that can be achieved by a 

substantially smaller magnetic field (~101 of mT) than that used in Ref. 14. Here we extend the 

numerical investigation of this system by studying the influence of specific types of boundary 

conditions on the one-way functionality. It is worth pointing out that imposing the modified 

boundary conditions represents qualitatively different factors, in comparison to isolated scatterters 

placed inside the channel that have been shown to suppress disorder-induced backscattering [14]. 

Namely, we demonstrate how the surface mode that strongly depends on boundaries (unlike the 

channel mode considered in Ref. 20) behaves when it bounces off an “infinite-size” wall inside a 

unidirectional channel. We show that while unidirectionality is independent of the wall termination, 

the resulting light flow can be controlled when appropriate boundary conditions are imposed. 

By referring to the standard case in which perfectly matched layers (PML) are placed on both sides 

of the interface – see the left panel of Fig. 3(a), we consider two alternative configurations shown in 

Figs. 3(b), (c). Specifically, we study the waveguide, where the wall fabricated from a perfect 

conductor (PC) replaces the PML layer at the left boundary – left panel of the Fig. 3(b), and when a 
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PC wall that is perpendicular to the interface is introduced inside the waveguide configuration in 

such a way that it cuts the PhC in the middle between two successive MO garnet veins  – left panel 

of  Fig. 3(c). We note that the waveguides shown in Fig. 3 represent schematic images of the real 

computational domains used for the FDTD simulations. As we mentioned in the preceding section   

the metallic part of the waveguide is  described by the Drude free-electron model dielectric function 

given by Eq. (10) with ωp =1.381x1016 rad/s, γ=6.28x1012 rad/s, which correspond to the permittivity 

of silver. The MO material in the PhC is characterized by the permittivity tensor given by Eq. (2) 

with the constant components ε = 6.25 and g = 0.1. The thickness of the vein is d = 0.23a, with the 

lattice constant a = 1.066λp. To demonstrate unidirectional propagation we start with the reference 

configuration displayed in the left panel in Fig. 3(a). We evaluate the magnetic field distribution of 

the TE polarized propagating wave excited by a dipole point source placed between the metal and 

the MOPhC in the waveguide structure – see the right panel of Fig. 3(a). The frequency of the 

excitation source has been chosen to coincide with the midgap frequency ωc = ωp/√7.25, where ωp is 

the Drude bulk plasma frequency. The magnetic field associated with this surface mode possesses a 

localized nature, i.e. it is confined along the metal/MOPhC  interface, and  reveals negligible 

attenuation along the interface within the range of 12 periods considered in the computational 

domain, and confirms the absence of backreflection. We note that since the absorption of the 

bismuth iron garnet in the frequency range considered in comparison with the size of the off-

diagonal component of the permittivity tensor is negligible [26],[30],  we assume in our model that 

the MO material is lossless. However, our method in principle allows considering a lossy MO 

material with a realistic damping parameter. By placing the detectors at the interface in the direction 

where propagation is not allowed we found that the unidirectional wavelength range occurs within 

360 nm <  λ < 380 nm. The one-way frequency range is somewhat wider than that obtained from the 

band structure calculation 0.366 < ω/ωp < 0.376, which corresponds to the wavelength range 363 nm 

<  λ < 373 nm. Finally, we investigate how the one-way property is affected when boundary 

conditions are modified by presenting the magnetic field distribution along the metal/MOPhC 
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interface – see the right panel of Fig. 3(b) - associated with the configuration depicted in left panel of 

Fig. 3(b).  One can see that placing the perfect conductor wall in such a way that it coincides with 

the boundary of the unit cell of the photonic crystal leads to the propagation in the perpendicular 

directions along the y+ and x+-axes which would result in a complete circulation of the light along 

the boundaries (provided the PML layer on the right boundary is replaced by a PC wall).  We also 

note that the magnetic field associated with the surface mode propagating along the y+ and x+ axes 

reveals a modified confinement in comparison with that corresponding to the metal/MOPhC 

interface. This surface mode is obviously not a plasmon-polariton since it is not guided by the PEC 

interface but by the high index vein and the bandgap structure lying next to it. The fact that all the 

forward guided SPP light bouncing of the PEC wall gets channeled into this numerically induced 

PhC surface mode proves the absence of a backward channel in the SPP waveguide. In contrast to 

the previous case, the propagation of light along the metal/MOPhC interface is completely stopped 

when the PC wall is introduced inside the waveguide in such a way that it cuts the PhC  in the 

middle between the veins. By cutting the PhC in this way the previously accessible PhC surface state 

is no longer accessible since there is no continuous high index layer between the crystal and the PEC 

wall. In the right panel of Fig. 3(c) we present the distribution of the magnetic field with the midgap 

frequency ωc which, in contrast to configuration depicted in Fig. 3(b), does not show circulation 

along the metal wall and rather reveals strong scattering into the evanescent modes of the photonic 

crystal while backscattering is suppressed.  

 

 

3. B TRANSPORT AND SPECTRAL PROPERTIES IN THE PRESENCE OF A TIME-
DEPENDENT MAGNETIC FIELD. 

 

To explore alternative possibilities of controlling the propagation of the SPP within a one-way 

waveguide we also examined its dynamical properties in the presence of a time-dependent magnetic 

field. Namely we consider a harmonically oscillating field in the form B(t) = ΔBsinωet. Here ωe  is 
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the modulation frequency of the external magnetic field, the strength of the modulation ΔB is within 

the range 0 < ΔB < ΔBmax ,where ΔBmax is the amplitude of the modulation which corresponds to the 

magnetization associated with the off-diagonal term g = 1 belonging to the permittivity tensor given 

by Eq. (2).   We also inspect the case when the static magnetic field B(t) = ΔB, t<t0,  is switched off 

at some time t0, i.e. possessing the Heaviside step function behavior.  The modulation frequency of 

the external magnetic field ωe  in the former case is chosen to be an order of magnitude smaller than 

that of the frequency of the oscillating dipole that has been chosen to coincide with the midgap 

frequency ωc = 0.396 x 2πc/a in normalized units. To demonstrate the behavior of the propagating 

light in the waveguide we present in Fig. 4 two snapshots of the distribution of the energy density 

after 10 periods of modulation of a sinusoidal time-dependent external magnetic field. The 

distributions shown in Figs. 4(a) and (b) correspond to instantaneous values of the modulation B(ta) 

= 0.5ΔBmax  and B(tb) = -0.5ΔBmax, respectively, that are indicated by the full circles on the curve 

displayed in Fig. 4(c). The magnetic fields shown in Figs. 4(a),(b) can be divided into three regions 

which represent separated domains of the field distributions associated with the mode which arise 

due to the modulation of the external magnetic field. Specifically, in Fig. 4(b), which corresponds to 

an instantaneous modulation B(tb) = -0.5ΔBmax , one can identify the fraction of the energy density 

which starts to propagate (due to the opposite sign of the external magnetic field) in the reverse 

direction i.e. to the left, while in the central part, which is placed on the right side from the position 

of the oscillating dipole, is the energy density which represents the non-propagating fraction.  We 

note that this feature has not been observed in the case of a step-like modulation(not shown here). 

The field distribution on the right side of the panel in Fig. 4(b) corresponds to the part of the wave 

which curiously enough continues to propagate in the forward direction and, therefore, can be 

assigned to an induced mode which we inspect in more detail below. In Fig. 4(a) we show the 

snapshot of the energy density that corresponds to the instantaneous modulation B(ta) = 0.5ΔBmax   

that is indicated by the full circle in Fig. 4(c). One can see that the distribution of the energy density 

reveals the same behavior as that associated with the opposite sign of the modulation shown in Fig. 
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4(b) and the pattern is symmetric with respect to the line parallel with the y-axis that crosses the 

interface at the position of the dipole.  To inspect the nature of the modes observed in more detail we 

carried out a series of numerical experiments in which we studied the Fourier spectrum of the field 

within the structure. Namely, by evaluating the Fourier transform of the energy density we explored 

the dependence of the energy density on the amplitude of the modulation of the external magnetic 

field and on the frequency of the modulation. The results obtained for the case of the sinusoidal 

modulation are summarized in Fig. 5. The left panel in Fig. 5 shows part of the band structure which 

contains the intrinsic PhC band gap (light shaded region) which accommodates a unidirectional 

frequency range (dark shaded range). On the right panel we display Fourier transforms of the EM 

energy density of the modes which characterize spectra as they depend on the amplitude of the 

modulation of the external magnetic field ΔB in units related to the off-diagonal term g belonging to 

the permittivity tensor given by Eq. (2).  The spectrum on the left side of the right panel, which 

corresponds to a small modulation ~1%, reveals a single peak and thus indicates that unidirectional 

propagation is not affected. When the strength of the modulation ΔB is increased in the range 

0.01ΔBmax < ΔB < ΔBmax a number of replicas of the modes appear in the spectrum. We note that 

when the number of the induced modes exceeds two side lobes, the system enters a nonlinear regime 

characterized by an increasing number of induced modes. Simultaneously, the induced modes 

mutually interact and display a dependence of their amplitudes on the strength of the modulation ΔB. 

The number of modes within the frequency range considered can be controlled by varying the 

frequency of the modulation. We have demonstrated numerically for the frequencies lower or higher 

than the reference one ωe =0.1ωc that the number of the modes is inversely proportional to the 

frequency of the modulation(not shown here). We note that in the case of a step-like modulation of 

the external magnetic field the spectrum in comparison with sinusoidal case is significantly different, 

namely it does not contain the localized states within the stop band, and this feature is consistent 

with the absence of the central part of the distributions of the energy density shown in Figs. 4(a) and 

(b).   
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The Fourier components of the energy density shown in Fig. 5 can be used in the interpretation of 

the specific features such as, for example, the induced modes that can be distinguished in the energy 

density patterns shown in Fig. 4. For the specific case considered that is defined by the ratio between 

the modulation frequency of the external magnetic field and that of the oscillating dipole given by  

ωe = 0.1ωc there exists only a single mode with the central frequency which falls inside the 

unidirectional frequency range.  All other induced modes are either exponentially decaying waves 

with frequencies within the intrinsic PhC gap that correspond to localized modes, or are extended-

like modes with frequencies within allowed bands. We claim that the latter modes can be identified 

as induced modes shown in Figs. 4(a),(b). It is worth noting that the equidistant frequency levels in 

the spectra observed in Fig. 5 resemble a series of virtual states in quantum systems whose energy is 

equally spaced known as Wannier-Stark resonances [36] that occur in crystals in the presence of a 

uniform external electric field for an electron moving in the periodic potential. The resonances 

presented in Fig. 5 can be considered as a photonic analogue of its electronic counterpart which, in 

contrast to previously reported optical Wannier-Stark ladder systems[37]-[39], are implied to be due 

to the time-dependent modulation of the external magnetic field. 

 

 
4. DISCUSSION AND CONCLUSION.   

     
 

      We have proposed an improved concept of a one-way device which can be used for the 

design of compact integrated analogues of one-way electronic devices such as diodes and 

transistors. The configuration which we consider allows using a small external magnetic field. 

We studied the underlying dispersion relations and transport properties of the SPP in the 

presence of a static and/or time-dependent external magnetic field. In particular in the presence 

of a time-dependent  magnetic field  we found interesting features of the field pattern associated 

with the SPP that may offer new mechanisms for dynamical control of its flow. In order to 

accomplish the design that would be fully competitive with standard electronic counterparts one 
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needs to scale frequencies to the telecom range. As we mentioned in Sec. I, the operating 

frequency of the one-way waveguide considered depends on the material properties of the metal, 

and typically offers a one-way frequency range in the visible or ultraviolet parts of the spectrum. 

We have shown recently [40] that this restriction can be avoided when acoustic plasmons [41-

43] are employed instead of regular surface plasmons, and this concept enables creating a one-

way waveguide structure in the terahertz frequency range. We numerally examined the 

unidirectional transport properties of the modified one-way waveguide in the terahertz regime 

based on the propagation of the acoustic plasmons at the metal/PhC interface. Likewise we 

proved that it offers a viable alternative to propagation of the SPP at terahertz frequencies based 

on the concept of spoof plasmons [29] that has been the subject of intensive investigation 

recently. In conclusion, we have studied both theoretically and numerically a nonreciprocal 

waveguide that relies on time-reversal symmetry breaking implied by the photonic crystal 

fabricated from a MO material subjected an external magnetic field. We have shown that such a 

configuration allows achieving sizable one-way bandwidth by using significantly smaller values 

of the external magnetic field than the previously reported system [14]. We have implemented a 

simple theoretical model that validates the results obtained by the aperiodic Fourier Modal 

Method MO, a-FMM, and provides deeper physical insight into the phenomena associated with 

non-reciprocity introduced by the MO properties of the magneto-optic photonic crystal. By using 

a generalized version of the FDTD method we studied the dynamical properties associated with 

the propagation of EM waves through media with tensor magneto-optic permittivity. Namely, in 

the presence of a static external magnetic field we studied the influence of specific types of 

boundary conditions on one-way functionality. We found that the behaviour of a one-way 

waveguide is strongly affected by the presence of a time-dependent external magnetic field, 

which gives rise to new and interesting features associated with the redistribution of the EM 

field, and interpret them in terms of the Fourier transform of the EM energy density.  
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Figure Captions  

 

Figure 1 : (color online) One-way waveguide formed by a metal/MOPhC interface. The 

thickness of the vein d = 0.23a, where a is the lattice constant.  

Figure 2 : (color online) (a) The photonic band structure of the infinite 2D photonic crystal 

consisting of a square array of veins fabricated from bismuth iron garnet while the square holes 

are filled with air; (b) Nonreciprocal surface wave dispersion relation for a surface plasmon 

polariton propagating between the metal and bismuth iron garnet, which possesses a one-way 

frequency range 0.366 < ω/ωp < 0.376. 

Figure 3 : (color online) (a) One-way waveguide configuration formed by a metal/MOPhC 

interface with PML absorbers(left panel); modified waveguides(left panels) (b) with the wall 

fabricated from a perfect conductor(PC) at the left and upper boundaries, (c) with the PC wall 

embedded perpendicular to the one-way interface. On the right panels the magnetic field 

distribution of a propagating wave at the frequency ωc = ωp/√7.25 inside the gap in the 

corresponding waveguide structures are shown. 

Figure 4 : (color online) Snapshots in (a) and (b)  of the magnetic field which shows the 

redistribution of the EM energy density due to the presence of the time-dependent external 

magnetic field that correspond to the instantaneous values of the modulation B(ta) = 0.5ΔBmax  

and B(tb) = -0.5ΔBmax that are  indicated by the full circles on the curve displayed in the panel at 

the bottom of (a). 

 Figure 5 : (color online) The photonic band structure of the MOPhC with a one-way frequency 

range(left panel) vs. Fourier transforms of the EM energy density of the modes as functions of 

the strength of the modulation of the time-dependent external magnetic field ΔB.  
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FIGURE 2. 
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FIGURE 3. 
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FIGURE 4 
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FIGURE 5. 

 

 
 

 
 
 

 


