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High-Field Shubnikov-de Haas Oscillations in the Topological Insulator Bi2Te2Se.
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We report measurements of the surface Shubnikov de Haas oscillations (SdH) on crystals of the
topological insulator Bi2Te2Se. In crystals with large bulk resistivity (∼4 Ωcm at 4 K), we observe
∼15 surface SdH oscillations (to the n = 1 Landau Level) in magnetic fields B up to 45 Tesla.
Extrapolating to the limit 1/B → 0, we confirm the 1

2
-shift expected from a Dirac spectrum. The

results are consistent with a very small surface Lande g-factor.

PACS numbers: 72.15.Rn,73.25.+i,71.70.Ej,03.65.Vf

I. INTRODUCTION

In Topological Insulators, the surface electrons occupy
helical Dirac states in which the spin is locked perpen-
dicular to the momentum1–4. In three-dimensional exam-
ples, the topological surface state was observed by angle-
resolved photoemission spectroscopy (ARPES)5–8. Scan-
ning tunneling microscopy (STM) has also been applied
extensively9–11. In transport experiments, quantum os-
cillations of the surface electrons have been observed in
Bi2Te3

12, and in (Bi,Sb)Se3
13. The Quantum Hall Ef-

fect was also observed in a thick film of strained HgTe14.
However, in the Bi-based materials, progress has been
slowed by the small surface conductance Gs relative to
the bulk term Gb. We report measurements on crystals of
Bi2Te2Se in which Gs/Gb ∼1 and SdH oscillations with
large amplitudes are observed at high fields. By track-
ing the Landau Level (LL) extrema towards the quantum
limit, we observe directly the 1

2
-shift that distinguishes

the Dirac spectrum from the Schrödinger case. Our re-
sults address the question whether the spin-Zeeman en-
ergy affects the LL sequence in the quantum limit.

Landau quantization of the surface Dirac spectrum was
previously observed in Bi2Se3 by STM10,11. Nonetheless,
high-B transport experiments to approach the quantum
limit are important to search for novel states. In ad-
dition, accurate determination of the 1

2
-shift associated

with the Berry phase provides the best test for whether
the SdH oscillations arise from surface topological states
or bulk states (this requires a large B to reach the n =
1 LL).

In a magnetic field B normal to the surface, the Dirac
states are quantized into Landau Levels (LLs). As B is
increased, sequential emptying of the LLs leads to oscilla-
tions in Gs. We follow the customary practice of defining
the “index field” Bn as the field at which the Fermi en-
ergy EF lies between two LLs, i.e. at the minima in Gs

(see Sec. II). A plot of the integers n vs. 1/Bn gives a
nominally straight line with slope equal to the FS cross-
section SF .

Our interest is in the limit 1/Bn → 0. In the
Schrödinger case, there are n filled LLs below EF when
the field equals Bn (as defined). By contrast, in the Dirac
case, we have n+ 1

2
filled LLs between EF and the Dirac

point (at E = 0). The important additional 1
2
arises be-

cause the conduction band and the valence band each
contributes half of the states that make up the n = 0 LL.
Hence, as 1/B → 0, the plot of 1/Bn vs. n intercepts the
n-axis at the value γ = − 1

2
for the Dirac case, whereas the

intercept γ = 0 (mod 1) in the Schrödinger case. The 1
2
-

shift was experimentally verified for the Dirac spectrum
in graphene, and expressed equivalently as a Berry-phase
π-shift15.

II. RESISTIVITY MAXIMA OR MINIMA?

The index field Bn clearly plays the key role in pin-
ning down the - 1

2
shift in the index plot. Here we wish

to discuss the question of determining Bn when sur-
face and bulk carriers co-exist16. In the bismuth-based
systems (and other 3D topological insulators), the two-
dimensional electron gas (2DEG) on the surface is in in-
timate contact with bulk electrons which conduct a sig-
nificant fraction of the applied current. By contrast, the
entire current is carried by the 2DEG in graphene and
GaAs heterostructures. When EF falls between adjacent
LLs in the QHE regime of graphene, both the 2D con-
ductance Gs and resistance Rxx attain a deep minimum
(this follows from Ryx ≫ Rxx).
However, when a large, parallel bulk conduction chan-

nel exists (the case here), the observed conductance ma-
trix is the sum

Gij = Gs
ij +Gb

ij , (1)

where Gb
ij is the bulk conductance matrix. As the mo-

bility of the bulk carriers µb is very low (50 cm2/Vs),
bulk SdH oscillations are not observable even at 45
T. The additivity of the conductances in Eq. 1 im-
plies that the index fields still correspond to minima
in Gxx. However, because the bulk Gb

xx is dominant,
the observed resistance now attains maxima at Bn (i.e.
Rxx = Gxx/[G

2
xx + G2

xy] ∼ 1/Gxx). We find that it is
least confusing to work with Gij because its components
are additive. The results reported here provide an exper-
imental verification of this point.
In many experiments, however, the Hall response is not

available. One may still use the SdH oscillations in the
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FIG. 1: (color online) A representative set of the observed
resistivity ρ and Hall coefficient RH vs. T in Bi2Te2Se (sam-
ples identified by the numbers). The magnitudes of ρ and
RH at 4 K vary considerably between annealed samples. In
all samples, the carriers are predominantly n-type at 4 K. The
change in sign of RH near 56 K reflects the thermal activation
of bulk hole carriers across a gap of 50 mV. The largest SdH
amplitudes are observed in samples with ρ > 4 Ωcm at 4 K.

resistanceRxx, provided Bn is identified with itsmaxima.
If the wrong choice is made (identifying Bn with minima
in Rxx), a spurious - 1

2
intercept will appear for carriers

with a Schrödinger dispersion.
A second issue we address is the strength of the Zee-

man energy. Strict particle-hole symmetry implies that
it is unshifted in energy. On the other hand, a large Zee-
man energy gµBB may lead to high-field distortion of
the SdH period (g is the surface Lande g-factor and µB

the Bohr magneton). The in-field STM experiments 10,11

have shown that the n = 0 LL is unshifted up to 11 Tesla.
This test can be extended to much larger B in transport
experiments, but early SdH experiments had limited res-
olution12,13. Values of g as large as 76 have been inferred
from low-field SdH oscillations in Bi2Te2Se

17.

III. EXPERIMENTAL DETAILS

The large density of Se vacancies (electron donors) in
Bi2Se3 leads to an n-type semi-metal with a sizeable car-
rier density (nb ∼ 1018 cm−3). By contrast, as-grown
crystals of Bi2Te3 are p-type because of Te-Bi exchange
defects. In the hybrid material Bi2Te2Se, the Se ions oc-
cupy the innermost layer in each quintuplet layer. This
appears to suppress both vacancy formation and Te-Bi
exchange defects. Two groups have found that surface
SdH oscillations are observed in n-type crystals with
greatly reduced nb

18,19. Details of the crystal growth
for our samples appear in Ref.20.
Even in carefully annealed crystals, large variations in

the values of nb and the observed resistivity ρ are found20.
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FIG. 2: (color online) The resistance (per square) Rxx and
Hall conductance Gxy in Bi2Te2Se (Sample 4). Panel (a)
shows the SdH oscillations in Rxx vs. B at fields above 11 T
at T = 0.7 and 2.5 K. At 40 T, the peak-to-peak amplitude is
17 % of the observed resistance. The Hall conductance Gxy

at 0.7 K is plotted in Panel (b). In both panels, the envelope
is the smooth curve passing through the extrema points. The
background curve (dashed curve) is determined as the average
of the envelope curves.

Figure 1 shows traces of ρ vs. T for a representative set
(Samples 1, 2 and 3). At 4 K, ρ varies from 1 to 6 Ωcm.
Although all these samples exhibit SdH oscillations, the
amplitudes are largest when ρ > 4 Ωcm at 4 K.
As shown, the Hall coefficient RH changes from p to

n-type as T decreases near 56 K. We have found21 that
the Hall behavior results from the thermal activation of
holes into the bulk valence band across a “transport” gap
∆T ∼ 50 mV. Previously, we showed19 that the surface
conductance Gs in Bi2Te2Se involves carriers with a high
mobility µs of 2,800 cm2/Vs, whereas the residual bulk
conductance Gb (from an impurity band) involves n-type
carriers with much smaller mobility (µb ∼ 50 cm2/Vs).
The magnitudes of Gs inferred from kF and µs confirm
that the SdH oscillations are from surface states. Ando’s
group has shown in field-tilt experiments that the SdH
period is consistent with surface states18. Helical surface
states in an isolated Dirac band have been observed by
spin-resolved ARPES22.
The large variation in ρ may be understood by esti-

mating the number defects. If we assume that each de-
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FIG. 3: (color online) The oscillatory component of the con-
ductance ∆Gxx (Panel a) and the Hall conductance ∆Gxy

(Panel b) in Sample 4 plotted against 1/B (T = 0.7 K). The
two quantities are normalized to e2/h. The fit of the oscil-
lations (see Fig. 6) yields a surface mobility of 3,200±300
cm2/Vs, with kF ℓ = 30. In Sample 4, Gs accounts for ∼ 19%
of the total conductance at 4 K. Note the phase shift at low
B. The LL indices n = 1,2,3 are indicated for the minima of
∆Gxx.

fect (either Se vacancies or Te-Bi exchanges) contributes
a carrier, the observed nb (3×1016 cm−3 in Samples 1
and 2) corresponds to a defect density of a few parts in
10520. This stringent constraint implies that fluctuations
at this level lead to pronounced variations in nb and ρ.
Even in optimally annealed crystals, separate portions of
an exposed surface can display different ρ-T profiles. In
addition, aging of the surface results in a gradual decrease
in the amplitude of the surface quantum oscillations with
time (roughly by a factor of 2 over a few weeks for crystals
sealed in Ar atmostphere and stored in dry ice). These
factors are problematical for high-field transport experi-
ments.

To improve the odds, we cleaved crystals ∼30 minutes
before loading the high-field cryostat. Each crystal was
contacted by 3 pairs of leads so that both the resistance
tensor Rij can be measured over distinct segments. Be-
cause the 45-Tesla field cannot be reversed, we employed
the reciprocity technique of Ref.23 to extract both Rxx

and Ryx.

µ

E

FIG. 4: (color online) The index plots of 1/Bn vs. the integers
n in Sample 4. In Panel (a), Bn is obtained from the minima
of ∆Gxx. In Panel (b), the index field B′

n is inferred from the
minima of −∆Gxy. B

′

n is plotted against n+ 1

4
, where the 1

4

shift arises because the minima in d∆Gxy/dB align with the
minima in ∆Gxx. We expand the scale in Panels (c) and (d)
to show the intercepts more clearly. In Panel (c), the solid
straight line is the best fit to the extrema fields for n ≤3. The
dashed line is the best fit to all the extrema field shown in
Panel (a). The sketch shows EF in relation to the filled LLs
(solid color) in the Dirac spectrum when B = 42.0 T (arrow).

IV. QUANTUM OSCILLATIONS

We report measurements to fields of 45 T in Samples
1 and 4 (in which RH = -137 and -52 cm3/C, respec-
tively, at 4 K). The large, well-resolved SdH oscillations
in these samples provide an opportunity to investigate
the specific issues in the quantum limit. As shown in
Fig. 2a, the peak-to-peak SdH amplitude in the resis-
tance Rxx in Sample 4 grows with B until it accounts
for ∼17% of the total resistance. Because conductances
are additive, it is expedient to convert Rij to the conduc-
tance Gxx = Rxx/[R

2
xx +R2

yx] and the Hall conductance

Gxy = Ryx/[R
2
xx + R2

yx]. Gxy is plotted in Fig. 2b.
Using the envelope of the oscillations (faint curves), we
locate the midpoint between adjacent extrema to define
the background.

After removing the background, we isolate the oscilla-
tory components ∆Gxx and ∆Gxy which we plot versus
1/B in Fig. 3. The conductance ∆Gxx and Hall con-
ductance ∆Gxy are plotted in Panels (a) and (b), respec-
tively (both normalized to the quantum of conductance
e2/h). The fit of the oscillations (see Sec. V) yields a
surface mobility of 3,200 cm2/Vs and a metallicity pa-
rameter kF ℓ = 30. The interesting phase shift apparent
at low B is discussed later.
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Figure 4a plots the minima of ∆Gxx versus n (solid cir-
cles). In addition, the maxima of ∆Gxx have been plotted
as open circles (shifted by 1

2
). The best-fit straight line

gives a Fermi cross-section area SF of 48.5 T. A similar
plot based on the extrema of the Hall conductance ∆Gxy

is shown in Fig. 4b. The minima in −∆Gxy correspond
to n+ 1

4
, since the derivative −d∆Gxy/dB has minima at

n. The value of SF found from ∆Gxy (47.3 T) is consis-
tent with the previous value within our resolution. The
values of n = 1,2,3 at the minima of ∆Gxx are noted in
Fig. 3a.
In order to fix the intercept γ, we expand the scale in

Fig. 4c. The best-fit straight line passing through the
six extrema of ∆Gxx intercepts the n-axis at the value γ
= -0.61±0.03. Similarly, the high-field extrema of ∆Gxy

are plotted in Fig. 4d. The intercept for the best-fit
line occurs at γ = -0.37±0.03. Within our uncertainties,
these intercepts are significantly closer to the ideal value
γ = − 1

2
than 0 or 1. Hence, the high-field results provide

transport evidence for a Dirac spectrum for the surface
states.
Although we do not observe quantized Hall steps in

Fig. 3b (the oscillatory component rides on a large tilted
background contribution from the bulk Hall current), it
is interesting that the peak-to-peak amplitude swing of
∆Gxy is ∼0.8 e2/h per surface for n = 1, which is of the
order of the quantized Hall conductance value.
In Sample 1, the amplitudes of the observed SdH os-

cillations are considerably weaker (Fig. 5a). The index
plot of 1/Bn vs. n fits a straight line that intercepts the
n-axis at γ = -0.45±0.02, again consistent with a Dirac
spectrum.
The expanded plot shows why intense fields are needed

to fix γ reliably. By accessing the n = 1
2
index at 45 T

(Figs. 4c,d), we have reduced considerably the “spread”
of intercepts caused by the measurement uncertainties:
an intercept γ = 0 may be safely excluded. A more
subtle point is the slight curvature of the index plot. In
Fig. 4c, if we extrapolate the best-fit line (dashed) using
the total data set from 3 to 45 T, its intercept yields
-0.78, nearly exactly between -1 and - 1

2
. By contrast,

the best-fit line (bold) to the high-field extrema for n ≤3
yields an intercept (-0.61) closer to - 1

2
. This implies that

the index curve 1/Bn vs. n develops a slight curvature
in intense fields. (The curvature accounts for the low-B
phase shift apparent in the single-frequency fit in Fig.
3a.)
A possible cause of curvature is the spin-Zeeman en-

ergy. When that is included, the Hamiltonian is

H = vF n̂ · σ × π −
gµB

2
B · σ (2)

where n̂ the unit vector normal to the surface. σ are the
spin Pauli matrices, and π = p − eA is the momentum
p of the electron in a vector potential A. The LL energy
is given by

En = ±
√

2n~v2F eB + (gµBB/2)2. (3)
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FIG. 5: (color online) The oscillatory component ∆Gxx vs.
1/B (Panel a) and the index plot of 1/Bn vs. n (Panel b) in
Sample 1. The intercept γ of the best-fit line is -0.45±0.02.

The energy of the n = 0 LL increases linearly with B
instead of being unshifted. For a large g, the plot of
1/Bn vs. n will deviate from a straight line as 1/B →
0. In our experiment, we have tracked the LLs to n =
1. The weak deviation from a straight line in Fig. 4c)
is inconsistent with values of g substantially larger than
2. More importantly, however, the observed deviation is
opposite in sign to that predicted by Eq. 3. As we do not
see evidence for a deviation caused by a large g-factor,
we conclude that the the g factor of the surface states
in Bi2Te2Se are not significantly greater than 2 in the
quantum limit.

V. SURFACE CARRIER MOBILITY

In general, it is very difficult to separate Gs from Gb

reliably even at B = 0. Shubnikov de-Haas (SdH) os-
cillations – when measured with sufficient resolution –
provide a powerful way to tease out the surface conduc-
tance. Analysis of the SdH amplitude vs. B yields the
scattering rate and the surface mobility µs (equivalently
the mean-free-path ℓ). Also, the period of the oscillations
yields kF . With µs and kF known, we then obtain the
zero-B value of Gs

xx ≡ Gs using

Gs = (e2/h)kF ℓ. (4)
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FIG. 6: (Color online) The oscillatory component of the con-
ductance ∆Gxx in Sample 4 at 0.7 K (solid curve) and the fit
to Eq. 5 using only one frequency (dashed curve).

To focus on the SdH oscillations, we first determine the
envelope curves passing through the extrema of the oscil-
lations as explained in Fig. 2 of the main text. The oscil-
latory component ∆Gxx is obtained by subtracting from
Gxx the background, defined as the curve lying between
the envelope curves. (We remark that ∆Gxx does not
account for all of the surface conductance. By construc-
tion, its field-averaged value 〈∆Gxx〉B vanishes. Hence
we must have ∆Gxx < Gs

xx.)
To fit the oscillatory component ∆Gxx, we employed

the standard Lifshitz-Kosevich expression24

∆Gxx

Gxx

=

(

~ωc

2EF

)
1

2 λ

sinhλ
e−λD cos

[

2πEF

~ωc

+ ϕ

]

, (5)

with λ = 2π2kBT/~ωc and λD = 2π2kBTD/~ωc, where
ωc is the cyclotron frequency and the Dingle tempera-
ture is given by TD = ~/(2πkBτ), with τ the lifetime.
For 2D systems, we may write the SdH frequency as
2πEFB/(~ωc), which simplifies to 4π2

~ns/e, with the 2D
carrier density ns = k2F /4π (per spin). Equation 5 may
be employed in a Dirac system if we write the cyclotron
mass as mc = E/v2F .
As shown in Fig. 6, we obtain a reasonably close fit

to the observed oscillations (bold curve) using just one
frequency. The optimal fit yields for the 3 adjustable
parameters the values kF = 0.038 Å−1, ϕ = 0.65π and
TD = 8.5±1.5 K, which implies a surface mean-free-path
ℓ = 79±8 nm and mobility µs = eℓ/~kF = 3,200±300
cm2/Vs. The metallicity parameter kF ℓ equals 30. We
estimate that, in Sample 4 at B=0, Gs accounts for ∼
19% of the total observed conductance. These values are
similar to those obtained in an earlier sample, which had
a slightly larger kF (0.047 Å−1)19.
The mobility provides a strong, quantitative argument

that the SdH oscillations arise from surface states. Sup-
pose for the sake of argument that the oscillations arise

from bulk states. The SdH period is then to be identi-
fied with a 3D Fermi sphere of radius kF = 0.038 Å−1,
or a 3D carrier density of 1.86×1018 cm−3. With this
density, the inferred mobility gives a 3D resistivity ρb ∼
1.1 mΩcm at 4 K. Instead we measure ρ to be 5 Ωcm.
The large discrepancy (factor of 4,500) firmly precludes
a bulk origin for the SdH oscillations.

VI. CONCLUSIONS

The Dirac-like topological surface states detected in
ARPES and STM experiments present a host of new op-
portunities for transport experiments especially in high
magnetic fields. In bulk crystals, the presence of bulk
carriers complicate transport studies. As shown here,
quantum oscillations provide a powerful way to isolate
the surface carriers and to determine their mobility and
kF ℓ. The index plot of the integers n versus 1/Bn can
be used to confirm the π-shift associated with the Berry
phase of the surface electrons, which leads to an inter-
cept - 1

2
in the limit 1/B → 0. To access LLs at n = 1 (or

lower), we have employed fields up to 45 T. The results in
Figs. 4 and 5 provide direct confirmation of the existence
of the - 1

2
intercept expected from a Dirac disperion.

The resolution attained here provides experimental
verification of the point that the - 1

2
intercept is observed

only when Bn is identified with minima inGxx or maxima
in Rxx. (For contrast, we note a recent report25 in which
a - 1

2
intercept was obtained in high-B measurements on

exfoliated crystals of Bi2Te3. However, because Bn was
inferred from minima in the resistivity, it seems that the
- 1
2
intercept actually implies a Berry phase that is zero,

consistent with SdH oscillations from conventional bulk
carriers. )
The linearity of the index plot in Figs. 4 and 5 show

that the Lande g-factor is small (g ∼2). The n = 0 LL is
unshifted even at 45 T, consistent with STM experiments
taken at 11 T10,11.
Finally, we comment on the results in the large-B limit.

In Fig. 3a, the last maximum in ∆Gxx (at B ≃ 40 T)
corresponds to n = 1

2
(see arrow in the index plot in Fig.

4c). At this field, the Fermi energy EF is aligned with
the center of the n = 1 LL, as sketched in the inset in
Fig. 4c. In our indexing scheme, there is 1 filled LL
between EF and the Dirac Point, with 1

2
of the filled

states from the unshifted LL at the Dirac Point). Hence,
these results provide rather firm evidence for this 1

2
-shift

in the limit 1/B → 0. As the inset in Fig. 4c implies, the
interesting states in the n = 0 LL in Sample 4 become
experimentally accessible in fields higher than 45 T.
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