
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effect of thermal disorder on high figure of merit in PbTe
Hyoungchul Kim and Massoud Kaviany

Phys. Rev. B 86, 045213 — Published 23 July 2012
DOI: 10.1103/PhysRevB.86.045213

http://dx.doi.org/10.1103/PhysRevB.86.045213


LL13236B

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Submitted to Physical Review B

Roles of Thermal Disorder in High-ZT PbTe

Hyoungchul Kim and Massoud Kaviany∗

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

(Dated: May 25, 2012)

With ab initio molecular dynamics we observe thermal disorder and find band convergence with
increased temperature and close relation between thermal disorder and thermoelectric (TE) proper-
ties of p-doped PbTe. Lack of short-range order causes local overlap of valence orbitals and increase
in density-of-states near the Fermi level. Effective mass becomes temperature dependent peaking in
the converged-band regime. With classical molecular dynamics (MD) and the Green-Kubo autocor-
relation decay we find reduction in lattice thermal conductivity (suppression of short- and long-range
acoustic phonon transports). The described thermal-disorder roles lead to high TE figure-of-merit
(ZT ), and in good agreement with the experimental results.

PACS numbers: 72.20.Pa, 71.20.Nr, 63.20.Ry

I. INTRODUCTION

Thermoelectricity allows for direct conversion of heat into electrical power with significant potential for power
generation. The conversion efficiency is related to TE figure-of-merit,

ZT =
S2σeT

κe + κL
, (1)

where T , S, σe, κe, and κL are temperature, the Seebeck coefficient, electrical conductivity, and electronic and lattice
thermal conductivities. Lead telluride (PbTe), a chalcogenide with simple rocksalt structure (space group Fm3̄m, see
Fig.1), is a well-known mid-temperature TE material for power generation1–3. Its recent studies as a high-ZT material
has shown (i) resonant-state enhancement of the Seebeck effect4,5, (ii) reduced thermal conductivity using embedded
nanostructures6–8, and (iii) band convergence by dopant tuning3,9. In addition, there have been experimental and
theoretical studies of its anharmonic lattice dynamics (ferroelectric instability)10–12, however, this has not been related
to its electronic band convergence and TE properties. In this letter, we examine the thermal disorder caused PbTe
electronic band convergence, using first-principles calculations (including ab initio molecular dynamics AIMD) and
investigate the roles of disorder and convergence in the charge- and phonon-related TE properties.
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FIG. 1: (Color online) (a) Conventional cell of PbTe showing simple cubic structure. (b) The first Brillouine zone for the
primitive cell of PbTe and its high symmetry k-points.

PbTe has octahedral coordination (rocksalt structure, see Fig. 1) and its lattice dynamics manifests high degree
of anharmonicity1,10,12,13. This reduces the phonon conductivity11,13. In the thermal-disordered structure of Pb
compounds, the Pb atoms are moved further off-centered compared to the chalcogen atoms, with the following trend
among dislocation of compounds: PbS < PbSe < PbTe. Based on these, the origin of low thermal conductivity of
PbTe has been explained11–13. The abnormal temperature-dependent bandgap energy (i.e., increase with increase
in temperature) has also been explained by lattice dynamics using the Debye-Waller factor calculations (larger Pb
displacements compared to Te)14. In comparison, studies of band convergence in PbTe are very limited. Although the
existence of a second valence band edge was first proposed by Allgaier15 based on the temperature dependence of the
Hall effect, no exact physical explanation or direct evidence of the band convergence of PbTe has yet been reported16.
However, recent studies of band convergence and its analytic model have pointed to improved TE properties in PbTe6,9.
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A three-band model accounts for the non-parabolicity and anisotropy of the conduction-band and the valence-band at
L <111> points using the Kane model, while using the parabolic and isotropic behavior for the secondary valence-band
along the Σ <110> direction9,17–20.

II. CALCULATIONS OF TE TRANSPORT PROPERTIES

A. Thermal-disordered structures from AIMD

We investigate the high-temperature behavior of PbTe structure by obtaining the thermal-disordered structure of
PbTe using AIMD with the Vienna ab initio simulation package21, i.e., we find with increase in temperature anhar-
monic lattice vibration distort crystal symmetry and in turn the electrons respond to the displaced ionic positions.
Using the Born-Oppenheimer approximation, the atomic positions and velocities are updated with the Verlet algo-
rithm. The forces on ions at each configuration are used to update the ionic positions at an elapsed time step and
we iterate to calculate the trajectory of the system. The AIMD simulations are performed on supercells consisting
54-atoms (3×3×3 primitive cells) and 64-atoms (2×2×2 conventional cells) along with and the projector augmented
wave-based density functional theory DFT (also used for the static calculations)22. Considering thermal expansion
with temperature changes, we prepare the PbTe supercells with experimental results for thermally-expanded lattice
parameter, a(T ) = 6.422 + (0.9546×10−4)T + (2.615×10−8)T 2 for 293 to 973 K23. The proper cell volume at each
temperature is locked during AIMD calculations. The Brillouin zone (BZ) is sampled at only the gamma point.
We carry out constant-temperature simulations using Nosé thermostat for 6 ps (0.2 fs time steps). After reaching
equilibrium using a NV T ensemble, another calculation is performed for 11 ps (1 fs time steps), and we find good
energy convergence and temperature stability. During AIMD calculations, the Fermi-Dirac smearing factor (kBT ,
where kB is the Boltzmann constant) for each temperature was also applied to ensure reliable thermal-disordered
atomic coordinates. Finally, all temperature-dependent atomic coordinates are obtained from AIMD snapshots at
each temperature.
To verify the snapshots are represent stable structures and motion, we addressed the statistical uncertainty. As

noted above, two step approach is used to find a stable snapshot. As shown in Fig. 2, we find our second step
simulations are fully relaxed and it provides energy-converged structures with low statistical uncertainty. Every
snapshot is average of 64 displaced coordinates of PbTe and is used in the calculations of the transport properties.
(The error bars of the atomic displacement of each atom will be shown in Fig. 4, indicate the statistical uncertainty.)
These verification processes are used to ensure shots are indeed representative.
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FIG. 2: (Color online) Time-dependent evolution of radial distribution functions g(r) of PbTe supercell at T = 700 K. Each
snapshot is average of 64 displaced coordinates obtained from (a) initial, and (b) a well-converged AIMD step. Average g(r)
of all snapshots (2nd step, 0 to 11 ps) are also shown.

B. Electronic structures and transport properties

Our electronic calculations employs the full-potential linearized augmented plane-wave method24 as implemented in
the WIEN2k code25. We calculate all TE transport properties of thermal-disordered p-type PbTe using WIEN2k and
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BoltzTraP26 codes, and a MD code written for this problem. All PbTe transport properties are calculated from the
common DFT band energies (0 K). However, those DFT band energies obtained from thermally-disordered structure
(AIMD snapshots at each temperature) and the Fermi-Dirac smearing factors were also used in the transport-property
calculations. We expect/show these two temperature effects (atomic configurations and smearing) are sufficient to
illustrate the abnormal changes of PbTe properties with temperature. The muffin-tin radii are chosen to be 2.5 a.u. for
all atoms. The plane-wave cutoff Rkmax = 7.0 suffices for good convergence. Due to the large atomic masses (Pb and
Te), spin-orbit interaction is included for the relativistic effects. Convergence of the self-consistent calculation cycle is
performed using 2769 (for frozen structure) and 36 (for high-temperature structure) k-points inside the reduced BZ
to within 0.0001 Ry with a cut-off of -6.0 Ry between the valence and the core states. Since TE transport properties
are sensitive to band structures near the Fermi surface, we use the Engel-Vosko generalized gradient approximation
to avoid the underestimation of bandgap energy (a well-known problem with DFT calculations)27. The spin-orbit
interaction is also included for the relativistic effects. In the transport calculations, the original k-mesh is interpolated
onto a mesh five times as dense and the eigenenergies are found with BoltzTraP code. Within the Boltzmann transport
theory the temperature- and doping-level-dependent conductivity σe(T, µe) and the Seebeck coefficient S(T, µe) are
given by

σe,αβ(T, µe) =
1

V

∫

σe,αβ(Ee)[−
∂f◦

e (T,Ee)

∂Ee
]dEe, (2)

Sαβ =
∑

γ

(σ−1
e )αγνe,βγ , (3)

with

νe,αβ(T, µe) =
1

eTV

∫

σe,αβ(Ee)(Ee − µe)[−
∂f◦

e (T,Ee)

∂Ee
]dEe, (4)

where Ee is band energy, f◦

e is the Fermi-Dirac equilibrium distribution, µe is the chemical potential, and V is the
volume. The energy projected conductivity tensor is

σe,αβ(Ee) =
1

N

∑

i,k

e2τe,i,kve,α(i,k)ve,β(i,k)
δ(Ee − Ee,i,k)

dEe
, (5)

where i is the band index, k is the wave vector, N is a normalization depending on the number of k-points sampled
in the BZ, τi,k is a relaxation time, and ve,α(i,k) is the i component of band velocity ∇kEe(k).

C. Classical MD and lattice conductivity calculations

Previous lattice thermal conductivity results of PbTe using classical MD28,29 are limited and require special attention
due to the strong anharmonic coupling effects11. Using atomic substitutions28 and various vacancy configurations29,
reduced lattice thermal conductivity of PbTe has been predicted using classical MD. In order to consider the anhar-
monic behaviors of PbTe structures, we use the thermal-disordered configurations (from AIMD) and the potential
models appropriate for the covalent and rigid-ionic bonds. For these bonds, we use the Morse and the three-cosine
interatomic potentials with effective ionic charges12, parameterized for two-body (Pb-Te and Te-Te) and three-body
(Te-Pb-Te) interactions, i.e.,

ϕ(rij) = ϕ◦{[1− exp(−a(rij − r◦))]
2 − 1}, (6)

ϕ(θijk) = (1/2)ϕθ(cos θijk − cos θ◦)
2, (7)

where ϕ◦, rij , and θ are the dissociation energy, interatomic separation distance, and bond angle. The parameters
ϕ◦, rij , and θ are determined by fitting to both the ab-initio calculated total energy and the experimental elastic
constants. Utilizing a multi-variable fitting procedure in GULP (general utility lattice program)30, we obtain the
parameters listed in Table I. The fitted pair potential undergo GULP optimization of the crystal structure under
constant pressure. All related thermo-mechanical properties (e.g., elastic constants, bulk modulus, shear modulus,
the Grüneisen parameter, and thermal expansion coefficient) are listed in Table II and compared with the reported
experiments with good agreements.
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TABLE I: The Morse and the three cosine interatomic potential parameters for PbTe. The effective atomic charges of Pb and
Te are 0.72 and -0.7212 , respectively.

Two-body ϕ◦ (eV) a (1/Å) r◦ (Å) Three-body ϕθ (eV) θ◦ (◦)
Pb-Te 0.465 0.863 3.68 Te-Pb-Te 0.680 90.0
Te-Te 0.394 1.51 4.22

TABLE II: Comparison of bulk mechanical properties found from the interatomic potentials with those from experiments. Cij ,
B, G, γG, and α are elastic constants, bulk modulus, shear modulus, Grüneisen parameter, and thermal expansion coefficient.

C11 (GPa) C12 (GPa) C44 (GPa) B (GPa) G (GPa) γG α (10−5/K)
Reference31 128.1 4.4 15.1 - - - -
Reference32 105.3 7.0 13.2 39.8 21.4 - -
Reference33 108.0 7.7 13.4 41.1 - - -
Reference34 - - - - - 1.45 -
Reference35 - - - - - - 1.8
This work 108.0 7.5 15.1 41.0 21.0 1.66 1.78

The lattice thermal conductivity tensor κL is determined using the equilibrium MD results and the Green-Kubo
heat current autocorrelation function (HCACF) decay36–38, i.e.,

κL =
1

kBT 2V

∫

∞

0

〈q(t)q(0)〉dt, (8)

where t is time, and 〈q(t)q(0)〉 is the HCACF tensor. q is

q =
d

dt

∑

i

Eiri =
∑

i

Eiui +
1

2

∑

i,j

(Fij · ui)rij , (9)

where Ei, ri, and ui are the energy, position, and velocity vectors of particle i, and rij , and Fij are the interparticle
separation and force vectors between particle i and j. After checking the size effect of MD, average are found over all
three directions for a system consisting of 8×8×8 conventional unit cells (4096 atoms). The Verlet leapfrog algorithm
with the Nosé-Hoover thermostat and the Berendsen barostat are used in NpT ensemble for 200 ps and then in NV E
for 100 ps to reach the equilibrium. Then 3000 ps raw data are obtained for the calculation of q. The resultant
HCACFs were then directly integrated and the κL was set as the average value in the stable regime of the integral.

D. Analytic models for TE properties

The TE properties are obtained using the Onsager TE coupling and the Boltzmann transport equation with energy-
dependent relaxation time τe(Ee)

3,7,17,20,39–41. The differential electrical conductivity σd,e,α(Ee) is
42,43

σd,e,α(Ee) = e2τe(Ee)v
2
e,α(Ee)De,α(Ee)(−

∂f◦

e

∂Ee
), (10)

where τe is the relaxation time, ve,α is the group velocity, and De,α is the electronic density-of-states. Here ve,α is
given by

ve,α = {
2

mi,e,α
γα(Ee)[

dγα(Ee)

dEe
]−2}1/2, (11)

and De,α(Ee) is given by

De,α(Ee) =
21/2m

3/2
i,e,α

π2~3
γα(Ee)

1/2[
dγα(Ee)

dEe
], (12)

where ~ is the reduced Planck constant, mi,e,α(T ) is the temperature-dependent density-of-states effective mass at
α point, γL(Ee) = Ee(1 + Ee/∆Ee,g,L) for the non-parabolic bands (i.e., conduction and L-point light-hole valence),
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while γΣ(Ee) = Ee for the parabolic Σ-point heavy-hole valence band19,20,39–41. Here ∆Ee,g,α is the bandgap energy
at α point. The carrier mobility depends on τe(Ee) and effective mass mi,e,α which are also temperature dependent.
The τe(Ee) is phonon dominated (three mechanisms). The AIMD calculated mi,e,α(T ) for all bands are used in Eqs.
(11) and (12). The carrier concentration ni is

ni =

∫

∞

ECBM

De,C(Ee)f
◦

e (Ee)dEe − {

∫ EVBM,L

−∞

De,L(Ee)[1 − f◦

e (Ee)]dEe +

∫ EVBM,Σ

−∞

De,Σ(Ee)[1− f◦

e (Ee)]dEe}. (13)

The electrical conductivity σe is

σe,α =

∫

∞

0

σd,e,α(Ee)dEe and σe =
∑

α

σe,α. (14)

The Seebeck coefficient S is

Sα =
1

eT
[

∫

∞

0 σd,e,α(Ee)(Ee − EF)dEe
∫

∞

0 σd,e,α(Ee)dEe

] and S =

∑

α Sασα
∑

α σα
. (15)

The electronic thermal conductivity κe is

κe,α =
1

e2T
{

∫

∞

0

σd,e,α(Ee)(Ee − EF)
2dEe −

[
∫

∞

0 σd,e,α(Ee)(Ee − EF)dEe]
2

∫

∞

0 σd,e,α(Ee)dEe

} and κe =
∑

α

κe,α. (16)

Including the lattice thermal conductivity from MD, then ZT is obtained from Eq. (1).

III. RESULTS AND DISCUSSION

A. Lattice dynamics of thermal-disordered structures

Using AIMD and classical MD calculations, we verified the abnormal anharmonic lattice dynamics of PbTe over the
temperature range. The lattice coordinates of each atom for each time step is collected, and the results are averaged
to obtain overall radial distribution function g(r), as shown in Fig. 3. Our simulations successfully reproduce all
related lattice dynamics results10,12, peak broadening with rising temperature and non-Gaussian asymmetry.
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FIG. 3: (Color online) Calculated radial distribution functions of PbTe supercell obtained from (a) AIMD, and (b) classical
MD.

Figure 4 shows the RMS atomic off-centering (compared to 0 K) of the ions as a function of temperature. Under
the Debye harmonic approximation for isotropic lattice, the RMS displacement ∆ is36

∆ ≡< [(dj − d◦) · sj ]
2 >1/2= {

3~

mωD
[
1

4
+ (

T

TD
)2
∫ TD/T

0

xdx

ex − 1
]}1/2, (17)
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FIG. 4: (Color online) Variation of the RMS atomic local off-centering in PbTe, as a function of temperature. The Debye
harmonic model prediction is also shown, with markers for differences with AIMD results. The inset image marks this RMS
displacement.

where dj and d◦ are the displacement vectors of the atom j and the central atom, sj is the equilibrium position unit
vector of the atom j, TD is the Debye temperature, and ωD is the Debye frequency (= kBTD/~). The Debye model
is more realistic model than the Einstein model, all atoms vibrate as harmonic oscillator with one frequency (ω).
The Debye model also assumes the atoms vibrate as harmonic oscillators, but now with a distribution of frequencies
which is proportional to ω2 and extends to the Debye frequency ωD. So, we can compare the difference between the
Debye model and our AIMD predictions in terms of the anharmonicity. The results for this relation are also shown in
Fig. 4 and the contrast (shown with vertical arrows) demonstrates the anharmonic effect predicted by AIMD. Among
the symmetry-equivalent displaced sites, the amplitude of the Pb displacement is larger than that of Te atoms. This
result is highly consistent with the Debye-Waller factor calculation14, i.e., abnormal bandgap energy increase with
temperature. In addition to that, two well-known physical properties related to solid anharmonicity, the Grüneisen
parameter and thermal expansion coefficient, are also listed in Table II. The calculated results are in good agreement
with the reported values in the literatures34,35 and show the extent of anharmonicity. The vibration-mode frequencies
of Pb and Te are noticeably different, i.e., the Te ions constitute the optical frequency peak (f◦,Te ∼ 2.3 THz), while
the Pb ions dominate in the acoustic regime (f◦,Pb ∼ 1.5 THz). These features cannot be explained with the harmonic
or quasi-harmonic models for the lattice dynamics.

B. Temperature-dependent electronic structures

From the orbital model perspective, the thermal disorder causes local orbital overlapping. Figures 5(a) to (c) show
the equilibrium atomic positions at 0, 300, and 700 K along with their charge density distribution. In the presence
of thermal disorder, the orbital overlaps increase significantly with temperature. At high temperature, local charge
densities are distorted and the valence band distributions are altered. Also, the distorted De (total and partial)
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FIG. 5: (Color online) The charge densities and atomic positions of PbTe, for (a) T = 0, (b) 300, and (c) 700 K. A slice (101)
illustrates the electron-density distribution (a distance from origin of 16.8 Å). The charge density contours are for 0 (blue) to

0.289 (red) eÅ
−3

.
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FIG. 6: (Color online) (a) Electronic density-of-states for PbTe using static DFT (0 K) and AIMD calculations (300 and 700
K).(b) Projected electronic density-of-states for PbTe, showing the s, p, and d orbital contributions. Frozen (T = 0 K), and
thermal-disordered structure at 300 and 700 K are shown.

plots are shown in Fig. 6. At high temperatures the vibration amplitudes are substantial and modify the screening
properties of the electron density44. The De for the structures at 300 and 700 K are compared with the frozen
structure in Fig. 6(a). The static De(T = 0 K) is not populated at the top of the valence bands, indicating the light
hole at L-point, a non-parabolic Kane distribution at the valence edge. The onset of appearance of much larger hole
effective mass starting at ∼ -0.2 eV below the edge, is manifestation of a resonance near -0.25 eV. It results from the
heavy hole in the Σ-direction16. At 0 K, this strongly increases De(T ) below -0.2 eV and is the reason for the unusual
doping and temperature dependence of the TE power factor16. Compared to De(T = 0 K), the thermal disorder of
PbTe structure makes for unique modifications in the De(T ), as shown in Fig. 6(a). The AIMD results for De(T )
show the band convergence of the heavy and light holes at high temperatures. First, there is a transition from the
non-parabolic (low T ) to parabolic (high T ) De(T ) in a principal valence band. Second, comparing 0 and 700 K,
the sharp De(T ) peak (near -0.2 eV, 0 K) splits into two peaks (near -0.12 and -0.4 eV, 700 K). These are highly
related with the band convergence at high temperatures. The projected De plots [Fig. 6(b)] for T = 0, 300 and 700
K indicate the orbital contributions to valence band change with temperature. Also they demonstrate that the local
orbital overlaps and the valence band distortion become significant with increased temperature. For T = 0 K, the Te
5p orbital dominate contribution to the first and second valence band of PbTe. Contributions from Pb (6p and 5d)
and Te (4d and 5p) to the formation of valence band are found at higher temperatures, while contribution from Te 5p
slightly diminishes. As a result, the thermal disorder and the corresponding increase in the local orbital overlaps (i.e.,
contributions from Pb 5d, Pb 6p, and Te 4d orbitals at 700 K) alter the distribution of the valence bands of PbTe at
high temperatures.
Thermal-disorder bond anharmonicity leads to the phonon-phonon Umklapp and normal scatterings and reduction

of phonon conductivity at high temperatures11,13,44. In such rocksalt group IV-VI semiconductors, the outer s
electrons and part of the p electrons are non-bonding and are expected to form a shell of relatively large radius13.
This is the well-known reason for the high anharmonicity of the bonds in these materials and the ultimate cause of
their low lattice thermal conductivity11,13,44. Further results on thermal-disorder lattice thermal conductivity (using
classical MD) will be given in later paragraphs. The calculation of the band structures (Fig. 7) and bandgap
energies (Fig. 8) as a function of temperature are important in explaining the band convergence. The calculated
band structures of PbTe supercell provide a clear evidence for band convergence at high temperature (above 450 K),
the secondary valence band in the Σ-direction is overcome by the first valence band of L-point and PbTe becomes an
indirect bandgap. From the band structures and the electronic density-of-states, we have also verified the bandgap
energy changes with temperature (Fig. 8). The temperature dependence of the bandgap energy ∆Ee,g for PbTe is
modeled41 as ∆Ee,g = 0.19 + (0.42×10−3)T for T ≤ 400 K and ∆Ee,g = 0.358 eV for T > 400 K, in good agreement
with experimental results45. Noting that the general underestimation of the bandgap energy in DFT calculation, the
calculated results have a similar behavior as the experiment.
Such thermal disorder electronic band alterations are quantified by temperature-dependent mi,e,α(T ).

Some previous analyses treated this as constant value m◦

i,e,α, or semi-temperature dependent mi,e,α(T ) =

mi,e,α(0)[∆Ee,g,α(T )/∆Ee,g,α(0)]
1,5,7,9,19,20. Using the DFT band structure of the thermal-disordered PbTe, we cal-

culate the effective masses for each band in at BZ points and direction (fitted to parabolic model) as a function of
temperature. The band effective mass (mi,e,α)b is 1/(mi,e,α)b = (1/~2)[∂2Ee(k)/∂k

2]α (i = h or e and α is location
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in BZ)9,36. This can be written in the tensor form as

M−1
ij =

1

~2

∂2Ee(k)

∂ki∂kj
and me,e = [det|Mij |]

1/3. (18)

With the assumed parabolic Ee-k relationship at band extrema, the parabolic Ee can be generalized to

Ee = Ee,◦ +Ax(kx − k◦,x)
2 +Ay(ky − k◦,y)

2 +Az(kz − k◦,z)
2, (19)

TABLE III: The calculated longitudinal and transverse components of the effective electron (or hole) masses at the L- and
Σ-points, as a function of temperature.

T Longitudinal Transverse
(K) |me,e,L,l/me| |mh,e,L,l/me| |mh,e,Σ,l/me| |me,e,L,t/me| |mh,e,L,t/me| |mh,e,Σ,t/me|
300 0.141 0.167 1.66 0.0438 0.0563 0.243
400 0.102 0.161 1.75 0.0459 0.0704 0.168
500 0.208 0.134 2.50 0.0420 0.0592 0.198
600 0.204 0.186 2.12 0.0521 0.0876 0.162
700 0.196 0.231 1.25 0.0495 0.113 0.198
800 0.185 0.441 0.96 0.0651 0.122 0.219
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FIG. 9: (Color online) Temperature dependent the density-of-states effective masses mi,e,α(T ) obtained from DFT-AIMD. Two
regimes, single- and converged-band, are also defined. The band-alignment evolution with temperature, is also illustrated. me

is electron mass.

where coefficient Ai is constant and (k◦,x, k◦,y, k◦,z) is the coordinate of band minima/maxima. Assuming isotropic
dispersion at specific point, the effective mass tensor has equal diagonal tensor elements me,e,xx = me,e,yy = me,e,zz

(off-diagonal elements are zero m−1
e,e,ij = 2Aiδij) and all Ai’s are equal. Thus the effective mass tensor reduces to me,e

= 1/2Ai. In order to maintain such scalar calculation, each components, longitudinal and transverse, of effective mass
is calculated independently. The electron/hole pockets of PbTe can be characterized by a longitudinal mass (mi,e,l)
along the corresponding direction and two transverse masses (mi,e,t) in the plane perpendicular to the longitudinal
direction (with above parabolic-isotropic assumption). The value for each direction is quite different (i.e., longitudinal
components are always larger than transverse) and this holds for the temperature range. This is in good agreement
with a well-known feature of PbTe. The calculated effective mass components are shown in Table III. The density-of-

states effective mass mi,e,α = N
2/3
i,α (mi,e,α)b = N

2/3
i,α (mi,e,α,lm

2
i,e,α,t)

1/3
b , where Ni,α is orbital degeneracy of each valley

(Ne,L = Nh,L = 4 and Nh,Σ = 121,9,19). The results for the electron and hole mi,e,α, as a function of temperature,
are shown in Fig. 9. Note that the electron/hole effective mass at T = 0 K and band locations L- and Σ-points are
me,e,L = 0.130me, mh,e,L = 0.225me, and mh,e,Σ = 1.51me. These are very close to those reported in18. Below 450 K,
labeled as the ”single-band regime”, the L-point dominates and it is a light hole band. For 450 < T < 800 K, labeled
as the ”converged-band regime”, the heavy hole of Σ-point band become curved (be lighter) and matches with the
light hole L-point band. Simultaneously, the promotion of the holes from the light to heavy valence bands increases
mh,e,Σ in the converged regime. Thus the two bands converge and play a central role as the combined first valence
band (light and heavy hole). So, the resultant effective mass increases and peaks around 500 K. These clearly show
the band convergence effect in 450 < T < 800 K.

C. TE transport properties with thermal-disordered structures

As described in method section, the transport calculations are done using the Boltzmann transport equations
with energy-dependent relaxation time τe(Ee). Although τe(Ee) can be determined from the wave function and the
perturbation potential obtained from the first-principle calculations, this is very challenging. Here instead we use the
relaxation time models7,13,20,39,40,46 with three dominant electron scattering mechanisms40,46, namely, i) acoustic (A),
ii) optical with deformation potential couplings (DO), and iii) optical phonons with polar coupling (OP). The total
τe(Ee), using the Matthiessen rule, is

1

τe(Ee)
=
∑

i=1−3

1

τe−p,i(Ee)
, i = A,OD, or OP. (20)

The models and their parameters are given in7,13,20,39,40,46. Figure 10 shows the calculated energy-dependent relax-
ation times as a function of electron energy, for T = 300 and 700 K. At low Ee (practical doping), the electron-optical
phonons scattering with polar coupling is dominant.
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FIG. 10: (Color online) Calculated energy-dependent electron-phonon relaxation times, for 300 and 700 K. The subscripts A,
OD, and OP refer to acoustic, optical with deformation potential couplings, and optical with polar coupling.
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FIG. 11: (Color online) Predicted TE properties of PbTe, and comparison with experiments3. (a) Temperature dependence of
the Seebeck coefficient, (b) electrical conductivity, and (c) total thermal conductivity, for three different carrier concentrations
np. (d) Temperature variations of lattice thermal conductivity and its short- and long-range acoustic and optical components.
Cut-off frequency of 1.5 THz is used36–38. The amorphous-phase minimum lattice conductivity is also shown.

The calculated transport properties are illustrated in Figs. 11(a) to (c), namely S, σe, and κ = κe + κL (κe

is calculated with BoltzTraP), as a function of temperature, for three different hole concentrations np (the Fermi
energy). The available experimental results3 are also shown. The Hall factor rH and the Hall coefficient RH, np =
rH/eRH, are used in the calculations of np

9,19,20, i.e.,

rH,α =

∫

∞

0
(−

∂f◦

e

∂Ee

)γα(Ee)
3/2dEe

∫

∞

0
(−

∂f◦

e

∂Ee

)τe(Ee)
2γα(Ee)

3/2[dγα(Ee)
dEe

]−2dEe

{
∫

∞

0 (−
∂f◦

e

∂Ee

)τe(Ee)γα(Ee)3/2[
dγα(Ee)

dEe

]−1dEe}2
. (21)

The trends in the temperature dependence of the TE properties are highly correlated with the thermal-disorder
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behavior of PbTe. The Seebeck coefficient reaches a plateau after 500 K because the parabolic Σ-band is dominant
above this temperature. The reduction in the electrical conductivity and the decrease in the total thermal conductivity
also result from the thermal disorder and the effective mass changes. The heavy- and light-hole band convergence
has a dominant role in the charge transport. As the band effective mass increases, the electronic contribution to
the thermal conductivity is reduced47. The De slope and its peaks near the band edge often dictate the overall
performance, and semiconductors with heavy electron masses and multiple valleys have high ZT potential. For all
predicted properties, there are good agreement with experiments3.
The lattice thermal conductivity tensor κL is determined using the equilibrium MD results and the Green-Kubo

HCACF decay36–38. Figure 11(d) shows the predicted κL as a function of temperature, and demonstrates the suppres-
sion of the lattice thermal conductivity in the thermal-disordered structures (> 500 K). The MD results are: κL(300
K) = 3.1 and κL(700 K) = 0.9 W/m-K. The results show that κL decreases noticeably with increased temperature.
The minimum conductivity κmin

48,49 for the amorphous phase is also shown, and gives κmin ≈ 0.32 W/m-K (for T
> 2 TD, where TD,PbTe = 130 K3,13) using the PbTe properties34. Figure 11(d) includes the results reported in3

using the total thermal conductivity and the Wiedemann-Franz law. The results of the Slack relation36,37 for the
lattice thermal conductivity of crystal at high temperatures (T > 0.1TD) are also shown in Fig. 11(d), using the
properties listed in Table III. Prior to the onset of significant thermal disorder (T < 500 K), the MD results are in
good agreement with the Slack relation (1/T dependence). For T > 500 K, the thermal-disorder scattering becomes
significant the lattice thermal conductivity becomes independent of temperature. This shows that the κL in thermal-
disordered PbTe structure has two phonon transport regimes, pseudo-symmetry (single-band) and pseudo-amorphous
(converged-band). The thermal-disordered structures represent a pseudo-amorphous phase which has high temper-
ature anharmonic vibrations. In Fig. 11(d), we also decompose κL(T ) of PbTe into three components, namely, the
acoustic short-range, acoustic long-range, and optical36–38, i.e.,

κL =
1

kBV T 2

(

Ash,Aτsh,A +Alg,A +
∑

i

Bi,Oτi,O
1 + τ2i,O

)

= κL,sh,A + κL,lg,A + κL,O, (22)

where the τi is time constant, Ai and Bi are constants, and the subscripts sh, lg, A, and O refer to short-range,
long-range, acoustic, and optical. From Fig. 11(d), the short- and long-range acoustic phonon contributions are
dominant and most affected by the thermal disorder. The long-range acoustic contribution is almost saturated to the
amorphous κL limit, but short-range is still changing up to 800 K. Note that κL decreases most noticeably in the
converged-band regime.
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FIG. 12: (Color online) (a) Variations of the DFT-AIMD predicted ZT as a function of temperature for the p-type PbTe,
at three different carrier concentrations np. The corresponding experimental results3 are also shown. (b) Variation of ZT (T )
obtained from the analytic model using constant m◦

i,e and temperature-dependent mi,e(T ), for the 9.0×1019 cm−3.



12

Combining all four TE properties from DFT and MD/Green-Kubo calculations, the predicted ZT of p-doped PbTe
as a function of temperature, is shown in Fig. 12(a), along with the experimental results3. The results are for three
different carrier concentrations np, including peak performance at np = 9.0×1019 cm−3. The results for thermal-
disordered structures are in good agreement with the experiments3. In order to confirm the thermal-disorder effective
mass calculations, the results of two analytical models [constant m◦

i,e,α and temperature-dependent mi,e,α(T )] are
shown in Fig. 12(b). With the temperature-dependent effective mass (Fig. 9), the analytical model prediction
matches the DFT and the experimental results. In contrast, the constant effective mass [m◦

e,e,L = m◦

h,e,L = 0.13,

m◦

h,e,Σ = 1.3] results18, i.e., neglecting the band convergence (450 < T < 800 K) and divergence (T < 450 K and T

> 800 K), underestimate ZT over the entire temperature range. The thermal-disorder model and its effective mass
of the altered band structures reveal the high-ZT PbTe behavior.
Due to the computation resource and time limitations, the time and length domains of AIMD simulations are

limited. So, we have used the number of atoms in the periodic cell to simulate the extended system effects. In
order to reliably predict the thermal-disordered structure and its electronic structures, by minimizing the statistical
uncertainties, we use i) long enough simulation time to find well-converged structures, and ii) large number of atom
in a simulation cell to minimize the drawbacks of the periodic boundary condition. These highly correlate with
transport properties such as the phonon/electron lifetime and mean free path. Because of these limitations on the
AIMD simulaitions, we pursued quantitative verifications such as the ones on the selection of representative snapshots,
before entering the transport property calculations.

IV. CONCLUSION

In summary, we investigate the abnormal band convergence and TE properties of PbTe using ab initio thermal-
disordered structures, i.e., at high temperatures the atoms do not occupy the ideal lattice positions, thus affecting the
charge and phonon transports. Thermal disorder modifies the charge effective mass and suppresses the phonon short-
and long-range acoustic contributions, resulting in high ZT for the converged-band, pseudo-amorphous structure
(acoustic phonon suppression). Understanding of the thermal disorder provides an insight into design of improved
TE chalcogenides.
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