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ABSTRACT 

 

Theoretical calculation of defect properties, especially transition energy levels, is typically 

done by first-principles density-functional theory calculation using supercells with finite size. So 

far, three approaches—band-filling corrections (BFC), band-edge corrections (BEC), and no 

corrections (NC)—have been applied to deal with the potential inaccuracy caused by the finite 

size. In this paper, we compare these three approaches by calculating the (0/2+) ionization 

energies of the oxygen vacancy (VO) in In2O3 and ZnO. We find that a correction must be 

included whether or not the defect level is deep or shallow, especially when the defect band has a 

large dispersion. The BFC approach gives the best correction. The BEC approach works well in 

GGA calculations only for certain systems in which the bandgap underestimation is partially 

corrected by choosing effective band edges. 
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 The functionality of semiconductors and wide-bandgap oxides depends critically on the 

properties of point defects. First-principles methods based on density-functional theory (DFT) 

have been widely used to predict the behaviors of defects and to help experimental design of 

materials with desirable properties. In most modern first-principles DFT defect calculations, the 

supercell approach with periodic boundary conditions is used [1,2]. The supercell calculation can 

describe precisely the impurity states if the cell size is infinitely large. However, due to the 

current limit on the computational capacity and cost, the supercell size used in a defect 

calculation is unavoidably finite. The finite cell size inevitably introduces uncertainties [3,4] that 

should be corrected. Currently, three approaches have been proposed to deal with the 

uncertainties: band-filling correction (BFC), band-edge correction (BEC), and no correction 

(NC). The following three methods are essentially the same:  mixed k-points scheme described 

by Wei [5], which corrects the uncertainties using the energy difference between the total 

energies calculated at special k points and single electron level at Γ point; the shallow-level 

correction method described by Van de Walle and Neugebauer [6]; and the so-called BFC 

method described by Lany and Zunger [7]. The BEC approach was proposed by Zhang [8], in 

which the correction is obtained by averaging the band-edge energy over special k points. In 

many cases, results with no correction are also reported [9]. Both the BFC and BEC corrections 

have mostly been applied for shallow defects. So far, there are still issues under debate about 

these correction methods: Are these corrections necessary for qualitative description of the 

defects? Are they also needed for deep levels? What are the differences between the different 

correction methods? 

In this paper, we compare these three approaches by calculating the (0/2+) ionization 

energies of the oxygen vacancy (VO) in In2O3 and ZnO. We also compare the results obtained by 



generalized gradient approximation (GGA) and hybrid functional theory (HSE06). We find that 

in both GGA and HSE06 calculations, without correction, the VO could be a shallow donor state 

in In2O3. However, the VO level becomes deep when the correction is added. In ZnO, VO is found 

to be deep both in GGA and HSE06 calculations with and without correction. However, the 

transition energies have different values. Therefore, the corrections are necessary whether or not 

the defect level is deep or shallow, especially when the defect band has a large dispersion. The 

BFC approach gives the best correction. The BEC approach works well in the GGA calculation 

only for certain systems in which the bandgap underestimation is partially corrected. We explain 

how the corrections work based on the fundamental electronic structure. 

The calculations were performed using DFT as implemented in the VASP code [10] using the 

standard frozen-core projector augmented-wave (PAW) method [11]. The cut-off energy for basis 

functions is 400 eV. Both GGA [12] and HSE06 [13] are used for comparative studies. The 

(2×2×2) special k point [14] and Γ point are used in the total-energy calculations for comparison. 

For HSE06, the portion of the exact exchange potential has been chosen as 0.27 for In2O3 and 

0.36 for ZnO to correct their bandgaps to match experimental values. 

The formation energy for an VO in the charge state q could be written as 

ΔHf(VO,q) = E(VO,q) – E(bulk) + µO + q(EVBM,Γ + EF) ,    (1) 

where E(VO,q) and E(bulk) are total energies of supercells with a q-charged VO and without VO. 

µO, EVBM, and EF are chemical potential of oxygen, valence-band maximum (VBM) of the host, 

and the Fermi energy referred to VBM, respectively. For VO, which is usually a negative U 

system due to large q-dependent structural relaxation [15], the most interesting thermodynamic 

transition energy level εt(0/2+) is determined by the Fermi energy at which 

ΔHf(VO,0) = ΔHf(VO,2+) .        (2) 



Using Eqs. (1) and (2), the transition energy level could be calculated by 

 εt(0/2+) = [E(VO,0) − E(VO,2+)] / 2 − EVBM ,      (3) 

For a donor state, the behavior is usually described by the ionization energy εi (with εi(0/2+) and 

εt(0/2+)  written in abbreviated form as εi and εt in the following), which is calculated by 

εi = Eg − εt = ECBM – [E(VO,0) − E(VO,2+)] / 2 .     (4) 

To solve Eq. (3) or Eq. (4), one often does the supercell calculation with special k points to get 

good k-point convergence on E(VO,0) and E(VO,2+) and choose the values of VBM and 

conduction-band minimum (CBM), which is usually at Γ point [2], and the transition energy and 

ionization energy are then derived by 

εt,NC = [E(VO,0) − E(VO,2+)] / 2 − EVBM,Γ      (5a) 

εi,NC = ECBM,Γ – [E(VO,0) − E(VO,2+)] / 2 ,      (5b) 

where index NC in εt,NC  and εi,NC indicates no corrections. However, the special k point used may 

overestimate total energy of neutral VO within the finite cell. The schematic band structure 

diagrams of the shallow and deep donor states are shown in Fig. 1. A defect band should be flat 

and coverge to a single point in the limit of an infinitely large supercell, whereas it is more 

dispersive in a finite supercell.  For the neutral VO, the extra two electrons will occupy the defect 

band. In the approximations adopted in Refs. 5 and 6, the shallow level is supposed to be the 

perturbation to the host band and with the same dispersion as in Fig. 1(a), and the deep level is 

supposed to be flat within the bandgap as in Fig. 1(b). In the limit of shallow level [Fig. 1(a)], the 

extra two electrons will occupy the dispersive band with an average energy (ED,k-av = ∑i ωiεD,i, 

with ∑i ωD,i = 2). Here, ωi is the weight of the defect state at the ith k-point, and εD,i is the 

eigenvalue of the defect band at the ith k-point. In the infinite cell approximation, these two 

electrons will only occupy state at the Γ point. However, in a calculation using a finite cell size, 



the electrons will occupy the defect levels at many k points, resulting in errors. The so-called 

BFC term of 2(ED,k-av – ED,Γ), which is described as Ecorr [6] or ΔEbf [7], should be subtracted 

from the E(VO,0), and its impact on transition energy is explicitly given as Eq. (3) in Ref. [5]. 

Here, we rewrite the formula for calculating the transition and ionization energy with BFC as: 

εt,BFC = [E(VO,0) − E(VO,2+)] / 2 − EVBM,Γ − (ED,k-av − ED,Γ) ,   (6a) 

εi,BFC = ECBM,Γ – [E(VO,0) − E(VO,2+)] / 2 + (ED,k-av − ED,Γ) .    (6b) 

 

 

Fig. 1: (Color Online) The schematic band structure of the deep and shallow VO
0 states. The dashed lines represent 

the special k points used in the supercell calculations. The energy position of ECBM,k-av, ECBM,Γ, ED,k-av, and ED,Γ are 

also indicated. 

 

For the BEC method, the band edge (VBM/CBM) is also determined by the special k-point 

eigenvalues (ECBM,k-av = ∑i ωiεCBM,i and EVBM,k-av = ∑i ωiεVBM,i with ∑i ωi = 2), rather than the 

band-edge states at the Γ point (ECBM,Γ). In this way,  all the energy terms are kept, and the band 



edge in Eq. (3) and (4) is chosen as EVBM,k-av and ECBM,k-av, respectively, and the transition and 

ionization energies in the BEC approach are calculated by 

εt,BEC = [E(VO,0) − E(VO,2+)] / 2 − EVBM,k-av      (7a) 

εi,BEC = ECBM,k-av – [E(VO,0) − E(VO,2+)] / 2      (7b) 

 

 

Figure 2: (Color Online) The ionization energy in (a) In2O3 and (b) ZnO as functions of the supercell size in 

different methods, namely, Γ-point only calculation (red lines) and (2×2×2) k-points calculation with NC by Eq. (5b) 

(black lines), with BFC by Eq. (6b) (blue lines), with BEC by Eq. (7b) (green lines). The results of In2O3 are 

calculated by GGA and those of ZnO are by HSE06. 



  

Figure 3: (Color Online) The VO transition energy levels of (a) In2O3 and (b) ZnO as functions of the supercell size 

in different methods. The black and red lines are calculated transition levels directly from Eq. (5a) with NC. The 

black lines are calculated on (2×2×2) k points and the red lines are on Γ-point only. The blue lines are calculated on 

(2×2×2) k points by Eq. (6a) with BFC. The averaged CBM (ECBM,k-av) and CBM at Γ point (ECBM,Γ) are also 

indicated. The results of In2O3 are calculated by GGA and those of ZnO are by HSE06. All the energies are referred 

to EVBM,Γ (EVBM,Γ=0). 

 



     

Fig. 4: (Color Online) The band structures of (a) 80-atom In2O3 and (b) 96-atom ZnO supercells. Partial band 

structures with one VO inside the supercell are highlighted as red (gray) lines. Their eigenvalues are aligned by 

comparing the O 1s core level away from VO site with the bulk value. To clearly show the VO defect bands derived 

from conduction band, all the valence bands are labeled as black. The results of In2O3 are calculated by GGA. The 

results of ZnO are calculated by HSE06 because the VO band of ZnO is resonant inside the valence band in GGA 

calculation. 

 

Using GGA, we have calculated the VO (0/2+) transition energy level and ionization energies 

of In2O3 defined by different correction methods above using various supercell sizes. The HSE06 

is also used to check the results in the small supercell (≤80 atoms/supercell), and the physics 

discussed below does not change because the defect band structures of VO in the 80-atom 

supercell calculated by GGA and HSE06 are similar. 



 The comparison of ionizations energies: With an 80-atom supercell, our calculated 

ionization energy of VO in In2O3 using BFC (εi,BFC) is 0.18 eV (see Fig. 2), which is quite 

consistent with previous reported results using the same correction [16]. Without correction, the 

transition level of VO (εt,NC) is above ECBM,Γ (see Fig. 3) and the ionization energy (εi,NC) is −0.64 

eV, consistent with the result in Ref. [9]. With BEC, the transition energy level is referred to 

ECBM,k-av and the calculated ionization energy εi,BEC is 0.56 eV. The VO of In2O3 is predicted to be 

the resonant donor state without correction [9], which is obviously inconsistent with the band 

structure in Fig. 3(a) and localization character of VO state at Γ point (not shown). From above, 

we see that the correction is indispensible to determine the behaviors of VO in In2O3. It is 

interesting to see that the calculated εi,Γ (ionization energy with total energy calculated at only Γ 

point) by HSE06 is 0.57 eV, comparable to 0.56 eV of εi,BEC calculated by GGA. We will discuss 

this occurrence later. 

The origin of the correction term: The transition levels εi,NC calculated using (2×2×2) 

special k points and Γ point have large discrepancies, and their trends are opposite when cell size 

becomes large. For example, their difference is 0.82 eV for the 80-atom supercell and 0.39 eV 

for the 640-atom supercell. This difference is actually due to the correction term of ED,k-av−ED,Γ, 

which is about half of the VO defect band width and could be understood easily from Fig. 1(a). 

As for the VO in In2O3, the defect band is dispersive, and the band width could remain a fraction 

of an eV, even when the supercell contains hundreds of atoms [see Fig. 4(a)]. In this case, the 

correction term is essential. It was stated that such a correction was only used in shallow defect 

[6,7]. We observed here that even for some relatively deep defect, such as VO in In2O3, the 

correction is necessary because the defect band is still dispersive. The width of the defect band 



should be a criterion for the correction, not the simple estimate of the deepness or shallowness of 

the defect level. 

The difference between BFC and BEC: With an 80-stom supercell, the calculated 

ionization energies with BFC and BEC are 0.18 and 0.56 eV, respectively. Comparing Eqs. (6b) 

and (7b), the discrepancy is due to the difference between (ECBM,k-av−ECBM,Γ) and (ED,k-av−ED,Γ), 

which is roughly the difference between the band width of the lowest conduction band (CB) of 

bulk In2O3 and that of the VO defect band. As shown in Fig. 3(a), even though the VO band is 

dispersive and has similar curvature near Γ point as the bulk lowest CB, they are not exactly 

parallel, especially at k points far away from the Γ point. As a result, the band width of the lowest 

CB is wider than that of the VO band. However, in the limit of shallow defect approximation, 

which considers the defect band as the perturbation of the host band, or the infinitely large 

supercell size in which both of the band widths are close to zero, the BFC and BEC will result in 

the same ionization energy. 

 The convergence on the supercell size: When total energy is calculated using Γ-point only 

(in this case, ECBM,k-av = ECBM,Γ, EVBM,k-av = EVBM,Γ, ED,k-av = ED,Γ), the results by BFC, BEC, and 

NC are all the same. It is expected that the results by BFC and BEC using (2×2×2) special k 

points should converge to the result obtained in the infinitely large supercell faster than the one 

with no correction. As shown in Fig. 2, ionization energy for the converged result is 0.08 eV. The 

result by BFC at (2×2×2) special k points converges at the 320-atom supercell, whereas the result 

by only Γ converges at the 640-atom supercell. However, the result by BEC (2×2×2) special k 

points does not converge well, even at the 640-atom supercell (εi,BEC = 0.11 eV). 

 



The behaviors of VO in ZnO are a little different from that in In2O3. Because the VO band of 

ZnO is resonant inside the valence band in the GGA calculation, the HSE06 functional is used in 

this case. Comparing to In2O3, we observed: 

 Fast convergence on the supercell size: The convergence of εi,BFC, εi,NC, and εi,Γ on the 

supercell size are quite good using a 72-atom cell. The difference between εi,BFC and εi,Γ is 

negligible and that between εi,BFC and εi,NC is small compared to that in In2O3. The above 

difference between ZnO and In2O3 is due to different dispersion or band width of VO band in 

ZnO and In2O3. As shown in Fig. 4, the VO band in ZnO is much flatter and narrower than that in 

In2O3. 

 Qualitatively correct value without correction: In In2O3, εt,NC is above ECBM,Γ, whereas in 

ZnO, εt,NC is below ECBM,Γ, because the whole VO band in ZnO is much below the ECBM,Γ. The 

calculated εi,BFC, εi,BEC, εi,NC, and εi,Γ using a 72-atom cell are 1.32, 2.42, 1.02, and 1.31 eV, 

respectively. Because the εi,NC is close to εi,BFC and εi,Γ, the correction term is not important for 

qualitatively predicting VO in ZnO, which is also due to the flat VO band. Our calculated εi,NC is 

consistent with the reported results in Ref. [9]. 

 Overestimation by BEC: The εi,BEC is much larger since the band width of the lowest CB 

is much wider than that of VO band, and thus, the BEC is inapplicable when the defect band is 

flat. Actually, the BEC is often used in the GGA/LDA calculation and sometimes gives 

reasonable results, such as the consistency of 0.56 eV of εi,BEC by GGA and 0.57 eV by HSE06. 

One of the reasons for the sometimes reasonable results is that in GGA/LDA calculation, the 

effective band gap (ECBM,k-av− EVBM,k-av) is larger than the fundamental gap (ECBM,Γ− EVBM,Γ) and 

the band gap problem of GGA/LDA is partially corrected in the BEC approach with small 

supercell [8]. However, in hybrid calculation, since the band gap (ECBM,Γ− EVBM,Γ) has already 



been recovered, the BEC results always overestimate the transition level and ionization energy in 

this case. 

        The corrections for the finite supercell may include many aspects [3,17-20] and for each 

aspect, various schemes have been applied [4-8]. The widely scattered data in literature for a 

particular defect were often attributed to the different corrections without giving further details, 

which could lead to contradict results in defect calculation. So far, there is no systematic study or 

comparison on different schemes of each aspect. In this paper, we focused on the particular issue 

of spurious band dispersion and compared the results obtained using various correction schemes. 

For a meaningful comparison, we kept all the correction methods for other aspects the same, i.e., 

the core level was chosen as the potential alignment and no Makov-Payne correction was applied 

for charged defects, because it could induce additional errors by overestimating the interaction 

[5, 6]. By considering the spurious defect band dispersion only, our results, which are consistent 

with many of previous published results, suggest that BFC was the most reliable one.  

     The correction for the spurious defect band dispersion should be larger when the defect band 

is more dispersive. For transparent conductive oxides (TCO), which are the interest in this paper, 

the donor state of VO is considered since the lowest conduction band of TCO is mainly the 

dispersive cation s band so that the amount of correction could be non-negligible. For defects 

such as VIn and VZn, which are derived from the less dispersive valence band, the correction is 

relatively small. The calculated amount of corrections for VIn and VZn are within 0.02 eV and 

0.14 eV. 

In conclusion, we have compared different approaches for correcting the errors to calculated 

defect properties. We find that correction must be added when special k points are used in the 

calculation. Otherwise, some unphysical properties such as negative ionization energy (shallow 



level) may emerge as an artifact. If the cell size is too small, the results obtained by both BEC 

and BFC may not converge, but their results should be qualitatively correct. In GGA/LDA 

calculations, the BEC on a finite supercell could give reasonable results compared to the 

experiment, due to the bandgap correction by effective band edges. However, it overcorrects by 

predicting much deeper levels when the bandgap has already been corrected by advanced method 

such as HSE06. 
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