
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Loop current order and d-wave superconductivity: Some
observable consequences

Andrea Allais and T. Senthil
Phys. Rev. B 86, 045118 — Published 16 July 2012

DOI: 10.1103/PhysRevB.86.045118

http://dx.doi.org/10.1103/PhysRevB.86.045118


Loop current order and d-wave superconductivity: some observable consequences

Andrea Allais, and T. Senthil
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Loop current order has been reported in the pseudogap regime of a few cuprate systems in
polarized neutron scattering experiments. Here we study several observable consequences of such
order in the d-wave superconducting state at low T . The symmetries of the loop order removes

degeneracy between momenta ~k and −~k. Consequently there is a remnant Bogoliubov Fermi surface
in the superconducting state. Bounds on the possible existence of such a Fermi surface may be
placed from existing data. Detecting such a Fermi surface will be a very useful confirmation of
the existence of loop order in various cuprates. We show through explicit calculations that the
Bogoliubov Fermi surface does not display quantum oscillations in a magnetic field consistent with
natural expectations. Inclusion of a field induced spin stripe order reconstructs the Bogoliubov
Fermi surface to develop pockets which then show quantum oscillations in the superconducting
state. Difficulties with interpreting quantum oscillation data in the cuprates along these lines are
pointed out.

INTRODUCTION

In the last few years there have been several reports
in polarized neutron scattering experiments of a time re-
versal breaking magnetic order in the pseudogap regime
of the underdoped cuprates [1–3]. The order does not
break the lattice translational symmetry, and the unit cell
does not have a net magnetic dipole moment, so it is due
to higher moments. These observations are consistent
with a proposal by Varma [4–6], that, in the pseudogap
phase, the unit cell carries permanent circulating current
loops. Much remains unclear theoretically on the origin
of this loop current order as well as its implications for
understanding other aspects of cuprate phenomenology.
In this paper we describe several observable properties of
the presence of loop current order in the superconducting
state at low temperature.

Most of the experimental evidence for the presence
of loop current order is currently restricted to temper-
atures above the SC transition (we note that in [1] the
signal attributed to loop current persists into the super-
conducting state). Nevertheless we shall assume that the
order coexists with SC at low-T and explore the proper-
ties of the resultant state. As discussed earlier by Berg
et al[7], the loop current order profoundly modifies the
gapless fermionic excitations of the d-wave superconduc-
tor with immediate implication for the low-T thermody-
namics and for photoemission spectra. Specifically the
gapless nodal points of the ordinary d-wave state are con-
verted to gapless Fermi surfaces of Bogoliubov quasipar-
ticles. Existing data in the superconducting state may
then be used to put bounds on the possible existence
of such a Bogoliubov Fermi surface. Observation of the
corresponding modified low energy properties in careful
future experiments will thus be significant evidence for
the occurrence of loop current order in the low tempera-
ture SC state.

The presence of a Fermi surface of Bogoliubov quasi-
particles immediately leads to the question of whether

this SC state may support quantum oscillations. We
demonstrate through explicit calculations that it does
not. The underlying reason is that the superposition of
electron and hole excitations which makes up the Bogoli-
ubov quasiparticle changes character as we go around
the Fermi surface. On one portion it mainly has elec-
tron character which changes to hole character on a dif-
ferent portion. Consequently it is natural that there is
no Landau level formation of the low energy states. In
the cuprates, quantum oscillations are observed to set
in at high field in the mixed state [8–14]. Further there
is strong evidence for the onset of translation symme-
try breaking density wave order in a field [15–20], and it
is clearly necessary to incorporate this order to discuss
the quantum oscillations. For wavevectors appropriate
to the cuprates we show that spin density wave order
reconstructs the Bogoliubov Fermi surface to produce a
pocket where the quasiparticle has mostly electron (or
hole) character through out the Fermi surface. Conse-
quently this pocket may be expected to show quantum
oscillations. Our explicit calculations confirm this expec-
tation.

We critically evaluate the question of whether the high
field state studied in the quantum oscillation experiments
could be understood as a d-wave superconductor coexist-
ing with both loop current and stripe order, and point
out several difficulties with this idea. In particular the
strength of loop order required to reproduce the fre-
quency of the oscillation seems to be much higher than
is allowed by constraints coming from zero field experi-
ments.

Much of the theoretical discussion of loop currents in
the cuprates has emphasized the apparent importance of
multiple bands. However as pointed out in Ref. 21, a
single band model already can support a loop current
pattern that is identical in symmetry to the popular cur-
rent pattern of Varma. We point out here that in the
standard single band model of hole doped cuprates with
a first neighbor hopping t and second neighbor hopping
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t′, the ratio t′/t is negative. This means that an elemen-
tary triangular loop inside the unit cell is frustrated and
this may provide some energetic gain in stabilizing the
loop pattern. For the electron-doped cuprates t′/t > 0
and the absence of frustration suggests that the loop or-
der may also be absent. It will thus be interesting to
search for loop order in the electron doped cuprates.

In this paper we simply take a phenomenological point
of view and avoid the derivation of loop current order
from a microscopical model.

BOGOLIUBOV FERMI SURFACE IN THE
SUPERCONDUCTOR

We will phrase our discussion in terms of the usual one
band model though our results depend only on the sym-
metry of the state and should thus hold more generally.
Deep in the superconducting state the quasiparticle dis-
persion is expected to be modeled well by a quadratic
Bogoliubov Hamiltonian:

H =
∑
k

[
εk
∑
σ

c†kσckσ + ∆kc
†
k↑c
†
−k↓ + h.c.

]
. (1)

We take ∆k ∼ 2∆0 (cos kx − cos ky). The ‘normal’ state
dispersion is taken to be that of a tight binding model
with nearest and second neighbor hopping which incor-
porates the loop current pattern.

H0 = −
∑
x,σ,ν

tνc
†
x+ν,σcx,σ . (2)

Here ν labels the neighbors, with t−ν = t?ν , and, as a
special case, t0 = µ. The current operator in this hopping
Hamiltonian is given by the usual expression

jν(x) = i
∑
σ

(tνc
†
x+ν,σcx,σ − h.c.) . (3)

In our case, we choose to have, with reference to the dia-
gram above, t1, t2 and t4 real, and to give an imaginary
part to t3. This choice yields the current pattern shown.
In addition to time reversal, this pattern breaks reflection
about x̂,ŷ and x̂ + ŷ, rotations of π/2 about a site, but
preserves reflection about x̂ − ŷ. The expectation value
of the loop current (in the “normal” state) is given by

〈j〉 = 4t1

∫
d−2k θ (−εk) sin kx . (4)

Figure 1. d-wave superconductivity with loop current order.
In solid black the normal state Fermi surface, and in dashed
black its conjugate under k → −k. On the left, blue re-
gions have electron-like excitations, white regions have hole-
like excitations, and the red line is the quasiparticle Fermi
surface. On the right, the electron spectral function at the
chemical potential. The upper plots have v∆ < λ, the lower
plots have v∆ > λ. ∆0 = 0.1, t1 = t2 = 1, t4 = 0.35;
µ = −1.18, t3 = −0.35− 0.15i for the upper plots, µ = −1.2,
t3 = −0.35− 0.08i for the lower.

The simultaneous breaking of both time reversal and
inversion implies that εk 6= ε−k. Then the supercon-
ducting pairing does not fully gap out the Fermi sur-
face: close to the nodes, where the superconducting or-
der parameter is small, there remain pockets of gapless
excitations[7]. To be more definite, the spectrum of the
Bogoliubov quasiparticles is

E±k = εak ± E0
k , E0

k =

√
(εsk)

2
+ |∆k|2 , (5)

where

εsk =
εk + ε−k

2
, εak =

εk − ε−k
2

. (6)

The presence of the extra term εak, that would be for-
bidden by inversion/time reversal symmetries, allows the
existence of gapless surfaces (E±k = 0) in the supercon-
ducting state. This is illustrated in a typical example in
fig. 1.

Since the symmetry breaking is a small effect, it is rea-
sonable to expand the quasiparticle energy about one of
the four nodal points k0 where both εsk0 = 0 and ∆k0 = 0.
There are four such points, as shown in fig. 1. Let us
write k = k0 + q, and let us call X̂ = x̂+ŷ√

2
(the nodal
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direction for points 1 and 2), Ŷ = x̂−ŷ√
2

the direction or-

thogonal to X. At point 1 and 2 we have, to first order
in |q|

E±k0+q = εak0 ±
√
v2
F q

2
X + v2

∆q
2
Y , (7)

where vF = |∇εsk0 |, v∆ = |∇∆k0 |. More in general v∆

and vF should be considered phenomenological param-
eters in a low energy theory of the system. The quasi-
particle Fermi surface is given by the zeros of (7), and is
an ellipse, within this approximation. At point 3 and 4
εak0 = 0 , so we have

E±k0+q = λqY ±
√
v2
F q

2
Y + v2

∆q
2
X , (8)

where λ = |∇εak0 |. In this case, if v∆ > λ, the Eqp van-
ishes at the single point k0, whereas, if v∆ < λ, the zeros
of Eqp are two lines that cross at k0. From fig. 1 we see
that they close and form a “bowtie”. Note that in the
previous case we could disregard the term proportional
to λ because it had to be compared with vF , and could be
neglected, under the hypotesis that the symmetry break-
ing is a small effect.

Within this approximation, it is easy to compute the
density of states at the chemical potential. Further in
the case (which we assume) v∆ > λ this density of states
comes entirely from the Fermi surfaces 1 and 2

DFS = 2

∫
d−2k δ(Ek) =

εak0
πvF v∆~2

, (9)

The specific heat per mole for a n-layer cuprate material
is then

CFSv = γT , γ =
πna2εak0kBR

3vF v∆~2
. (10)

A residual γ term in the specific heat is routinely mea-
sured in the superconducting cuprates at low-T and is
usually interpreted within dirty d-wave theory. However
in YBCO the residual γ is known to be roughly twice as
large as in LSCO even though YBCO is much cleaner.
Thus impurity effects on d-wave nodes may not entirely
account for the observed γ value. Another possibility
is a contribution from localized chain electrons. If we
take the loop order seriously there is a residual density of
states coming from the Bogoliubov Fermi surface which
also contributes to γ. An upper bound on εak0 is obtained

by attributing the full measured value γ = 2mJ/mol K2

in underdoped ortho-II YBCO [14] to this contribution.
Using the estimates vF ≈ 1.8 eV Å and v∆ ≈ 0.1 vF we
obtain (with n = 2 for YBCO) εak0 / 30 meV. We ex-
pect that a good fraction of the measured zero field γ will
come from the other two nodal points (within the usual
dirty d-wave theory) and chain electrons so the actual
value of εak0 will be a fraction of this upper bound.

From this upper bound we can also get the magnetic
moment M per triangle, using (4).

M

µB
=
a2me

~2
〈j〉 / 0.02 . (11)

This is far smaller than the measured value M/µB ≈ 0.1
[2]. However this may not be a very meaningful compar-
ison. The measured moment points at an angle to the
Cu-O plane and cannot be due to a pure orbital current
that lives in the plane. Nevertheless it emphasizes the
qualitative point that the large value of the moments re-
ported in the experiments may lead to sizeable effects on
the quasiparticle dispersion in the superconducting state
which can then be looked for.

It is instructive to calculate the electron spectral func-
tion in the SC coexisting with loop current order.

Ak(ω) =
1

2

(
1 +

εsk
E0
k

)
δ(ω − E+

k ) +

1

2

(
1− εsk

E0
k

)
δ(ω − E−k )

(12)

At zero frequency, it has weight only on the quasiparticle
Fermi surface, and the spectral weight varies from Z = 1
at the nodal crossing of the normal state Fermi surface,
to Z = 0 at the nodal crossing of its reflection conjugate.
This is also illustrated in fig. 1, right. In a real sam-
ple there would be domains realizing each inequivalent
broken symmetry pattern, so real ARPES data would
show a superposition with equal weight of all 4 rotated
and reflected images of fig. 1, with or without “bowties”
depending on λ/v∆. For a scan along the nodal direc-
tion this will show up as two nodal quasiparticle peaks
that are split in momentum by an amount ∆k = εak0/vF .

Our earlier bound for εak0 then gives ∆k / 0.02 Å
−1

. In-
terestingly a splitting of the nodal quasiparticle peak of
roughly one third this magnitude was seen a number of
years back in high resolution ARPES in underdoped Bi-
2212 [22, 23], and was interpreted as a bilayer splitting.
Such bilayer splitting is a bit surprising due to the well
known suppression of the c-axis hopping matrix element
along the nodal direction. Our results obviously suggest
an alternate interpretation in terms of the two pieces of
the Bogoliuibov Fermi surface expected if loop order co-
exists with superconductivity. An interesting test of this
interpretation will be to look for similar splitting in sin-
gle layer cuprates, in particular Hg-1201 where loop order
has also been reported in the normal state [3].

EFFECT OF A MAGNETIC FIELD

It is interesting to consider the behavior in a perpendic-
ular magnetic field H. At low field the density of states of
the Bogoliuibov Fermi surface will only have a weak de-
pendence on H while the nodal quasiparticles associated
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Figure 2. Electron spectral function at the chemical potential.
The upper plots do not have loop current order, the lower
ones do. In all plots is present SDW order with period Q =
(3π/4, π), amplitude S = 0.2. The plots on the right also have
d-wave SC order. For the upper plots µ = −1.2, t1 = t2 = 1,
t3 = t4 = −0.35. For the lower, µ = −1.11, t3 = −0.35−0.3i.

.

with k-points 3, 4 will give the usual
√
H behavior. Thus

the full γ coefficient in the specific heat will have a field
dependent part that increases as

√
H. The presence of a

gapless Bogoliubov Fermi surface immediately raises the
question of whether a dSC coexisting with loop order will
show quantum oscillations at low magnetic fields. Bo-
goliubov quasiparticles are superpositions of electron and
hole and hence have indefinte charge. As we go around
this Fermi surface the quasiparticles change in character
from predominantly hole-like to predominantly electron-
like, as displayed in Fig. 1. Consequently, in a magnetic
field, we do not expect the Bogoliubov Fermi surface to
form Landau levels at the chemical potential and show
quantum oscillations. We confirm this expectation with
explicit calculations.

In the cuprates, however, there is increasing evidence
for the nucleation of translation symmetry breaking order
(stripes) in a magnetic field. This is seen most directly
in recent high field NMR experiments [19] in the form of
static period-4 charge order. Previously neutron exper-
iments had suggested the presence of field-induced spin
stripe order [15–18]. The NMR experiments do not de-
tect any static spin stripe order but this may conceivably
be due to the slower time scale of NMR as compared to
neutron scattering. In any case a meaningful discussion
of quantum oscillations in the cuprates must take into

account the presence of field induced broken translation
symmetry. We therefore consider the effects of stripe or-
der on the ‘normal’ state and Bogoliubov Fermi surfaces.

The most important observation is that if the normal
state Fermi surface gets reconstructed by spin density
wave order, then it can give rise to quantum oscillations
even in the superconducting state, since, in some regions,
it is protected from the SC gap. This phenomenon is ev-
ident from fig. 2. The plots on the left display Fermi
pockets due to recostruction of the normal state Fermi
surface from SDW order. The lower plots have loop cur-
rent order, the upper do not. On the right, d-wave su-
perconductivity is introduced. When there is no loop
current order, the pockets get rapidly gapped, whereas,
in presence of the loop current order, they are able to
survive superconductivity.

To conclusively verify that the SDW pockets, protected
by the loop current order, can cause quantum oscilla-
tions, we coupled the system to an external magnetic
field. We use the transfer matrix method of Ref. 24
to directly calculate the density of states at the chemi-
cal potential. Our calculations are done on strips of size
50 × 1000. Fig. 3 shows a comparison between the sys-
tems with and without loop current order. In the first
case, quantum oscillations are immediately killed by a
very small SC order parameter, whereas, when loop or-
der is present, they are able to survive up to modestly
large values of ∆0. In this case, it is also noticeable that
the period of the oscillations increases with ∆0. In gen-
eral, the size of the orbit, as can be deduced from the
oscillation period through the Onsager relation, is com-
patible with the size of the pocket as seen in the spectral
function.

Though the above shows that a superconducting state
with coexisting loop current and spin stripe order can
show quantum oscillations, there are a number of difficul-
ties with postulating that this is what is actually going on
the cuprate experiments. First, at least part of the high
field data showing quantum oscillations is in the resistive
(not superconducting) state. This may be dealt with by
assuming that the high field state is a vortex liquid which
(on the time scales of a cyclotron orbit) retains the elec-
tronic structure of the superconductor. Similarly, it is
presumably enough that spin density wave order exist on
the same time scales but need not be truly static. The
most serious difficulty is quantitative. The size of the or-
bit is more or less bounded by the size of the quasiparticle
Fermi surface. In order to be able to observe oscillation
compatible with a 2 % orbit, as seen in experiments, a
very large symmetry breaking is needed. For the plot in
fig. 3, εak0 = 41 meV, assuming t = 100 meV. Such a
large value of εak0 is in conflict with the upper bound dis-
cussed in the previous section coming from the measured
zero field specific heat. Smaller values of εak0 consistent
with the bound produce pockets that give far too small
for they to be directly responsible for the observed oscil-



5

0.0

0.1

0.2

0.3

0.4
D

.o
.S

.
aL

0.0

0.1

0.2

0.3

0.4

D
.o

.S
.

bL

0 20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

Ñ � Ie a2 BM

D
.o

.S
.

cL

0.000 0.005 0.010 0.015 0.020 0.025
0

1

2

3

4

5

6

Sextr � SBz

A
m

p
li

tu
d

e

dL

Figure 3. Density of states at the chemical potential as a
function of 1/B, for several values of ∆0. a) SDW order, no
loop current order. b) loop current order, no SDW order. c)
SDW and loop current order. d) Fourier transform of c), as a
function of the orbit surface. The value of the superconduct-
ing order parameter increases from red to blue, and takes
values ∆0 = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. µ = −1.03,
t1 = t2 = 1, t3 = −0.35 − 0.37i, t4 = −0.35. The lattice
has size 1000× 50

lation phenomena.

DISCUSSION

We studied the effects of loop current order on the d-
wave superconducting state and showed that these have
several observable consequences. In light of the large
moments reported in the experiments we may expect

that its effects on the superconducting quasiparticles are
large enough to be observed. The most important conse-
quences are the presence of a Bogoliubov Fermi surface[7]
leading to a residual density of states at the chemical po-
tential and the presence of split nodal quasiparticle peaks
in photoemission spectra. We obtained bounds on these
effects from existing data on YBCO. It will be interesting
to obtain similar bounds on Hg-1201 where loop order has
also been reported by neutron experiments. As this ma-
terial is a single layer cuprate photoemission evidence of
nodal quasiparticle splitting will be particularly striking
as there is no possible confusion with bilayer splitting.

Though the neutron experiments find evidence for loop
current order, such order has thus far not been seen in
local probes such as NMR[25] or µSR[26]. Thus experi-
mental detection of the Bogoliubov Fermi surface at low
T in the superconductor, though indirect, will be a strik-
ing confirmation of the presence of loop order in various
cuprates.

We discussed the possibility of quantum oscillations
aided by the presence of loop order in the superconduct-
ing state. We showed that the Bogoliubov Fermi surface
does not by itself have quantum oscillations but if it is
reconstructed by spin stripe order it does. However for
a quantitative comparison with the experiments we need
to invoke a loop order that is bigger than the bounds
derived from zero field specific heat measurements.

Finally, we note that a residual Bogoliubov Fermi sur-
face is also present if the superconductivity involves non-
zero momentum pairing, as in FFLO states or the spe-
cial case of the π-striped superconductor discussed for
La2−xBaxCuO4. The possibility of quantum oscillations
in such a state has been studied recently by Zelli et al.
[27].

We thank John Berlinsky, Tim Chen, Catherine Kallin,
Patrick Lee, Subir Sachdev, L. Taillefer, and Chandra
Varma for useful discussions. TS was supported by NSF
Grant DMR-1005434.
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OUTLINE OF THE METHODS USED

Quantum oscillations

Our method follows closely [24]. In order to write the
BCS hamiltonian in a manifestly gauge invariant way, we
introduce two vector fields A and v, that live on the links
of the lattice. The vector potential Aν(x) is determined,
up to gauge transformations, by its line integral∑

(x,ν)∈∂S

Aν(x) =
eBS

~
, (13)

where S is any surface bounded by lattice links. The field
vν(x) is the phase gradient of a gas of vortices, whose co-
ordinates are fixed, and is determined, again up to gauge
transformations, by∑

(x,ν)∈∂S

vν(x) = 2π × nS , (14)

where nS is the number of vortices inside S. Using v, we
can also introduce a phase field

eiφ(x) = exp

[
i

x∑
y=x0

vν(y)

]
. (15)

which is well defined, since the line integrals along differ-
ent paths from x0 to x differ by 2π. We can then write
the hamiltonian as

H =
∑
x,ν

[
− tνeiAν(x)

(
c†x+ν↑cx↑ + c†x+ν↓cx↓

)
−

∆νe
iφ(x)+ i

2 vν(x)c†x+ν↑c
†
x↓ − h.c.+

S cosQ · x
(
c†x↑cx↑ − c

†
x↓cx↓

) ]
,

(16)

The hamiltonian is invariant under the following gauge
transformation:

cx,σ → eiθ(x)cx,σ

Aν(x) → Aν(x)− θ(x) + θ(x+ ν)

vν(x) → vν(x)− 2θ(x) + 2θ(x+ ν)

φ(x) → φ+ 2θ(x) ,

(17)

so the hamiltonian effectively depends only on the gauge
invariant field

wν(x) = vν(x)− 2Aν(x) , (18)

and on the location of the vortices. In a variational ap-
proach, we should choose these quantities so as to min-
imize the ground state energy of (16), compatibly with
the constraints (13), (14). Since this is computationally
unfeasible, in an effective approach, we determine the
locations ri of the vortices by minimizing

Uv =
∑
i,j

1

|ri − rj |
, (19)
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Figure 4. Example of background fields configuration near a
vortex. On the left, the field v. On the right, the field w after
energy minimization.

and we determine wν by minimizing

Uw =
∑
x,ν

[vν(x)− 2Aν(x)]
2
. (20)

More precisely, we start with some choice of A and v that
satisfy (13), (14), then we send Aν(x)→ Aν(x)−α(x) +
α(x+ν), with α chosen so as to minimize (20). Since Uw
is quadratic in α, we can minimize it by solving a linear
system.

After performing the particle hole transformation

cx,↑ = dx,↑ , cx,↓ = d†x,↓ , (21)

the hamiltonian can be cast in the form

H =
∑

(x1σ1),(x2σ2)

h(x1σ1),(x2σ2)d
†
x1σ1

dx2σ2
, (22)

so that the density of states can be written as

D(ω) = Tr [δ(h− ω)] =
1

π
ImTr

[
(h− ω − i0+)−1

]
.

(23)
We choose periodic boundary conditions in the y di-

rection, with Ny sites, and open boundary conditions in
the x direction, with Nx sites. This restricts the allowed
configurations of v to those whose line integral along the
y direction is a multiple of 2π, so that the phase φ is well
defined on the cylinder. With this choice of boundary
conditions, if the indices (x, y, σ) are ordered with the la-
bel x changing slowest, the matrix h is block-tridiagonal,
with blocks of size 2Ny, labelled by x ∈ {1, . . . , Nx}:

h =


h11 t12 0 . . .
t21 h22 t23 . . .
0 t32 h22 . . .
...

...
...

 . (24)

The diagonal blocks of G = h−1 can be efficiently
(time ∼ NxN

3
y ) calculated with the following iterative

algorithm

L1 = 0 , Lx+1 = tx+1,x (hx,x − Lx)
−1
tx,x+1

RNx = 0 , Rx−1 = tx−1,x (hx,x −Rx)
−1
tx,x−1

Gx,x = (hx,x − Lx −Rx)
−1

.

(25)

Spectral functions

At zero magnetic field, the system is translationally
invariant, and it is interesting to look at the electron
spectral function

Akσ(ω) = 〈gd| ckσδ(ω −H)c†kσ |gd〉

+ 〈gd| c†kσδ(ω +H)ckσ |gd〉 ,
(26)

where H is the many body hamiltonian, and |gd〉 is its
ground state, which is taken to have zero energy. With H
as in (16), we can rewrite (26) in terms of single particle
quantities

Ak↑(ω) = 〈k, ↑| δ(ω − h) |k, ↑〉
Ak↓(ω) = 〈−k, ↓| δ(−ω − h) |−k, ↓〉 ,

(27)

where h is the same as in (22), with the understanding

h(x1σ1),(x2σ2) = 〈x1, σ1|h |x2, σ2〉 ,

|k, σ〉 =
∑
x

e−ikx |x, σ〉 . (28)

When there is no SDW order, we have

h =
∑
k

[
|k, ↑〉
|k, ↓〉

] [
εk ∆k

∆?
k −ε−k

] [
〈k, ↑| 〈k, ↓|

]
(29)

When there is no superconductivity (here we suppress
the spin index σ), but commensurate SDW order, so that
2Q = (2πm, 2πn), then

h =
∑
k

[
|k〉

|k +Q〉

] [
εk S
S εk+Q

] [
〈k| 〈k +Q|

]
, (30)

where the sum runs over only half of the Brillouin zone.
For higher order commensuration, pQ = (2πm, 2πn), a
p × p matrix can be introduced on the lines above, and
the sum must run over a fraction 1/p of the brilluin zone.
However, this approach becomes rapidly unfeasible as p
grows. A reasonable approximation is to introduce fic-
tional copies
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h =
∑
k



...
|k,−1〉
|k〉
|k,+1〉

...





...
...

...
. . . εk−Q S 0 . . .
. . . S εk S . . .
. . . 0 S εk+Q . . .

...
...

...


[
. . . 〈k,−1| 〈k| 〈k,+1| . . .

]
, (31)

and have the sum run over the entire Brilloin zone. Usu-
ally one or two copies are sufficient. When both SC and
SDW orders are present, the matrix structures of (29)
and (30) or (31) get combined in a straightforward way.

We evaluate (28) by diagonalizing these small matrices
and smearing the delta function to a narrow Lorentzian.

For fig. 1 we defined “particleness” as

|uk↑|2 = 〈k, ↑| θ(−h) |k, ↑〉
|uk↓|2 = 〈−k, ↓| θ(h) |−k, ↓〉 .

(32)


