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Various schemes for correcting the finite-size supercell errors in the case of charged defect calcu-
lations are analyzed and their performance for a series of defect systems is compared. We focus on
the schemes proposed by Makov and Payne (MP), Freysoldt, Neugebauer, and Van de Walle (FNV),
and Lany and Zunger (LZ). The role of the potential alignment is also assessed. We demonstrate a
connection between the defect charge distribution and the potential alignment, which establishes a
relation between the MP and FNV schemes. Calculations are performed using supercells of various
sizes and the corrected formation energies are compared to the values obtained by extrapolation to
infinitely large supercells. For defects with localized charge distributions, we generally find that the
FNV scheme improves upon the LZ one, while the MP scheme tends to overcorrect except for point-
charge-like defects. We also encountered a class of defects, for which all the correction schemes fail
to produce results consistent with the extrapolated values. These are found to be caused by partial
delocalization of the defect charge. We associate this effect to hybridization between the defect state
and the band-edge states of the host. The occurrence of defect charge delocalization also reflects in
the evolution of the defect Kohn-Sham levels with increasing supercell size. We discuss the physical
relevance of the latter class of defects.

PACS numbers: 61.72.J-,71.15.-m,71.55.-i

I. INTRODUCTION

The modeling of point defects has become an invalu-
able tool for understanding materials properties in many
areas of applied physics and materials science.1 Due to
the typically low concentration of defects in crystalline
materials, it is often of interest to consider the proper-
ties of a single defect in an otherwise pristine crystal.
Periodic boundary conditions are ideal for the descrip-
tion of pristine crystals and are thus often employed in
density-functional-theory (DFT) calculations. However,
when defects are introduced in the computational cell,
the cell size has to be sufficiently large to neglect the
interactions between the periodic images of defects. In
the case of charged defects, the strong and long-ranged
Coulomb interaction between the localized charge dis-
tributions converges very slowly. Consequently, the su-
percell sizes required to yield converged energies become
prohibitively large.
Several approaches have been proposed over the years

to overcome this problem. The straightforward ap-
proach is to perform calculations for supercells of vary-
ing size and to extrapolate to the limit of infinitely
large supercell.2–5 When this is excessively demanding
from the computational point of view, one generally re-
sorts to using small supercells and to adopting correction
schemes. Apart from the local moment countercharge
method which accounts for the multipole moments of
the defect within the self-consistent electronic-structure
cycle,6 the most common approaches consist in correcting
a posteriori the calculated formation energies.5–11 How-
ever, a critical examination of the performance and ap-
plicability of these schemes has hitherto been missing.
In this work, we critically examine the performance of

various commonly used a posteriori correction schemes
when applied to the formation energies of a large set
of defects within different host materials. We consider
the schemes proposed by Makov and Payne,8 Freysoldt,
Neugebauer, and Van de Walle,10 and Lany and Zunger.9

We aim at showing the mutual relation between the var-
ious schemes and at defining the conditions for their ap-
plication. In order to assess the quality of the correc-
tion schemes, we consider supercells of increasing sizes
and extrapolate the formation energies to the limit of
infinitely large supercell. Our study includes three host
materials: diamond, GaAs, and MgO, representing ma-
terials with covalent bonding, small band-gap, and ionic
bonding, respectively. Within these hosts, we examine
vacancies, antisites, substitutional impurities, and inter-
stitial impurities, thus covering a large variety of cases.
We consider both unrelaxed and relaxed defect geome-
tries. In addition, we examine the underlying reasons
which lead to an unsatisfactory convergence behavior for
some defect systems. In particular, we highlight the role
of defect charge delocalization and illustrate its relation
with the band-edge positions of the host material.

This paper is organized as follows. A thorough descrip-
tion of the schemes is given in Sec. II. We also provide
an analysis which gives a comprehensive description of
defect corrections, connecting the considered schemes to
each other and to other related work in the literature.
The results of the calculations and the comparison of the
correction schemes are presented in Sec. III. In particu-
lar, we distinguish two classes of defects showing different
charge-localization behavior. The conclusions are drawn
in Sec. IV.
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II. DEFECT CALCULATIONS

A. Formation energy

The defect calculation is traditionally approached
through the concept of formation energy,11,12 which in
the case of neutral defects can be written as

Ef [X0] = Etot[X
0]− Etot[bulk]−

∑

i

niµi (1)

where Etot[X
q] is the total energy of the supercell with

the defect X in charge state q and Etot[bulk] the to-
tal energy of the non-defective bulk supercell. For each
species i, the chemical potential µi of the ni added
atoms allows us to describe various growth conditions.
When the defects are charge neutral, i.e., in absence of a
charge monopole, the interactions between defects con-
verge rapidly with supercell cell size, and fairly reliable
estimates for the formation energies of isolated defects
can be obtained from relatively small supercell calcula-
tions.

When the defects are charged, the situation is more
complicated for several reasons. First, the periodically
repeated defect system effectively includes a homoge-
neous neutralizing background charge (jellium) which en-
sures that the electrostatic energy per unit cell remains fi-
nite. Second, as the charge of the defect system no longer
matches that of the neutral reference systems, the forma-
tion energy can properly be defined only through the in-
troduction of a chemical potential for the electrons.11,12

This brings an additional term to the formation energy:

Ef [Xq] = Etot[X
q] + Eq

corr − Etot[bulk]

−
∑

i

niµi + q[ǫF + ǫv +∆v0/b] (2)

where ǫv is the valence band maximum (VBM) as cal-
culated in the non-defective bulk supercell and ǫF is the
Fermi energy (the electron reservoir energy), which is
customarily given with respect to the VBM. ∆v0/b is a
term used for aligning the electrostatic potentials of the
bulk and the defective supercells: in practice, this term
effectively places the VBM in the supercell with the neu-
tral defect at ǫv + ∆v0/b. We note that ∆v0/b appear-
ing in Eq. (2) carries an opposite sign with respect to
the convential electrostatic potential, ∆V0/b = −∆v0/b,
which we preferentially adopt in the following and dis-
tinguish by an upper case letter. Third, the interaction
between localized charges in a neutralizing background is
long-ranged and converges slowly with respect to the su-
percell size L. The energy related to this interaction can
be sizable even in fairly large supercells. Thus, we have
explicitly added to Eq. (2) the term Eq

corr which accounts
for the finite-size supercell correction.
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FIG. 1. (Color online) (a) Charge distributions for a point
charge (solid line) and for a Gaussian charge (dashed line),
and (b) the corresponding electrostatic potentials subject to
open and periodic boundary conditions.

B. Potential alignment

The alignment term ∆V0/b can be obtained through
the comparison of the electrostatic potential in the bulk-
like region far from the neutral defect and in the bulk
calculation: ∆V0/b = V0|far − Vb. Indeed, although the
electronic structure far from the neutral defect would be
very similar to that of the bulk, and consequently also
the charge density, the average electrostatic potential in
this region might differ by a constant. This is due to the
convention of setting the average Hartree potential over
the supercell to zero in DFT calculations and possibly to
variations in the average value of the local pseudopoten-
tial which depends on the number and kind of atoms in
the supercell. Hence, a localized change in the potential
in the near-region needs to be compensated by a constant
shift of the potential across the simulation cell

1

Ω

∫

near

δV (r)dr = −∆V, (3)

where Ω is volume of the supercell and δV (r) is some po-
tential change confined to the near-region. This relation
is illustrated in Fig. 1 for a point charge and a Gaus-
sian charge distribution. For a fixed near-region which
encompasses the localized changes in the potential, the
shift ∆V then scales at large L like the inverse volume
of the simulation cell, i.e. Ω−1 or L−3.
Traditionally, ∆V0/b is obtained from the comparison

between the neutral and bulk potentials and then also
used in the charged defect calculations. The potential in
a charged defect calculation converges very slowly and
can not be used directly to obtain the potential align-
ment. To illustrate this behavior, we plot in Fig. 2 the
electrostatic potentials along the (001) direction for the
carbon vacancy in diamond in the neutral, +2, and −4
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FIG. 2. (Color online) The electrostatic potential for the
carbon vacancy in diamond for the neutral (solid, blue), +2
(dashed, green), and −4 (dash-dotted, red) charge states in
the unrelaxed geometry. The electrostatic potential is rep-
resented through averages over transversal planes (lines) and
over atomic core regions (symbols). The defect is located at
the origin and its first periodic image is found at 14.1 Å.

charge states. For the neutral defect, the potential con-
verges rapidly to a constant value, and ∆V0/b can gen-
erally be determined in an unambiguous way. At vari-
ance, in the charged defect calculations, the potential
is far from having reached a converged value. In Fig.
2, two commonly used methods are used to illustrate
the evolution of the potential, viz. through the aver-
age over transversal planes and through averages over
the core regions around the nuclei. Far from the defect,
these two ways of picturing the potential generally lead
to very similar alignments. In the case of relaxed ge-
ometries, the core-average method might be preferable
as the planar-average method would require an addi-
tional smoothing procedure. Alternatively, ∆V0/b could
be obtained through a spatial partitioning scheme such
as based on Voronoi cells or through the use of Wannier
functions to estimate the potential averages, as discussed
by Corsetti and Mostofi.13

C. Charge corrections in a supercell of finite size

In electrostatics correction schemes for charged defects,
three systems are generally considered: (1) a reference
system which corresponds to the pristine host, (2) a sys-
tem similar to the reference, but with the addition of
a periodic array of defect charges represented through
some localized charge distribution ρc and of a neutral-
izing background jellium n, and (3) a system similar to
the reference, but with the addition of a single isolated
defect charge distribution ρc. The desired correction cor-
responds to the difference between the electrostatic en-
ergies of the isolated and periodic defect charge distribu-

tions:

Ecorr = Eiso − Eper (4)

where Eiso is the selfenergy of the isolated charge distri-
bution ρc, and Eper the electrostatic energy of the system
subject to periodic boundary conditions

Eper =
1

2

∫

Ω

Vper(r)ρc(r)dr, (5)

including both the selfenergy as well as the interac-
tion with the periodic images and with the background
charge. The integral in Eq. (5) is carried out over the
simulation cell Ω. The factor 1

2
is required to remove

the double-counting. The potential Vper is obtained by
solving the Poisson equation for the defect charge dis-
tribution and the background charge density n subject
to periodic boundary conditions. In other words, under
the assumption that the selfinteraction of the charge dis-
tributions in the isolated and in the periodic cases are
the same and cancel, the opposite of Ecorr corresponds
to the energy resulting from the interaction of the defect
charge with its periodic images and with the background
charge. This is precisely what needs to be removed from
the calculated formation energy in order to recover the
formation energy of the isolated defect. The correction
energy can also be written as14

Ecorr =
1

2

∫

Ω

Vcorr(r)ρc(r)dr, (6)

where Vcorr = Viso−Vper only includes the potential from
image defects and from the background, but not from the
defect itself.
When the localized charge distribution ρc is known,

as this is the case for atoms and molecules in vacuum,
the correction Ecorr can be obtained in a straightforward
fashion.7,8 However, in the case of defects in solids, there
are several complicating aspects. Most importantly,
the Coulomb interaction between localized charges is
screened by the host. The screening has to be accounted
for in the evaluation of the energy correction. Depend-
ing on the level of sophistication, various models for the
screening could be employed. The simplest solution con-
sisting in scaling the Coulomb interaction by the macro-
scopic dielectric constant ε of the bulk is often sufficient.
The screening response also significantly changes the

total charge density of the system. We may conceptually
divide the total charge difference into three contributions,
ρc + ρlocscr + ρdelocscr , although such a partition might prac-
tically be difficult to realize. The localized defect charge
distribution ρc is screened by a localized charge distribu-
tion ρlocscr, which corresponds to a total screening charge
of about −(1 − 1/ε)q accumulating on length scales on
which local fields are important. Furthermore, since the
charge neutrality within the simulation cell is preserved,
the localized screening charge has to come from the su-
percell. This gives rise to a completely delocalized, quite
uniform charge distribution,9,15 which is here described
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FIG. 3. (Color online) Comparison between (a) three charge
distributions and (b) their relative electrostatic potentials for
the V−2

C defect in a 216-atom supercell: the charge difference
between the charged and the neutral DFT calculations (solid,
blue), a model charge density distribution (dashed, green),
and the partial charge density associated to the defect wave
function (dashed-dotted, red). The horizontal dotted line in-
dicates the level of the delocalized screening charge density of
(1 − 1/ε)q/Ω. Except for the result of the DFT calculation,
the screening in the calculation of the potentials is accounted
for by the consideration of the macroscopic dielectric constant
ε.

by ρdelocscr . For an isolated defect, this charge is pushed to
infinity (or to the surface in realistic situations) and can
be ignored.
This detailed picture of the screening response is fully

consistent with the expected long-range behavior of the
potential, which scales as q/εr. This is illustrated in Fig.
3, where we display the charge difference between the
charged and the neutral calculations, the partial charge
density associated to the defect wave function ρd = |ψd|

2,
and the charge density distribution of a Gaussian model
charge. We also show in Fig. 3, the respective electro-
static potentials obtained by solving the Poisson equa-
tion. Note that the DFT potential is directly obtained
from the charge density (i.e. with ε = 1) since the latter
already accounts for all the screening effects, but in the
other two cases the screening is included through the ex-
plicit use of the macroscopic dielectric constant ε. The
obtained potentials agree very well with each other de-
spite the different appearance of the charge distributions.
A further difficulty encountered when treating charged

defects in simulation cells of finite size results from the
effect of the image potentials on the Kohn-Sham levels
associated to the defect. Depending on the strength of
interaction with the periodic images, these Kohn-Sham
levels undergo significant shifts which may bring them
to hybridize with the electronic bands of the host. This
effect may lead to a partial delocalization of the defect
charge throughout the simulation cell, which effectively
alters the nature of the studied defect. The underestima-

tion of the band gap in conventional semilocal approxi-
mations to DFT further enhances this problem. We note
that this effect is distinct with respect to the quantum-
mechanical interaction between image defect wave func-
tions, which generally scales exponentially with super-
cell size but which might affect the detailed convergence
properties.5 The screening, hybridization, and quantum-
mechanical effects concurrently contribute to the nontriv-
ial behavior of defect calculations in simulation cells of
finite size.

1. Scheme of Makov and Payne

In the following, we introduce the correction schemes
considered in this work and focus in particular on the
estimation of Ecorr. We first consider the case of a fi-
nite system in vacuum in which the extra charge can be
well described by a point charge. In the ideal case of a
periodically repeated point charge within a neutralizing
jellium, the electrostatic energy due to periodic images
is the well known Madelung energy

Ecorr =
q2α

2L
(7)

where α is the Madelung constant which depends on the
Bravais lattice.7,16 For example, for sc, bcc, and fcc lat-
tices, α assumes the value of 2.8373, 3.6392, and 4.5848,
respectively.7 The value of α can be calculated for any
Bravais lattice through the use of the Ewald method.14,17

Makov and Payne derived an extension of the
Madelung-type lattice sum for a more extended but lo-
calized charge distribution.8 Focusing on cubic simula-
tion cells, they found that the leading correction terms
for the energy read:8

Ecorr =
q2α

2L
−

2πqQ

3Ω
(8)

where

Q =

∫

r2ρc(r)dr (9)

is the second radial moment of the localized charge dis-
tribution ρc. This form of electrostatics correction com-
posed of two terms is usually referred to as Makov-
Payne (MP) correction. The first term corresponds to
the Madelung energy in Eq. (7). The second term scales
like L−3 and results from the interaction of the local-
ized charge distribution with the uniform compensating
background.18

The extension of the correction to a defect charge dis-
tribution embedded in a host is then obtained by scaling
the result in Eq. (10) by the macroscopic dielectric con-
stant of the medium:8

EMP
corr = EMP1 + EMP2 =

q2α

2εL
−

2πqQ

3εΩ
, (10)
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where we denoted the first and second term MP1 and
MP2, respectively. However, we note that the MP2
term is rarely applied because of difficulties encountered
in defining the localized charge density of the defect.
When the charge distribution becomes very wide, the
MP expansion in Eq. (10) is no longer expected to apply.
In fact, in the limit of a completely delocalized defect
charge, the interaction between image charges is com-
pletely cancelled because of the compensation due to the
background charge.

2. Scheme of Freysoldt, Neugebauer, and Van de Walle

The approach taken by Freysoldt, Neugebauer, and
Van de Walle10 is more suitable for the case of charged
defects within a dielectric medium. In this scheme, the
DFT potential is explicitly used to obtain an improved
model of the electrostatics. Following Ref. 15, the cor-
rection is expressed as

EFNV
corr = Elat − q∆Vq/0. (11)

The lattice energy Elat corresponds to the correction en-
ergy defined as in Eq. (4) for a model defect charge dis-
tribution. For instance, in case a point-charge model is
adopted, Elat would correspond to the MP1 term of the
Makov-Payne expression. The potential alignment term
q∆Vq/0 is obtained by comparing the potential from the
model charge to the potential difference (charged vs. neu-
tral) in the DFT calculation:

∆Vq/0 =
(

V DFT
q − V DFT

0

) ∣

∣

far
− V model

∣

∣

far
. (12)

Note that, in case one takes as reference the pristine
host rather than the neutral defect calculation, the sec-
ond term in Eq. (11) becomes Vq/0 + V0/b = Vq/b, and
one achieves an equivalent description by which the po-
tential alignment introduced in Eq. (2) is no longer
necessary.10,15

Different charge models give different Elat. Neverthe-
less, the FNV scheme yields corrected formation energies
that are largely independent of the adopted charge model
insofar the defect charge is well localized within the sim-
ulation cell. As is desirable, only the defect charge state
q matters. This property stems from the fact that the
interaction of the defect with its periodic images is dom-
inated by the long-range Coulomb potential 1/εr. This
behavior is captured by any reasonable model charge dis-
tribution. As the local effects due to the defect are dif-
ficult to capture within a model description, differences
between the DFT potential and the model potential oc-
cur but are short ranged. These differences are accounted
for in the FNV scheme through the alignment-like energy
term. The connection between the model defect charge
distribution and the potential alignment is further dis-
cussed in Sec. II D.
The FNV scheme provides a rather general framework

for calculating energy corrections for defects in supercells.

The scheme applies to supercells and defect charge dis-
tributions of any shape. Futhermore, the comparison be-
tween the model and the DFT potentials provides a mean
to verify the consistency of the applied approach. In prac-
tical applications, it might be difficult to extract ∆Vq/0
from the comparison between the model and the DFT
potentials, as the former generally shows a smooth be-
havior while the latter undergoes strong variations. The
alignment of the model and the DFT potentials also be-
comes problematic when the defect charge distribution
significantly delocalizes over the simulation cell.

3. Scheme of Lany and Zunger

The last scheme that we consider was suggested by
Lany and Zunger (LZ).9 They proposed to calculate the
second radial moment in the MP2 term using the charge
difference obtained directly from the total charge densi-
ties between the charged and neutral DFT calculations,
cf. the charge difference in Fig. 3(a). Since the charge
difference beyond the immediate vicinity of the defect
was found to be dominated by a delocalized screening
charge of density ns = (1 − 1/ε)q/Ω, the second radial
moment could easily be calculated. For a tetragonal cell,
one finds:

Q =

∫

nsr
2dr =

1

12
(L2

x + L2
y + L2

z)

(

1−
1

ε

)

q (13)

For a cubic cell this then gives an MP2 energy correction
of

EMP2 = −
πq2

6εL

(

1−
1

ε

)

= −EMP1csh

(

1−
1

ε

)

(14)

where csh depends only on the shape of the supercell.
For a cubic cell, π/3α ≈ 0.369. This correction can be
combined with the MP1 term,19

ELZ
corr =

[

1− csh

(

1−
1

ε

)]

q2α

2εL
, (15)

and effectively results in the MP1 energy term scaled by a
factor of about 0.65.9 More accurate evaluations require
the calculation of csh for the adopted cell shape.19

However, the use of the DFT charge density difference
leads to some conceptual difficulties. First, the adopted
MP formulation of the energy correction relies on an
expansion of increasing powers of 1/L, for which de-
fect charge distribution is required to be localized. This
clearly does not apply to the adopted charge distribu-
tion. As a consequence the term in the MP expansion
scaling like L−3 is found to scale like L−1. Also, it is
not clear how higher order terms in the expansion should
be treated.19 Second, the original MP formulation states
that the second radial moment is to be calculated for the
“immersed” defect charge without any screening effects,8

which is instead included in the LZ formulation. Third,
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the MP1 term should be exact for a point charge, whereas
LZ scheme still gives an additional MP2 term.

We remark that Lany and Zunger apply their en-
ergy correction in combination with a potential align-
ment scheme for charged defects. In the latter scheme,
the alignment is achieved through the determination of
the average of the electrostatic potential evaluated at
all atomic sites but those in the immediate neighbor-
hood of the defect.19 This alignment scheme is similar
to that based on the average of the Kohn-Sham poten-
tial adopted by Taylor and Bruneval, which ensures that
the Coulomb potential associated to the defect charge av-
erages to zero over the simulation cell.5 In this respect,
the exclusion region considered by Lany and Zunger ap-
pears to account for the modified chemistry but unduly
discards the associated local contribution of the electro-
static potential to the average. For these reasons and for
compatibility with the application of the MP and FNV
schemes, we here prefer to apply the LZ scheme in con-
juction with the alignment procedure described in Sec.
II B.

D. Connection between MP and FNV schemes

In this section, we first demonstrate the equivalence of
the MP and FNV schemes for the case of finite systems
in vacuum. We then show that the FNV scheme is more
amenable to be extended to defect systems since it does
not require the unscreened defect charge distribution.

Following Taylor and Bruneval,5 we add the MP en-
ergy correction corresponding to a finite system in vac-
uum, given in Eq. (8), to the DFT functional and derive
the selfconsistent potential. Within the Kohn-Sham for-
malism, we obtain the effective potential as a functional
derivative of the energy with respect to the electron den-
sity ne(r):

vKS+corr(r) =
δ(E[n]− T [n] + EMP

corr)

δne(r)
(16)

The first two terms yield the customary Kohn-Sham po-
tential. Since the MP correction energy is a functional of
the total charge density, we introduce the charge distri-
bution

ρ(r) =
∑

i

Ziδ(r−Ri)− ne(r), (17)

whereRi and Zi are the position and the charge of the ith
nucleus, respectively. Application of the chain rule gives
the potential vMP

corr acting on the electronic wave functions
and the corresponding electrostatic potential V MP

corr :

vMP
corr = −

δEMP
corr[ρ(r)]

δρ(r)
= −VMP

corr . (18)

Denoting q =
∫

ρ(r)dr and Q =
∫

ρ(r)r2dr, we obtain

V MP
corr (r) =

qα

L
−

2π

3Ω

[

δq[ρ(r)]

δρ(r)
Q+ q

δQ[ρ(r)]

δρ(r)

]

(19)

=
qα

L
−

2πQ

3Ω
−

2πq

3Ω
r2. (20)

This expression coincides with the correction potential
derived from a different starting point by Dabo et al.,14

who gave the leading orders for a set of point charges.20

We note that the first and third terms correspond to the
correction potential for an ideal point charge q,14 the sec-
ond term being an additional correction ∆V accounting
for the finite extent of the defect charge distribution:

∆V = −
2πQ

3Ω
. (21)

We now address the energy correction associated to
the same charge distribution from the perspective of the
FNV scheme. We first adopt a model charge distri-
bution consisting of a point charge. This implies that
Elat = q2α/2L. As far as the alignment term is con-
cerned, we need to evaluate the difference between the
potential due to the point charge q and that due to the
actual defect charge distribution at a large distance from
the defect. For both systems, these potentials can be
expressed through the correction potential given in Eq.
(20). Since Vcorr = Viso − Vper, the shift in the periodic
potential is just the opposite of the shift in the correction
potential, leading to ∆Vq/0 = −∆V . Thus, the second
term in the FNV energy correction, q∆Vq/0, precisely
corresponds to the second term in MP energy correction
given in Eq. (8). This demonstrates in a general way
the correspondence between the FNV and MP schemes,
which holds for any model charge distribution adopted
in the FNV scheme. Application of the FNV and MP
schemes to finite charge distributions thus leads to equiv-
alent corrections.
In order to show more directly that the second term

in MP energy correction solely results from an alignment
effect, we obtain the result in Eq. (21) following an al-
ternative path. According to Eq. (3) in Sec. II B, the
potential shift can be obtained from the average of the
potential difference between a model charge and a point
charge:

∆V =
1

Ω

∫

dr
[

V (r)−
q

r

]

(22)

=
1

Ω

∫

dr

∫

dr′
[

ρ(r′)

|r− r′|
−
ρ(r′)

r

]

. (23)

The Coulomb kernel may be expanded in spherical
harmonics:21

1

|r− r′|
= 4π

∞
∑

ℓ=0

m=ℓ
∑

m=−ℓ

1

2ℓ+ 1

r<

rℓ+1
>

Y ∗

ℓm(θ′, φ′)Yℓm(θ, φ),

(24)
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where r> and r< are the higher and lower value among r
and r′, respectively. Because of the integral on dr appear-
ing in Eq. (22), only the ℓ=0 term survives, and yields
without loss of generality:

∆V =
1

Ω

∫

dr

∫

dr′
[

ρ(r′)

r>
−
ρ(r′)

r

]

. (25)

For r> = r, the integrand vanishes and we thus need to
consider in the following only the region where r> = r′ >
r. We define ρ̃ as the spherically averaged charge density,

ρ̃(r) =
1

4π

∫

ρ(r) sin θdθdφ, (26)

and obtain

∆V =
(4π)2

Ω

∫

∞

0

dr r2
∫

∞

r

dr′ r′ρ̃(r′) (27)

−
(4π)2

Ω

∫

∞

0

dr r

∫

∞

r

dr′ r′2ρ̃(r′). (28)

Straightforward integration by parts then yields

∆V =
4π

Ω

(

1

3
−

1

2

)
∫

∞

0

dr 4πr4ρ̃ = −
2π

3Ω
Q, (29)

in agreement with Eq. (21). In the Appendix, this deriva-
tion is explicitly illustrated for commonly used model
charge distributions.
It is of interest to extend the present correction

schemes to the case of charged defects embedded in host
materials. Makov and Payne generalized their scheme
to this situation by considering the dielectric constant
of the host.8 However, the calculation of the second ra-
dial moment appearing in their energy correction re-
quires the unscreened defect charge distribution which is
not directly available in DFT calculations. At variance,
the FNV scheme only uses a simple alignment proce-
dure which does not require the unscreened defect charge
distribution,10 yet achieves equivalent results to the MP
correction scheme, as demonstrated above.
Recently, the validity of applying a potential alignment

in the case of charged defects has been questioned due to
possible double counting effects.5 To address this issue,
we follow the derivation of Dabo et al.22 We evaluate the
energy correction through the expression in Eq. (6) which
corresponds to the interaction of the defect charge dis-
tribution ρc with the correction potential Vcorr generated
by ρc itself. The double counting is explicitly avoided
through the inclusion of the factor 1

2
. We express the

defect charge distribution as ρc = ρ0+∆ρ, where ρ0 cor-
responds to a point charge and ∆ρ is a neutral charge
distribution. The correction potential can correspond-
ingly be expressed as V0 +∆V , where V0 is the potential
resulting from the image point charges and the neutral-
izing background, and ∆V corresponds to the constant
potential shift in Eq. (21) accounting for the difference
between ρc and the point-charge density ρ0. The energy

correction reads:

Ecorr =
1

2

∫

(ρ0 +∆ρ)(V0 +∆V )dr (30)

=
1

2

∫

ρ0(V0 +∆V )dr+

∫

∆ρ(V0 +∆V )dr (31)

=
1

2

∫

ρ0V0dr+
1

2
q∆V +

1

2

∫

∆ρV0dr, (32)

where we used that ∆V is a constant shift, q the inte-
gral of ρ0, and ∆ρ a neutral charge distribution. The
first term corresponds to the Madelung correction, the
second term to a potential alignment, and the third term
to the interaction of the defect charge with the parabolic
potential appearing in Eq. (20). Hence,

Ecorr =
αq2

2L
+

1

2
q∆V −

πq

3Ω
Q (33)

=
αq2

2L
+ q∆V (34)

where we could combine the second and third terms
through the relation in Eq. (21). Thus, despite the ab-
sence of 1

2
factor in the potential alignment term, this

expression does not suffer from any double counting ef-
fects.

III. RESULTS

In order to benchmark and compare these schemes,
we perform calculations with varying supercell sizes for
a fairly large set of defects in three different host mate-
rials. In particular, we consider zinc-blende GaAs, di-
amond, and cubic MgO. These materials correspond to
a small band-gap semiconductor, a large band-gap cova-
lent system, and a system with ionic bonding. Within
these hosts, a range of different types of defects are con-
sidered. In diamond, we consider the carbon vacancy
VC, the hydrogen interstitial HI, and the nitrogen sub-
stitutional defect NC. In GaAs, we consider the gallium
vacancy VGa and the arsenic antisite AsGa. In MgO, we
consider the oxygen vacancy VO and the substitutional
nitrogen at the oxygen site NO. Some of these defects
are considered in various charge states.

A. Computational details

The calculations are carried out within a plane-wave
density-functional-theory scheme. Here, we use the local
density approximation (LDA) with the projector aug-
mented wave formalism, as implemented in the VASP

package.23–25 In the GaAs calculations, we adopt a PAW
setup for gallium in which the 3d electrons in the core
are frozen and use an energy cutoff of 400 eV. In the
diamond and MgO calculations, the energy cutoff is set
at 500 eV. In Table I, we give bulk parameters of the
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TABLE I. Calculated bulk parameters for diamond, GaAs,
and MgO: the lattice constant alat (Å), the direct band gap
Eg at the Γ point (eV), and the high-frequency (ε∞) and
static (ε0) dielectric constants. Experimental data are from
Refs. 28–33.

diamond GaAs MgO
alat 3.536 5.627 4.155
Expt. 3.567 5.648 4.207
Eg 5.62 0.50 5.06
Expt. 7.3 1.5 7.7
ε∞/ε0 5.76/5.76 13.7/15.7 3.10/7.25
Expt. 5.7/5.7 11.1/13.1 3.0/9.6

host materials: the lattice constant, the direct band gap
at the Γ point, and the high-frequency (ion-clamped)
and the static (relaxed-ion) dielectric constants, together
with the corresponding experimental values. We calcu-
late these parameters using primitive unit cells. The
dielectric constants are calculated via the density func-
tional perturbation theory.26,27

For the defect calculations, three cubic supercells of
increasing size are considered. The 64-atom supercells
are sampled with a 4× 4× 4 k-point mesh, the 216-atom
supercells with a 2×2×2 mesh, and the 512-atom super-
cells with a 2×2×2 mesh. The k-point meshes are offset
from the Γ point. The occupation of the defect bands
has to be consistent among the different supercells. This
is achieved by fully occupying the N lowest eigenstates
at each k-point, as opposed to occupying the levels up to
Fermi level across the Brillouin zone. This also improves
the total energy convergence with respect to the density
of the k-point mesh. In the present calculations, we en-
sure k-point sampling convergence of the formation ener-
gies, as the importance of this issue has been highlighted
several times in the study of defect corrections.2,34,35

The formation energies are plotted with respect L−1,
where L is the side of the supercell. In all figures, lines of
the form aL−1+ bL−3+ c are fitted to the calculated val-
ues to obtain extrapolated values corresponding to the
limit L → ∞.2,3 We note that the MP and LZ correc-
tion schemes only have L−1 and L−3 terms. This implies
that the MP-corrected and the LZ-corrected formation
energies extrapolate by construction to the same values
as the uncorrected formation energies, provided the po-
tential alignment is carried out in the same way in the
two schemes. When formation energies with and with-
out potential alignment are compared, their difference is
expected to scale predominantly like L−3 leading to prac-
tically identical extrapolated values. Residual differences
could be observed because of uncertainties associated to
the determination of the potential shift. In view of the
discussion in Sec. II D, the FNV scheme should in princi-
ple also extrapolate to the same values apart from small
deviations resulting from the potential alignment. Thus,
the adopted form of the fitting polynomial should be ap-
propriate and all correction schemes are expected to give
close if not identical extrapolated values.

To obtain reliable extrapolated values for the forma-
tion energies, it is important to minimize all possible
computational errors since they affect the quality of the
fit. In addition, there are other effects than pure elec-
trostatics that affect the scaling. For instance, the inter-
action between periodic images could include quantum-
mechanical effects due to the overlap between their defect
wave functions, but are expected to decay exponentially
with supercell size.5,36 Elastic effects could also be sig-
nificant in certain cases, but are of minor concern in this
work as we mostly examine unrelaxed defects. There-
fore, it is unlikely that the various correction schemes
could produce exactly the same corrected formation en-
ergy, independent of the supercell size. Furthermore, as
these effects could have a scaling behavior differing from
L−1 or L−3, they might affect the extrapolated result.

B. Localized defect charge distributions

In the comparison of correction schemes, we give the
formation energies related to the following cases: (1) the
uncorrected result, (2) uncorrected, but with potential
alignment (PA) V0/b, (3) Makov-Payne (MP1) with po-
tential alignment (in selected cases also without it), (4)
LZ, and (5) FNV. We start by considering all these cor-
rection schemes in their simplest forms. This is the pre-
ferred method of application for the schemes, but also
makes the comparison unambiguous. In particular, since
the Makov-Payne method is sensitive to the width of the
charge, we here only consider the point-charge correction
MP1. For FNV, we use a model charge distribution con-
sisting of a Gaussian with a fixed width of β = 2 bohr [cf.
second term in Eq. (38) of the Appendix], but the cor-
rection for a localized defect is expected to be insensitive
to the adopted model charge.

1. Point charge defects

We start with defects with the simplest type of charge
distribution, namely the point charge. We consider two
different defects in diamond: the +1 charge state of inter-
stitial hydrogen and the +1 charge state of substitutional
nitrogen. In both cases, the defect corresponds to adding
a positive unitary point charge to the bulk.
The formation energies are shown in Fig. 4. The uncor-

rected and the potential-alignment corrected curves ex-
trapolate to the same value in the limit of infinitely large
supercell. The potential alignment is found to have only
L−3 dependency as expected (cf. Sec. II B). Similarly, the
formation energies corrected through the FNV scheme
extrapolate to the same limit, thus indicating that the
adopted form for the fitting polynomial is appropriate
and that the extrapolated value can reliably be taken as
a benchmark.
All the correction schemes clearly improve upon the

uncorrected results. Based on the discussion in Sec. II,
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FIG. 4. (Color online) Formation energies of the unrelaxed
H+1

I and N+1
C defects in diamond vs inverse supercell size:

uncorrected (circles, solid, black), potential alignment (cir-
cles, dotted, black), Makov-Payne without PA (crosses, solid,
blue), MP with PA (crosses, dotted, blue), FNV (squares,
dashed, red), and LZ (triangles, dash-dotted, green).

the Madelung-type correction is expected to work well
for point-like charges, and this is indeed found to hold
for both defects. The slight undercorrection observed for
the MP scheme at finite L might either result from effects
neglected in the correction scheme or from the limitation
of the extrapolation form, and thus gives a measure of
the accuracy of our benchmarking. The FNV scheme
is found to yield very similar results. Furthermore, the
model potential agrees well with its counterpart derived
from the DFT calculations (not shown). The LZ scheme
produces always smaller corrections than the MP one,
and thus systematically underestimates the correction for
point charges.
While MP and FNV energies are close, they do not

coincide because of the potential alignment term ∆Vq/0.
The MP scheme should correctly account for a point-
charge distribution, but microscopic screening effects due
to local fields could produce changes in the local potential
around the defect, thereby affecting the alignment term
in the FNV scheme.

2. Defects with extended but localized charge distribution

Next, we consider more extended defect charge distri-
butions, which nevertheless are still well localized within
the supercell. In Fig. 5, we show the formation energies
vs. inverse supercell size for V−2

C in diamond and N−1
O in

MgO.
Again, the curves extrapolate to the same values and

a clear improvement is observed upon the uncorrected
results. In these cases, the application of the MP scheme
results in a small overcorrection, which has often been
encountered in the literature.3,10,37 The situation could
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FIG. 5. (Color online) Formation energies of the unrelaxed
V−2

C defect in diamond and of the unrelaxed N−1
O defect in

MgO vs. inverse supercell size. Same notation as in Fig. 4.

be improved by taking into account the second MP term
with a proper charge distribution. However, this ap-
proach can practically not be realized because of diffi-
culties in determining the unscreened defect charge. The
FNV scheme overcomes this problem by introducing a
proper alignment term. This results in markedly im-
proved corrections. The LZ scheme also performs rea-
sonably well in these cases giving corrections which un-
derestimate the extrapolated values only slightly.

3. Relaxation of defect geometry

All the defects considered so far have been treated
without allowing for structural relaxation. In this sec-
tion, we address relaxation effects. In calculations of
unrelaxed defects, it is appropriate to use the high-
frequency (ion-clamped) dielectric constant for describ-
ing the screening. When the defect geometry is allowed to
relax, the relevant dielectric constant is the low-frequency
(relaxed-ion) one. Among the materials considered in
this work, diamond has the same high and low frequency
dielectric constants, while GaAs shows only slightly dif-
fering dielectric constants. At variance, the difference
between high and low frequency dielectric constants is
large for the highly ionic compound MgO. Thus, we fo-
cus in the following on MgO for which the choice of the
right dielectric constant is more critical.
In order to demonstrate the effects of these differences,

we show in Fig. 6 the formation energies of the +1 charge
state of the unrelaxed and relaxed O vacancy in MgO.
The generic features of the correction schemes are sim-
ilar for the unrelaxed and relaxed defect. However, the
use of the incorrect dielectric constant in the MP1 cor-
rection scheme would lead to a dramatic worsening of the
corrected result as illustrated in Fig. 6. When the low-
frequency dielectric constant is used for the unrelaxed
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FIG. 6. (Color online) Formation energies vs. inverse supercell
size for the (a) unrelaxed and (b) relaxed V+1

O defect in MgO.
Same notation as in Fig. 4. In (a), the MP1 correction is also
applied with the inappropriate dielectric constant ε0 (stars,
dotted, blue). Similarly, the MP1 correction with ε∞ is shown
in (b) (stars, dotted, blue).

defect, we observe a significant underestimation of the
corrected result [Fig. 6(a)]. At variance, the use of ε∞
for the relaxed defect leads to a large overestimation [Fig.
6(b)].

Note, that since the atomic positions are different in
the relaxed and bulk calculations, the resulting DFT po-
tential difference can vary rapidly. This is especially true
for an ionic host such as MgO. Consequently, determin-
ing the potential alignment in the FNV scheme involves
some difficulty. To overcome this problem, we convolute
the DFT potential with a suitable Gaussian function.

For reference, we list in Table II calculated formation
energies for a set of relaxed defects. The formation ener-
gies of neutral defects correspond to the largest supercell
considered, while the formation energies of charged de-
fects correspond to extrapolated values of uncorrected
results without potential alignment. In the latter case,
the electron chemical potential is set at the valence band
edge. The chemical potentials adopted here are as fol-
lows: µC from bulk diamond, µN from the N2 molecule,
µO from the O2 molecule, µGa from bulk Ga, and µAs

from µGaAs − µGa.

4. Quantification of errors

In order to quantify the performance of the correction
schemes, we define three measures of the error:

δEerr
1 = Ef [64-atom sc]− Ef [extrap.], (35a)

δEerr
2 = Ef [512-atom sc]− Ef [extrap.], (35b)

δEerr
3 = Ef [216-atom sc]− Ef [512-atom sc], (35c)

TABLE II. Calculated formation energies for a set of relaxed
defects. For charged defects, the electron chemical potential
is set at the valence band edge.

defect Ef defect Ef

N0
C 3.98 V0

O 7.59
N+1

C 0.44 V+1
O 4.98

V+2
C 5.92 V+2

O 3.24
V+1

C 6.01 V−3
Ga 3.30

V0
C 7.12 As0Ga 1.43

V−2
C 12.68 As+2

Ga 1.04
V−4

C 22.30

where the used formation energies correspond to the var-
ious supercell sizes used and to the extrapolated limit
through a self-explanatory notation. In particular, we
consider not only differences between corrected and ex-
trapolated formation energies, but also differences be-
tween corrected formation energies for two different su-
percell sizes. These error estimators are evaluated for a
set of unrelaxed and relaxed defects in Tables III and IV,
respectively. We only consider defects in which the de-
fect charge is found to be well localized within the super-
cell. This condition generally ensures that all correction
schemes give close extrapolated values.
For each estimator, we calculate mean absolute errors

(MAEs) as given in the tables. For the considered set
of unrelaxed defects, the FNV scheme always provides
the smallest MAE, with an estimated accuracy of 0.09,
0.04, and 0.02 eV for δEerr

1 , δEerr
2 , and δEerr

3 , respec-
tively. However, in the particular case of point-charge
defects like H+1

I and N+1
C , the MP scheme performs even

better than FNV. Also, for some specific defects, the LZ
scheme offers a competitive description compared to the
FNV one. For the relaxed defects, the FNV scheme again
generally gives the smallest MAEs. The LZ scheme ap-
pears competitive when considering the δEerr

3 estimator.

C. Delocalized defect charge distributions

1. Failures of correction schemes: Role of delocalized charge

In our study, we encounter several cases in which the
correction schemes apparently fail. This occurs when the
various correction schemes no longer give close extrapo-
lated values or when the corrected formation energies do
not fall close to their extrapolated values.
One of such cases corresponds to the As antisite in

GaAs. The formation energies of the +2 charge state
are given in Fig. 7(a) for the various correction schemes.
The uncorrected results, with or without the potential
alignment ∆V0/b, produce slightly different extrapolated
values. Since the potential alignment ∆V0/b is obtained
as a difference between the neutral defect and the bulk
potentials, the problem should be ascribed to the neutral
charge state of the defect. Inspection of the Kohn-Sham
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TABLE III. Error estimators for unrelaxed defects. The smallest errors are indicated in bold.

Ef [64-atom sc]− Ef [extrap.] Ef [512-atom sc]− Ef [extrap.] Ef [216-atom sc]− Ef [512-atom sc]
defect MP LZ FNV MP LZ FNV MP LZ FNV

H+1
I -0.06 -0.21 -0.10 -0.08 -0.16 -0.09 -0.01 -0.03 -0.02

N+1
C -0.01 -0.16 -0.10 -0.06 -0.14 -0.09 0.00 -0.02 -0.02

V−2
C 0.25 -0.36 -0.12 0.08 -0.23 0.01 0.05 -0.06 -0.03

V−3
Ga 0.37 -0.04 0.20 0.15 -0.05 0.04 0.06 -0.01 0.04

V+1
O 0.07 -0.13 0.02 0.01 -0.09 0.00 0.01 -0.02 0.00

N−1
O 0.08 -0.11 0.02 0.01 -0.09 0.00 0.01 -0.02 0.00

MAE 0.14 0.17 0.09 0.07 0.13 0.04 0.02 0.03 0.02

TABLE IV. Error estimators for relaxed defects. The smallest errors are indicated in bold.

Ef [64-atom sc]− Ef [extrap.] Ef [512-atom sc]− Ef [extrap.] Ef [216-atom sc]− Ef [512-atom sc]
defect MP LZ FNV MP LZ FNV MP LZ FNV

N+1
C -0.04 -0.20 -0.17 -0.11 -0.19 -0.14 0.00 -0.02 -0.02

V−2
C 0.52 -0.09 -0.03 0.12 -0.18 0.04 0.09 -0.01 0.02

V+1
O 0.16 0.05 0.06 0.05 -0.00 0.03 0.03 0.01 0.01

As+2
Ga -0.02 -0.18 -0.04 -0.05 -0.13 -0.06 -0.00 -0.03 -0.01

MAE 0.18 0.13 0.07 0.09 0.13 0.07 0.03 0.02 0.02

spectrum of the neutral defect indicates that the occu-
pied defect band is resonant with the conduction band
leading to hybridization between defect states and band-
edge states of the host. This effect depends on the defect
band width which varies with supercell size. The prob-
lem also manifests in the potential difference between the
neutral and bulk calculation (not shown), which does not
converge rapidly to a constant value when moving away
from the defect. As shown in Fig. 8(a), this results from
a spurious charge delocalization over the full simulation
cell, which slightly alters the bulk charge density at large
distance from the defect. We note that when the ge-
ometry of the defect is relaxed or when the band gap is
opened, e.g. through the use of hybrid functionals, the
Kohn-Sham levels move out of resonance and the prob-
lem disappears.38 Also, since the problem is specific to
the neutral defect, it can completely be circumvented in
the calculation of charged defect levels by using the FNV
scheme and taking the bulk as reference for the potential
alignment ∆Vq/b.

Another even more problematic case is the V+2
C de-

fect in diamond, which has often been discussed in the
literature.10,37 The formation energies are shown in Fig.
7(b). All the correction schemes are found to result in
significant overcorrections. Furthermore, the FNV and
the MP schemes do not extrapolate to the same limit.
Among the considered correction schemes, the LZ one
appears to give the best corrections. The situation is
similar for the −4 charge state of the same defect [Fig.
7(c)].

In the case of charged defects in which the correction
schemes apply successfully, the delocalized charge density
across the supercell corresponds to the (1−1/ε)q/Ω level
(cf. Sec. II C). For reference, we illustrate this behavior
in Figs. 3 and 8(b) for two of such well-behaved defects,

the V−2
C and N+1

C defects in diamond, respectively. We
verified that this property holds for all well-behaving de-
fects in this work. For the problematic V+2

C and V−4
C

defects, the charge density difference at a large distance
from the defect markedly differs from the expected value
for the delocalized screening charge. Denoting this level
with (1−η/ε)q/Ω, we infer a fairly significant scaling fac-
tor η of about 0.8 for both V+2

C and V−4
C . The degree of

charge delocalization thus appears to be a robust indica-
tor for identifying defects for which the energy correction
schemes are less effective.
The origin of this anomalous behavior leading to η 6= 1

could in principle either result from the limitation of clas-
sical electrostatics in describing the screening around the
defect or from defect charge leakage which would effec-
tively reduce the charge localized at the defect site. How-
ever, the first explanation contrasts with the good corre-
spondence between the classical prediction and the DFT
charge density level observed for well-behaved defects.
Furthermore, it is expected that classical screening be-
havior is recovered within at most a few bond lengths
from the defect.39 We thus focus in the following section
on the extent of the defect charge delocalization.

2. Improving the model charge in the FNV scheme

Within the FNV scheme, the model parameters can
be set to yield a model charge that extends beyond the
supercell size. It was suggested in Ref. 10 that adding
an exponential tail to the model charge could yield im-
proved corrected energies in the case of the V+2

C defect.
The tail was obtained by fitting to the defect wave func-
tion. When the defect charge delocalizes, several different
model charges may yield the same amount of charge at
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FIG. 7. (Color online) Formation energies vs. inverse supercell size for (a) the As+2
Ga defect in GaAs, and (b) the V+2

C and (c)
V−4

C defects in diamond. The considered defects are unrelaxed. Same notation as in Fig. 4.

large distance from the defect and consequently provide
an equally good description of the long-range potentials
(disregarding constant shifts). However, the FNV energy
corrections for such delocalized defect charge distribu-
tions are no longer independent of the adopted model.
It is therefore of interest to understand how the model
charge relates to the energy corrections and to the be-
havior of the potential at large distances from the defect.
In this section, we consider various model charge dis-

tributions. All considered distributions can be expressed
through a linear combination of a Gaussian and exponen-
tial functional as given in Eq. (38) of the Appendix.10 The
first model charge that we consider consists of a Gaus-
sian charge density [x = 0 in Eq. (38)] with a fixed width
(β = 2 bohr), as used hitherto in this work. The second
model charge consists of a linear combination of a Gaus-
sian and an exponential function with parameters fitted
to the defect wave function, as proposed in Ref. 15. In
the third model, the charge is partitioned between a reg-
ular Gaussian (β = 2 bohr) and a completely delocalized
charge density:

ρc(r) = q(1− x)Nβe
−r2/β2

+ qx/Ω (36)

which can be obtained from Eq. (38) by setting the expo-
nential decay length γ to infinity. In this model charge,
only a fraction η = 1 − x of the defect charge is local-
ized at the defect site. In the periodically repeated sys-
tem, the energy and the potential associated to this third
model charge are just the same as for a Gaussian with
a charge scaled by 1 − x, since the homogeneously dis-
tributed charge only has a G = 0 Fourier component,
which is set to zero by convention. Similarly, in the iso-
lated system, only the Gaussian charge gives an energy
contribution. The energy correction thus corresponds to
that of a Gaussian charge distribution with an integrated
charge ηq.
In Figs. 9 and 10, we show corrected formation en-

ergies obtained using the various model charges in the
FNV scheme for the V+2

C and V−4
C defects in diamond.

The figures also contain a comparison between the cor-
responding model potentials and the DFT difference po-
tential. In the third model charge introduced above, we
used η = 0.8 for both charge states as found from the
study of the delocalized charge densities in Fig. 8. This
value of η appears to have the same value for all super-
cells studied, albeit its accurate determination is difficult
in the case of the 64-atom supercell.

In the FNV scheme, a good model charge is expected
to yield accurate formation energies at finite supercell
size, but also to ensure a good correspondence between
the model potential and the DFT difference potential. As
seen in Figs. 9 and 10, the Gaussian model charge leads
to sizable errors in the corrected formation energies. Fur-
thermore, this kind of model charge fails in reproducing
the DFT difference potential. To improve upon the Gaus-
sian charge model, it is necessary to delocalize more de-
fect charge in the region far from defect. Fitting a model
charge to the defect wave function significantly improves
the model potential as shown in Figs. 9(c) and 10(c), but
the formation energy is barely affected. Finally, when a
fraction of the defect charge is taken to be completely
delocalized, the agreement between the model potential
and the DFT difference potential further improves [cf.
Figs. 9(d) and 10(d)] and the formation energies converge
rapidly to their extrapolated value. However, the phys-
ical motivation of using such delocalized model charge
is questionable especially in the limit of infinitely large
supercells. This is discussed in more detail below in Sec.
III C 4. Nevertheless, for delocalized defect charges, these
examples illustrate that it is difficult to infer the quality
of the energy correction from the comparison between the
DFT difference potential and the model potential when
a calculation at only one supercell size is available.
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FIG. 8. (Color online) Planar-averaged charge density dif-
ference across the supercell for (a) the As0Ga defect in GaAs,
and (b) the N+1

C , (c) V+2
C , and (d) V−4

C defects in diamond.
In (a), the difference is taken between the charge densities of
the neutral defect and of the bulk; in (b–d), between those of
the charged and neutral defect. The level corresponding to
the homogeneously distributed screening charge (1− 1/ε)q/Ω
is indicated (dashed, red). The dash-dotted (green) line is
obtained through a fit and corresponds to (1− η/ε)q/Ω with
η = 0.8 for both V+2

C and V−4
C . The charge densities are

broadened through a Gaussian function with a width of 1.5
bohr.

3. Hybridization between defect and band-edge states

The results in the previous section indicate that some
degree of defect charge delocalization may be present in
the calculations. Such delocalization could originate from
the hybridization of the supposedly localized defect states
with delocalized band-edge states. If the delocalization
of the model charge is indeed caused by hybridization
with the band edges, one would expect this effect to di-
minish upon the opening of the band gap of the host
material.40,41

To examine this supposition, we perform hybrid-
functional calculations for the vacancy in diamond. This
kind of calculations are known to yield larger band gaps
than the local density approximation. For consistency,
we perform a comparison between the semilocal PBE
functional42 and the hybrid PBE0 functional43, which
only differ by the way the exchange energy is described.
These calculations are performed with plane-wave ba-
sis sets and normconserving pseudopotentials, as imple-
mented in the Quantum-ESPRESSO package.44 We
used an energy cutoff of 50 Ry. In the case of hybrid
functionals, the evaluation of the nonlocal Fock exchange
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FIG. 9. (Color online) (a) Formation energies vs inverse su-
percell size for the V+2

C defect in diamond as obtained us-
ing different model charges in the FNV scheme, and (b–d)
corresponding potentials from the 216-atom supercell calcu-
lations. We considered a Gaussian model charge (squares,
dashed, red) with its corresponding DFT difference potential
(VDFT) and model (Vmodel) potential in (b), a model charge
fitted to the defect wave function (plus symbols, dotted, ma-
genta) with potentials in (c), and a scaled Gaussian (dia-
monds, dash-dotted, magenta) with potentials in (d). The
difference potentials Vdiff = VDFT − Vmodel are also given in
(b–d). In (a), the uncorrected formation energies, without
(solid, black) and with (dotted, black) potential alignment,
are also given.
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FIG. 10. (Color online) Same as in Fig. 9 but for the V−4
C

defect.

operator is carried out with a Brillouin-zone sampling in
which the number of mesh points in each direction is
halved compared to the employed k-point sampling. We
use the experimental lattice constant of 3.57 Å. We calcu-
late the dielectric constants of diamond in both the PBE
and PBE0 through the application of a finite electric field
as defined within the modern theory of polarization,45
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FIG. 11. (Color online) Formation energies vs. inverse super-
cell size for the V+2

C and V−4
C defects in diamond, as obtained

with the PBE0 functional. Same notation as in Fig. 4.

finding 5.77 and 5.51, respectively. The direct band gaps
at the Γ point are found to be 5.60 eV and 7.71 eV for
PBE and PBE0, respectively. Thus, the PBE band gap
is very close to the LDA band gap (5.62 eV) and no-
ticeably underestimates the corresponding experimental
band gap of 7.3 eV, while the PBE0 considerably opens
the band gap bringing it in much closer agreement with
experiment.
For the vacancy in diamond, the present PBE results

are nearly identical to the LDA results described above,
both in terms of formation energies and of the Kohn-
Sham spectrum (not shown, cf. Figs. 5 and 7). The for-
mation energies for V+2

C obtained with the hybrid func-
tional are given in Fig. 11(a). Compared to the PBE,
the corrected formation energies are generally in much
better agreement with the extrapolated values. The bet-
ter agreement results from the fact that the separations
between the uncorrected formation energies and their ex-
trapolated value are larger than in the PBE. Similar con-
siderations apply to the V−4

C defect in Fig. 11(b).
The improved performance of the correction schemes

in the PBE0 directly relates with the disappearance of
the delocalized charge as shown in Fig. 12, where the
charge densities in the PBE and PBE0 are compared. In
the PBE0 the charge density level far from the defect
closely corresponds to the (1 − 1/ε)q/Ω level, whereas
this is not the case in the PBE. As illustrated in the fig-
ure, the difference between the dielectric constants in the
PBE and PBE0 is insufficient to account for this behav-
ior. The delocalized defect charge in excess with respect
to the delocalized screening charge mainly results from
the contribution of the defect wave function, as can be
inferred from Fig. 12(c) for the V−4

C defect.
One could argue that the higher localization observed

in the PBE0 directly results from the reduced self-
interaction in hybrid functional schemes. Indeed, hybrid
functionals are known to cause Jahn-Teller distortions
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FIG. 12. (Color online) Planar-averaged charge density differ-
ence across the supercell for the (a) V+2

C and (b) V−4
C defects

in diamond, as obtained with the PBE (dashed, blue) and
PBE0 (solid, green) functionals. The difference is taken be-
tween the charge densities of the charged and neutral defects.
The levels corresponding to the homogeneously distributed
screening charge density (1−1/ε)q/Ω are indicated and differ
in the PBE (dotted, blue) and PBE0 (dash-dotted, green) be-
cause of the different dielectric constants. (c) Planar-averaged
charge distribution of the defect wave function of the V−4

C in
diamond, as obtained with the PBE (dash-dotted, red) and
PBE0 (solid, magenta) functionals.

in partially filled degenerate states, leading to enhanced
localization with respect to semilocal functionals.46 How-
ever, the present observations appear to have a different
origin. In fact, in the V+2

C defect, the degenerate mani-
fold of the defect state is unoccupied and would thus give
rise to an analogous defect state in PBE and PBE0, even
if structural relaxation were allowed.38,47

The hybrid-functional results support the notion
that the defect charge delocalization in the (semi)local
schemes originates from hybridization between defect and
band-edge states. It is interesting to investigate how the
presence of such effects manifests in the Kohn-Sham en-
ergy spectrum. Kohn-Sham energy levels calculated in
the PBE and PBE0 for four different charge states are
shown in Fig. 13. In the case of PBE, the levels of the
problematic V+2

C and V−4
C are closer to the band edges

than those of the well-behaved V0
C and V−2

C . However,
the former levels still fall well within the band gap for
most supercells considered, despite the rapid evolution
of the V−4

C level towards the conduction band edge for
increasing supercell size. At first sight, it is therefore
not obvious that charge delocalization would occur for
these charge states. Indeed, no apparent difference ap-
pears when comparing with the energy levels calculated
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FIG. 13. (Color online) Kohn-Sham energy levels vs. inverse
supercell size for various charge states of the vacancy defect
in diamond, as obtained in (a) the PBE and (b) the PBE0.
For each charge state, we show the occupied (solid) and un-
occupied (dashed) energy levels in the band gap. The indi-
cated level corresponds to the average over the defect band.
In PBE, the unoccupied states of the neutral and −2 charge
states lie very close and are not distinguished. The dotted
lines extrapolate the energy levels according to the scaling of
the correction potential in the MP scheme.

in the PBE0, except for a separation between occupied
and unoccupied states in V0

C and V−2
C .

However, the difference is revealed when the depen-
dence of the Kohn-Sham energy levels with inverse su-
percell size is compared to that expected from the evo-
lution of the first-order term of the correction potential
given in Eq. (20):5,14,48

ǫKS(L)− ǫKS(L = ∞) ≈ V MP
corr =

qα

εL
. (37)

In Fig. 13, we compare the evolution of the Kohn-Sham
levels with L−1 to the scaling of V MP

corr . In the PBE, the
scaling of the defect levels of the problematic V+2

C and

V−4
C differs markedly from that of V MP

corr . At variance, the

V−2
C and V0

C levels behave as expected. It is thus the scal-
ing behavior of the Kohn-Sham energy levels that can be
seen as an indicator of charge delocalization rather than
the position of their energy levels within the band gap.
This correlation is supported by the hybrid functional re-
sults, where the calculated and the expected scalings are
much closer, in accordance with the good performance
of the energy correction schemes (cf. Fig. 11) and the
absence of defect charge delocalization (cf. Fig. 12).

4. Is delocalized defect charge physically meaningful?

We have shown that defect charge delocalization oc-
curs in cases where the energy correction schemes do not
perform optimally. We argued that this effect results

from defect Kohn-Sham levels lying in the proximity of
the band edges and undergoing hybridization. The le-
gitimate question arises whether the properties of such
defect states are physically meaningful or whether we
are confronted with unphysical features associated to the
adopted electronic-structure scheme.

Let’s consider first a defect showing charge delocaliza-
tion within a semilocal DFT scheme. Such a situation
might result either from a localized atomic state or from
a shallow effective-mass-like state. In the former case,
the delocalization is a consequence of the hybridization
between the localized orbitals and the band-edge states.
This effect then disappears when the band gap is opened
as the separation between the defect level and the band-
edge states is increased.40,49 This is precisely what we
observed in Sec. III C 3 when using hybrid functionals
giving an improved description of the band gap. In this
case, the semilocal DFT scheme is not expected to give
a reliable description of the defect state. At variance, in
the case of a shallow defect, the defect level would follow
the band edge to which it is associated. The charge delo-
calization then results from the overlap of decaying defect
wave functions from different periodic images and leads
to quantum-mechanical interaction effects. In such cases,
DFT supercells are generally too small to observe local-
ization. It deserves further study to understand whether
physical information about the isolated defect can be
extracted in such circumstances. In either case, when
charge delocalization is observed at the semilocal DFT
level, a modeling approach based on simple electrostatics
appears deficient.

However, one could imagine that the adopted
electronic-structure scheme gives a faithful description of
the experimental band gap, or, more generally, one might
like to achieve a description of the defect state that is con-
sistent with the adopted theoretical scheme. How should
we handle a defect state showing charge delocalization
at a finite value of the supercell size? We assume that
a viable charge state of the defect carries integer charge
in the limit L → ∞. However, it is difficult to judge
from the calculations at finite supercell size whether the
delocalization would persist or disappear for L→ ∞. In
the case of shallow defect, the adopted modeling scheme
would not be appropriate as discussed above. In the al-
ternative case in which the excess charge delocalization
would persist in the limit L→ ∞, the defect state would
not carry an integer charge and thus not be retained as
a valid one.

We could also encounter charge defect states which do
not show any sign of excess charge delocalization at fi-
nite L, but which could change their nature as the su-
percell is increased. To identify such cases, it is useful
to extrapolate the calculated Kohn-Sham energy levels
to the limit of infinite L through Eq. (37). In case its
extrapolated energy level crosses a band edge, the defect
state is expected to give rise to excess charge delocaliza-
tion. For instance, the Kohn-Sham energy level of the
V−4

C defect in Fig. 13(b) is expected to hybridize with
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the conduction band-edge states at supercell sizes larger
than those considered. This situation would likely give
rise to an invalid charge state in the limit of infinite L. In
the unlikely case that the defect would turn into a shal-
low one, we would conlude that our modelling scheme is
inappropriate. While the detection of excess delocalized
defect charge is a robust indicator for a problematic de-
fect, the extrapolation of the Kohn-Sham levels appears
to be more effective for identifying valid charge states
beyond the limit of those investigated with a finite sim-
ulation cell. We note that because of the dependence of
q in Eq. (37), high-charge states are more likely to be
discarded as valid defect states in the limit of infinite L.
In view of this discussion, it appears that, when the

performance of energy correction schemes is not optimal,
the concerned defect state either corresponds to an in-
valid one or to one that cannot properly be treated within
the adopted DFT scheme. In such case, it therefore does
not seem appropriate to spend efforts in modeling the ex-
tended defect charge through sophisticated charge model
distributions, as would be possible in the FNV scheme.
This consideration relieves the problem that the energy
corrections strongly depend on the adopted model charge
for this kind of defect states. At variance, when the defect
state shows well-behaved charge localization, the energy
correction in the FNV scheme is the same, irrespective
of the adopted model charge.

IV. CONCLUSIONS

We first reviewed several of the most commonly
used schemes for correcting finite-size supercell errors in
charged defect calculations. In particular, we focused
on the schemes proposed by (i) Makov and Payne,8 (ii)
Freysoldt, Neugebauer, and Van de Walle,10,15 and (iii)
Lany and Zunger,9 and discussed the role of potential
alignment in neutral and charged defect calculations. In
our analysis, we elaborated a connection between the
defect charge distribution and the potential alignment,
which establishes a relation between the Makov-Payne
and the Freysoldt-Neugebauer-VandeWalle schemes. Our
comprehensive description also allowed us to make con-
tact in a consistent manner with contributions due to
Dabo et al.14 and Taylor and Bruneval.5

In the second part of our investigation, we compared
the performance of these correction schemes for a large
variety of defects. We identified a class of defects for
which the available correction schemes give good re-
sults. These correspond to defect states in which the
charge density is well localized within the supercell. The
Makov-Payne scheme works well for point-like defects,
but results in overcorrections when the defect charge den-
sity is more extended. The Lany-Zunger scheme tends
to undercorrect formation energies of defects with very
localized charge distributions, but improves for defects
with more extended charge distributions. The Freysoldt-
Neugebauer-VandeWalle scheme was found to give good

formation energies for any defect with a localized charge
distribution, without requiring particular attention in the
choice of the model charge. Overall, based on our error
estimators, this scheme appears to offer the best perfor-
mance among those considered.
We also encountered a class of defects in which the

available schemes failed to produce satisfactory results.
These defects show charge delocalization in excess with
respect to the level expected from the delocalized screen-
ing charge. The origin of this effect was assigned to the
hybridization between the defect state and the band-edge
states of the host. As far as the Kohn-Sham levels are
concerned, they were mostly found to locate within the
band gap. However, when excess delocalization occurs,
their evolution with supercell size becomes anomalous.
The evolution of the Kohn-Sham energy levels can also
be used as an indicator for identifying defect states which
are expected to show charge delocalization at larger su-
percell sizes than those actually considered in the calcu-
lations.
In conclusion, we found that the Freysoldt-

Neugebauer-VandeWalle scheme is robust and mean-
ingful for all defects showing well-behaved charge
localization. At variance, the performance of this
scheme for defects with excess charge delocalization
is more ambiguous. Indeed, in the latter case, it is
legitimate to question to what extent the study of
defects with excess charge delocalization is physically
meaningful. We concluded that these cases either refer
to defect charge states which are not physically relevant
or to situations for which the adopted DFT modeling
scheme is inappropriate. In either case, such defect
states do not seem to warrant further investigation
within the adopted modeling scheme.
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APPENDIX: POTENTIAL ALIGNMENT AND

SECOND RADIAL MOMENT OF A MODEL

CHARGE

In Sec. II D we demonstrated the the connection be-
tween the potential alignment and the charge distribu-
tion for any charge distribution. Nevertheless, it is in-
structive to explicitly illustrate this equivalence for the
commonly used model charge distribution consisting of
a linear combination of a Gaussian and an exponential
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function:10

ρc(r) = qxNγe
−r/γ + q(1− x)Nβe

−r2/β2

, (38)

where the normalization constants are Nβ = (πβ2)−3/2

and Nγ = (8πγ3)−1, and the distribution approaches a δ-
function, as β → 0 and γ → 0. The potential associated
to the isolated ρc distribution is

V (r) =
qx

r

[

1−
1

2
e−r/γ

(

r

γ
+ 2

)]

+ q(1− x)
erf(r/β)

r
(39)

We evaluate the constant potential shift ∆Vnear with
respect to the point-charge potential by averaging the dif-
ference potential V (r)− 1/r over the supercell assuming
that the charge density is well localized therein:

∆Vnear = x
8πγ2q

Ω
+ (1 − x)

πβ2q

Ω
. (40)

The shift in the simulation cell at a large distance from
the defect is then given by ∆Vq/0 = −∆Vnear according to
Eq. (3). This shift can equivalently be obtained through
the G = 0 Fourier component of the model potential.15

On the other hand, the change in the MP energy when
going from a point-charge to the considered model charge
reduces to the MP2 term. The second radial moment of
the model charge ρc yields:

Q = xq(12γ2) + (1 − x)q

(

3

2
β2

)

(41)

Plugging this into the MP2 term of Eq. (8) then yields
the associated energy correction:

Ecorr = −
2πqQ

3Ω
= −x

8πγ2q2

Ω
− (1− x)

πβ2q2

Ω
, (42)

which is exactly equivalent to q∆Vq/0. This also verifies
that the potential shift obtained directly from Eq. (40)
is equal to that appearing in the MP correction potential
of Eq. (21).
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