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The nonlinear dynamics of a Bose-Einstein condensate (BEC) of dipolar excitons trapped in an
external confining potential in coupled quantum wells is analyzed. It is demonstrated that under
typical experimental conditions the dipolar exciton BEC can be described by a generalized Gross-
Pitaevskii equation with the local interaction between the excitons, which depends on the exciton
distribution function. It is shown that, if the system is pumped at sufficiently high frequencies, a
steady turbulent state can be formed.
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I. INTRODUCTION

In the last decade, the nonlinear dynamics of the ex-
citations in semiconductor heterostructures coupled with
laser radiation attract attention because of promising po-
tential applications in electronics and photonics, includ-
ing, e.g., design of thresholdless lasers, optical computing
and quantum computing.1–8 One of important examples
of the systems where the excitations demonstrate essen-
tially quantum behavior is a Bose-Einstein condensate
(BEC) of excitons in semiconductors.9–14 The dynamics
of dipolar excitons formed by spatially separated charges
in coupled quantum wells (CQW) in semiconductor het-
erostructures at helium temperatures attract attention
due to the relatively long exciton lifetime compared to
excitons in a single quantum well.12,13 Recently, it was
also predicted that dipolar excitons can form a superfluid
in a two-layer graphene.15

In this paper we focus on non-stationary dynamics in
a dipolar exciton BEC in QCWs in an in-plane trapping
potential. The trapping potential is essential for the con-
densate formation at finite temperatures and it can be
formed in GaAs structures by applying inhomogeneous
stress,13 static electric as well as magnetic field or laser
radiation (see Ref. 14 and references therein).

The dynamics of dipolar excitons is complicated
thanks to long-range, ∝ 1/r3, interactions in the sys-
tem. It was demonstrated in Refs. 16 and 17 that in the
case of high enough density of the exciton gas or at high
temperatures, the system can exhibit strong spatial cor-
relations, which result in formation of quasi-crystalline
or highly correlated states. Also, strong exciton-exciton
interactions can lead to formation of stable biexciton
complexes.18 Below we consider the system under the
conditions of the experiments12–14 where a rarefied dipo-
lar exciton gas of the density n ∼ 109 − 1010 cm−2 in
CQW with an interwell distance D > 0.3aB at tempera-
tures T < Tc is studied (aB = ~

2/µexe
2 ≈ 14 nm is the

exciton Bohr radius, µex is the exciton reduced mass, Tc is
the BEC transition temperature in the system). Accord-
ing to the analyses made in Refs. 16 and 18, in this partic-
ular regime the dipolar exciton gas can be considered as

a quantum fluid and, in addition, the probability of biex-
citon formation is negligibly small. Therefore, the sys-
tem can be effectively described by the Gross-Pitaevskii
equation (GPE), in which the long-range exciton-exciton
interaction is taken into account.

In this work, we demonstrate that under the condi-
tions of the experiments12–14 the interactions in a two-
dimensional (2D) dipolar exciton BEC can be effectively
reduced to local interactions. In effect, the dynamics of
the BEC is described by the generalized GPE for the con-
densate wave function. In sharp contrast to the “stan-
dard” GPE, the effective interaction strength in the resul-
tant equation is not constant and depends on the chem-
ical potential of the system. Through numerical simula-
tions based on the obtained local equations for the exci-
ton BEC in CQW we show that, under the conditions of
the resonant driving, the system can demonstrate long-
lasting, non-stationary oscillations. We infer that this
oscillatory state is somewhat similar to the wave turbu-
lence observed earlier in spatially restricted nonlinear su-
perfluid liquids.19,20 It is important to emphasize that the
dipolar exciton BEC considered below is different from
an exciton polariton BEC. The extensive review of the
polariton BEC properties and application of the Gross-
Pitaevskii equation to this problem is presented in Ref.
21. It is known that the interaction of polaritons is local
that is, all nonlocal effects, which are important for the
dipolar exciton BEC dynamics, have not been considered
in Ref. 21.

The paper is organized as follows. In Sec. II we con-
sider the generalized 2D GPE and present the local ap-
proximation for a dipolar exciton BEC. The spectral rep-
resentation for the generalized GPE is considered in Sec.
III. The discussion of the BEC formation and the re-
sults of the numerical solution of the generalized GPE
are given in Sec. IV. Finally, we summarize our conclu-
sions in Sec. V.
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II. LOCAL APPROXIMATION FOR A

DIPOLAR EXCITON BEC

At temperatures much lower than the BEC transi-
tion temperature, the dynamics of a dilute dipolar ex-
citon condensate is described by the generalized two-
dimensional Gross-Pitaevskii equation

i~
∂Ψ(r, t)

∂t
= −

~
2

2mex
∆Ψ(r, t) + V (r)Ψ(r, t) + Ψ(r, t)

×

∫

d2r′|Ψ(r′, t)|2U(r − r
′) + i~

(

R̂− γ
)

Ψ(r, t). (1)

In Eq. (1) Ψ(r, t) is the exciton condensate wave func-
tion, mex is the exciton mass, V (r) = αr2/2 is an exter-
nal parabolic trapping potential, α is the trapping poten-
tial strength, U(r) = e2D2/εr3 is the pairwise exciton-
exciton interaction potential, e is the electron charge,
D is the interwell distance, ε is the dielectric permit-
tivity of the semiconductor, and γ = 1/2τex, where τex
is the exciton lifetime. Below an isotropic trap is con-
sidered. However, this is not a restriction of the model
and we can also consider anisotropic traps with different
trapping potential strengths in x and y directions. The
last term in Eq. (1) describes creation of the excitons
due to the interaction with the pumping laser radiation
and the exciton decay similarly to that used in earlier
works.22,23 However, to capture the resonant pumping
in a given spectral domain, we introduce a linear opera-
tor R̂ instead of the direct driving22 or the homogenous,
frequency-independent growth increment.23 The R̂ oper-
ator is defined via its matrix elements in a functional
basis that enter into the system of equations (6) given
below.
The integral term in Eq. (1) diverges at small distances

that corresponds to known divergence of the scattering
amplitude of the dipolar excitons.9 To regularize this
term we introduce a cutoff distance r0 = (εµ/e2D2)1/3

defined by the equation U(r0) = µ, where µ is the chem-
ical potential for the exciton system. This is equiva-
lent to the cutoff of the exciton energies at the chemical
potential µ. In this case, |Ψ(r′, t)|2 can be expanded
in a Taylor series over ρ = |r − r

′| and the integral
term reads

∫

ρ≥r0
d2r′|Ψ(r′, t)|2U(ρ) = g|Ψ(r, t)|2(1 +

O(r0/a)), where g = 2πe2D2/εr0, O(r0/a) denotes the
terms of (r0/a) order, and a ∼ Ψ(r, t)/|∇Ψ(r, t)| is the
characteristic length, at which the condensate wave func-
tion changes significantly. For the low-frequency resonant
driving a coincides by the order of magnitude with the
size of the exciton cloud d ∼ 10 µm.13,14 Hence, the used
approximation for the integral term is valid if r0 ≪ 10
µm. For the high-frequency driving, a can be smaller
than d and is defined by the driving frequency. The es-
timates for the experimental conditions13,14 show that
r0/d ≤ 0.04 and therefore, the corrections ∼ (r0/a) are
negligible.
Thus, under the experimental conditions13,14 the dy-

namics of the dipolar exciton BEC is described by the

FIG. 1: (color online) Steady-state spatial distribution for the
dipolar exciton BEC density in a trap for the low-frequency
driving at R0 = 0.1. Inset shows the evolution of the exciton
density profile with rising the pumping rate R0: 0.1 (�), 0.3
(•), and 0.5 (N). The curves represent the Thomas-Fermi
distribution function.

equation

i~
∂Ψ(r, t)

∂t
= −

~
2

2mex
∆Ψ(r, t) + V (r)Ψ(r, t)

+gΨ(r, t)|Ψ(r, t)|2 + i~
(

R̂ − γ
)

Ψ(r, t). (2)

Eq. (2) coincides with the “traditional” GPE, in which
creation and decay of the particles are taken into account.
However, in Eq. (2) the exciton interaction strength g
depends on the chemical potential of the system and thus,
on the density of the exciton BEC. In what follows we
incorporate the equation for the chemical potential in the
BEC determined for a dilute gas in a trap,24

µ = (H(2) + 2H(4))/N, (3)

where

H(2) =

∫

dr

(

~
2

2mex
|∇Ψ(r, t)|2 + |Ψ(r, t)|2V (r)

)

,

H(4) =
g

2

∫

dr|Ψ(r, t)|4, (4)

are the quadratic and fourth-order terms in the Hamil-
tonian of the system and N = (1/2)

∫

dr|Ψ(r, t)|2 is the
total number of the excitons in the BEC.

III. SPECTRAL REPRESENTATION OF THE

GENERALIZED GROSS-PITAEVSKII EQUATION

To investigate the nonlinear dynamics of a dipolar ex-
citon BEC, we solve the system (2), (3) using the spectral
representation

Ψ(r, t) =
∑

n

An(t)ϕn(r), (5)

where the basis functions ϕn(r) are the eigenfunctions
of the Hamiltonian for a single particle in a parabolic
potential,25 An(t) are the time-dependent coefficients
of the expansion of the condensate wave function, and
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FIG. 2: (color online) The exciton density profiles at t = 200t0 for (a) R0 = 0.1 and (b) R0 = 0.3 for the high-frequency
driving at p1 = 4, p2 = 6. Inset on frame (a) shows the exciton density plotted at y = 0 and averaged over the time period
50t0 < t < 200t0 and three independent runs (points). Curve shows the fitting by the Thomas-Fermi distribution.

n = (nx, ny) is the two-dimensional index. We will re-
fer to the coefficients An(t) as the spectral amplitudes.
The Schrödinger equation for the basis functions coin-
cides with the linear, Hermitian part (i.e. the first two
terms in the r.h.s.) of Eq. (2). This choice allows us to
capture the behavior of the condensate wave function by
taking into account a relatively small number of terms
in the expansion for Ψ(r, t) and hence, obtain a good
numerical convergence.
Substitution of the expansion (5) into Eq. (2) results

in the following system of equations for the spectral am-
plitudes

∂An

∂t
= −iωnAn − ig

∑

m,k,l

Wn,m,k,lA
∗
mAkAl

+(Rn − γ)An, (6)

where ωn = (α/mex)
1/2(nx + ny + 1) is the linear os-

cillation frequency of the mode An(t), Wn,m,k,l is the

matrix element of the interaction term H(4), and Rn is
the matrix element of the R̂ operator.
We numerically integrated the system of equations (6)

with the 4th order Runge-Kutta scheme on a graphical
processing unit NVIDIA Tesla S2050. In the simulations,
the length and time are expressed in the oscillatory units
ℓ0 = (~2/αmex)

1/4 = 0.9 µm, t0 = (mex/α)
1/2 = 1.6 ns

calculated for the external trapping potential at α = 50
eV/cm2 and the exciton mass mex = 0.22m0, where
m0 is the free electron mass. The initial conditions
were chosen in the form of quasi-equilibrium distribu-
tion An(0) = [T/(µ0+nx+ny+1)]1/2 exp(iφn) with the
dimensionless temperature T = 0.1, the dimensionless
chemical potential µ0 = 1, and random phases φn. We
found that the results only weakly depend on the choice
of the T and µ0 constants.

IV. EXCITON BEC FORMATION

We consider two cases: (a) the exciton system is
pumped at low spectral modes, i.e., at frequencies com-
parable with the fundamental frequency in the parabolic

trap, ω0 = t−1
0 ; (b) the system is pumped in the high

frequency spectral domain ω > ω0. It is worth noting
that, in experiments the ratio of the driving frequency
and the fundamental frequency of the trap may be tuned
by changing both the laser pumping frequency and the
trapping potential strength α.13,14

For the low-frequency driving, we set Rn = R0 at
n ≡ (n2

x + n2
y)

1/2 ≤ p0 where p0 is a given cut-off and
Rn = 0 otherwise. Below, we show the results obtained
for p0 = 2. The driving was applied at t = 0. Ini-
tially, the system exhibits transient oscillations. At a
later time, the oscillations were damped and the system
relaxed to a stationary state, in which the spectral ampli-
tudes An tend to constant values. The time required to
approach the stationary state was equal to t ≈ 50t0 ≈ 80
ns for a low pumping rate R0 = 0.1 and it decreases to
t ≈ 20t0 ≈ 32 ns for a high pumping rate R0 = 0.6. We
also observed that the initial exciton distribution relaxed
to zero if the pumping rate was less that the threshold
value R0 ≈ 0.03. The presence of the finite excitation
threshold is in agreement with the results of previous
simulations of the polaritons dynamics.23 Figure 1 shows
the stationary non-uniform spatial distribution of the ex-
citon BEC density at t = 200t0 for R0 = 0.1. It is seen in
Fig. 1 that an exciton “cloud” of size ∼ 6− 8 ℓ0 that is,
∼ 5−7 µm is formed at the center of the trap. Formation
of the cloud at the center of the trap is in agreement with
the observations with indirect excitons in a trap13 and in
the BECs of trapped atomic gases.24 It follows from the
inset in Fig.1 that the spatial distribution of the exciton
in the BEC can be described by the Thomas-Fermi dis-
tribution |Ψ(r)|2 = n0[1− (r/d)2] (n0 is the BEC density
at the center of the trap and d is the effective radius of
the cloud), which is used for characterization of inhomo-
geneous atomic BECs.24 The inset in Fig. 1 demonstrates
that the exciton density at the center of the trap gradu-
ally grows with the increase of the pumping rate.
When the system was driven in the high frequency

spectral range (R = R0 at p1 < n ≤ p2, and p2 > p1 ≥ 4)
the BEC exhibited persistent, non-damped oscillations.
At relatively small pumping rates, R0 ∼ 0.1, the spatial
BEC profile at any given moment of time was far from
the Thomas-Fermi distribution and it was represented as
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FIG. 3: (color online) Dependence of the dipolar exciton in-
teraction strength on time for the high-frequency driving at
p1 = 4, p2 = 6. Inset: Time dependence of the spectral
amplitudes |An| at n = (0, 0) (the fundamental mode) and
(8, 8).

a series of irregular “spikes”, as seen in Fig. 2a. Never-
theless, the mean exciton BEC density distribution aver-
aged over a long enough period of time, 〈|Ψ(r, t)|2〉, was
close to the Thomas-Fermi distribution, as shown in the
inset in Fig. 2a. At larger pumping rates, R0 ≥ 0.3, the
density oscillated around a mean parabolic profile, which
was close to the Thomas-Fermi distribution (Fig. 2b).
We emphasize that, unlike the case of the low frequency
driving, the BEC oscillations were observed during the
whole time period of the simulations 200t0, which is much
longer than the time duration of the initial transient pro-
cesses. Figure 3 shows the respective oscillations of the
spectral harmonics, An, at t > 50t0 and the variations
of the dimensionless interaction strength, g′ = gmex/~

2,
with time. A decrease of both An and g′ at t < 50t0
corresponds to initial relaxation after the driving was ap-
plied.
To characterize the oscillatory regime, we plot a two-

dimensional amplitude distribution 〈|An|
2〉 averaged over

time and three independent runs, as a function of
(nx, ny), see inset in Fig. 4. It is clearly seen that, de-
spite the system is driven at the high-frequency range
(marked by dashed curves), the maximum of the spec-
tral amplitudes (deeper color) is positioned at low spec-
tral numbers n ≤ 2. Therefore, mutual interaction be-
tween different spectral scales is present in the system.
In other words, a flux of the excitations from the region,
at which they are generated by an external pumping,
toward the low-frequency region is formed. The resul-
tant state is similar to a wave-turbulent state known for
weakly nonlinear systems.26,27 In those systems, nonlin-
ear interaction of running waves resulted in formation of
turbulence, which was characterized by establishing of
power-like, Kolmogorov spectra of energy and particles
distributions. In our case, the system is not spatially
homogeneous and the interacting, normal variables are
present by the oscillatory modes An.
To further characterize the turbulent regime, we calcu-

late the angle-averaged distribution for the spectral am-

plitudes, Nnr
=

∑nr+∆n
n=nr

〈|An|
2〉, Fig. 4. Formation of

power-like tails of the distribution Nnr
∝ nm

r at frequen-
cies below and above the characteristic driving frequency

FIG. 4: (color online) Angle-averaged occupation number of
the excitonic modes in the BEC, Nnr

as a function of the
radial number nr, plotted in log-log scale. The data are aver-
aged over three independent runs. The center of the pumping
region is labeled by a vertical arrow, ∆n = 3. The lines show
a power-like distribution for Nnr

= const×nm

r
at m = 0 and

m = −2. Inset shows the averaged spectral amplitude distri-
bution |An|

2, the dashed curves show the boundaries of the
pumping domain.

is clearly seen on the main part of Fig. 4, that supports
our conclusion on the establishing of the turbulent regime
in the dipolar exciton BEC in CQW. The presence of
two different exponents m = 0 and m = −2 in the low-
and high-frequency domains, respectively, indicates that
the fluxes of the energy and of the number of particles
through the scales are simultaneously formed in the sys-
tem (cf. theory26,27 for the traditional GPE).
An essential difference between the previous

consideration26,27 and our results is that (a) the
interaction strength g depends on the instantaneous
exciton distribution, and (b) the effective damping in
the system produced by the exciton decay is finite and
cannot be disregarded for all modes. As it follows from
the consideration in Ref. 27, in the wave turbulent
regime for the traditional GPE with the wave frequen-
cies ωn ∝ |n| the exponents are equal to m = −2/3
and m = −1 for the low- and high-frequency spectral
domains, respectively. Thus, the exponents m found in
our simulations differ from those for the standard GPE.
Therefore, the turbulent dynamics of the dipolar exciton
BEC has different scaling properties, compared to that
described by the traditional GPE.

V. CONCLUSION

In conclusion, we demonstrate that the dynamics of
the Bose-Einstein condensate of dipolar excitons in cou-
pled quantum wells can be described by the generalized
Gross-Pitaevskii equation with the local (contact) inter-
action, despite a long-range exciton-exciton interaction
is present. The effective interaction strength g is a func-
tion of the chemical potential of the system and therefore,
should be determined self-consistently from the exciton
distribution in the BEC. We show that, if the system is
driven by an external pumping at low frequency modes,
the spatial distribution of the excitons in a trap is de-
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scribed well by a parabolic density profile formerly known
for dilute atomic BECs. However, if the system is driven
at high frequency modes, strong time-dependent density
fluctuations are excited in the BEC, and the condensate
density at any given moment of time can be far from the
equilibrium parabolic profile. We infer that a turbulent
state is formed in the exciton BEC in this case, which is
characterized by a nonlocal particle balance in the sys-
tem. The latter results in formation of the power-like
spectra for the exciton distribution function. The turbu-
lent state is somewhat similar to that recently observed in
superfluid 4He19,20 and proposed in Ref. 28 for the atomic
BEC formation. The crucial difference between all men-
tioned examples and the system under consideration is
that in our case the interaction strength between the
normal modes is a function of the occupation numbers
of the modes. Therefore, turbulence can not be consid-
ered as “weak” and it involves more complex interactions
between the modes. It is worth noting that formation of

long-living nonequilibrium states was recently described
for a classical system with long-range interaction.29 Also,
a transition to the turbulent state has been recently ob-
served for the trapped atomic BEC in an external os-
cillating field.30,31 The results of our consideration are
useful for understanding of nonlinear phenomena in low-
dimensional quantum systems including indirect excitons
in CQW,13,14 exciton polaritons propagation,8 and a pho-
ton BEC in dye microcavities.32
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