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Phases and phasetransitionsina U(1) x U(1) system with § = 27 /3 mutual statistics

Scott D. Geraedts and Olexei |. Motrunich
Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

We study aU/(1) x U(1) system with short-range interactions and mutiad= 27 /3 statistics in (2+1)
dimensions. We are able to reformulate the model to elireittag sign problem, and perform a Monte Carlo
study. We find a phase diagram containing a phase with onlyl émoas and two phases with one species of
proliferated loop. We also find a phase where both speciesopf tondense, but without any gapless modes.
Lastly, when the energy cost of loops becomes small we findaagwhich is a condensate of bound states,
each made up of three particles of one species and a vortae oflier. We define several exact reformulations
of the model, which allow us to precisely describe each plratsms of gapped excitations. We propose field-
theoretic descriptions of the phases and phase transitidrish are particularly interesting on the “self-dual”
line where both species have identical interactions. We @ésine irreducible responses useful for describing
the phases.

PACS numbers:

I. INTRODUCTION Jo 0 7N
2 v \ / \
_ _ / \ v \
One of the hallmarks of topological quantum phases is that /\ \ !
they have anyonic excitations, which can be viewed as parti-J1 I !

\ \
cles with statistical interactions. Examples include dpesi- : ! : :
cles in the Fractional Quantum Hall Effécspinon and vison : | | !
excitations inZ, spin liquids?~° and excitations in a variety of ! I'
interesting fractionalized systerf$. It is also fruitful to ask '

\ \ ]
about possible new phases that such particles can have, as a 7,9 \ ,I L e ‘\ !
way to access proximate phases and phase transitions-involv @ ‘oo e {/ N
ing topological quantum staté:'’ ~7 -

Unfortunately, direct Monte Carlo studies are hampered by
the sign problem. It turns of that some such systems allow reg|G. 1: The contribution to the partition function is multge by a
formulations where they become free of the sign problem ang@hase:*? for each cross-linking of the two currents shown in the fig-
can be studied using unbiased numerical approaches. stitereure on the left. If we change the direction of one of the cusemd
ing questions include, for example, what phases can résult pet the figure on the right, the phase:is”. When considering sym-
there are two species of particles with mutual statistiasane ~ Metries of our model fof 7 , we must only consider operations
both trying to condense. In this work, we pursue such a study‘at leave the relative orientation of the current loopshamged.
of the effects of a statistical interaction on a model of two
species of integer-valued loops with short-range int@ast
We are able to reformulate this model so that it can be stugdual cubic lattice. We use schematic vector notation so that
ied on a lattice using Monte Carlo techniques. Previotfsly, /1 and.J; represent these conserved integer-valued currents,
we studied a model with two species of loops and mutual andV - J; =0,V - J> = 0. In the partition sum, a given cur-
statistics, which is also of interest in effective field ties  rent configuration obtains a phase fact8tor e =% for each
of frustrated antiferromagnéfs?* and other area®-28 We  cross-linking of the two loop systems, dependent on the rela
would like to extend this to study systems with general stative orientation of the current loops, as shown in Fig. 1.sThi
tistical anglef. We have found thal = 7 is a special case, Is realized in the last term of Eq. (1), by including an auxil-

and the properties of such models are qualitatively differe iary “gauge field"ps, defined on the direct lattice, whose flux
whené # 7. In this work we study = 27/3, and the results encodes thd, currents,J; = V x pb.

should exhibit behavior similar to that for genefiaf . Figure 2 shows the phase diagram for the model With
Our model can be precisely described by the following ac2/3. When botht; andt, are small we have a phase [labeled
tion: (0) in the figure] where there are only small loops. Wheris
7 (2 7 (R)? large and is small, we get a phase [labeled (1) in the figure]
SIJy, Ja] = i\r + 2 +i0S T - Pa(r) . where one species of loop has proliferated, while the other
1, T2 zr: 2ty Z 2ty zr: 1(r)-P2(r) species has only small loops. Since our model is symmet-

Q) ric under interchange of, andt¢,, we get similar behavior
The indexr refers to sites on a cubic lattice (the “direct” in phase (Il). Since these phases do not have both species of
lattice), andR refers to sites on another, inter-penetratingloops occurring at the same time, the statistical intevasti
cubic lattice (the “dual” lattice§>3! .J;,,(r) is an integer- are unimportant.
valued current on a link, » + j of the direct cubic lattice, We now consider the region of the phase diagram where
Jou(R) is integer-valued current on a link, R + [ of the  andt, are similar, in particular in this work we will often study



the “self-dual” line where,; = ¢-. Inthis region, if we wereto Carlo. We review that method here, since in this work we have
neglect the statistical interactioé & 0), we would have two  defined new measurements based on the sign-free reformula-
phases: a “gapped” phase at low t5, where there are only tion. First, we pass fronf; variables to conjugatei2periodic
small loops, and a “condensed” phase at higlts, with pro-  phase variables by formally writing the constraint at each
liferated loops in both thaﬁ andf2 variables. The condensed ”

phase would have two gapless modes, one from each species 5[ . J;(r) = 0] = / déy, expl—id (V- J1)].  (2)

of loop. The transition from the gapped to condensed phase —n

would be two decoupled XY transitions. If we turn on the L _ - :
statistical interaction, we find qualitatively differergloavior. TO be precise in o.ur system with pﬂer'Od'CAbounda}ry condi-
For smallt,, > we again get a gapped phase, but for largefions, we also requlre#totalqcurrentsbqf and.J; to vanish. In

t1, t2, we get a phase, labeled phase (IV) in Fig. 2, wherghis case we can writé, = V x p> and the action (1) is inde-
the statistical interactions are manifest more dramayicale ~ pendent of the gauge choice fa. We enforce the zero total
will see below that in this phase both species of loop are coneurrent in./; with the help of fluctuating boundary conditions
densed, however there are no gapless modes. This phasefds the ¢-s across a single cut for each directjor- z, y, z
distinguished from phase (0) by a non-vanishing corretatio

between currents of different species. Such correlatierew T ,

identically zero in the) — 7 case, and this phase was not ° [Z J1,L(7°)5rﬂ,01 = [ﬁ dyy exp [—WHZ Jlﬂ(r)é%o} :
present in that model. " " 3)

If we increasei; andt, still further, we get a phase, la-  Thjs gives the following partition function:
beled phase (lll) in Fig. 2, which is a condensate of bound

states composed of three particles in thevariables and an m ™ 3 _Som ]
anti-vortex in the.J, variables. This is a (2+1)-dimensional 4 = > / Hd‘br/ I dvue 5771 (4)
analogue to thé-term induced “dyon condensates” in (3+1) constrained Jo © " =l

dimensions described in Refs. 32—-34. Loosely speakinggthe
composite states appear so that the system can avoid destr
tive interferences from the statistical interaction. Frara-

L\Mwere the action is given by:

[V x ()]

ple, the statistical interaction in Eq. (1) is inoperativeem  S[¢,~,py] = Z (5)

the J-currents are present only in multiples of three, while the 2to

precise description of the phase (lll) is obtained by employ + Z Wiltain [@rt0 — & — 0P (1) — Y00, 03 t1]
illain |¥r+p T 12 nr.,0, .

ing duality approaches in the main text. The transitionmfro
phase (IV) to phases (0) and (lll) occur at interesting raulti
critical points, and we study the system’s behavior at thesgr .., is the “Villain potential”, which is obtained by sum-
points. ming over theJ; variables:
The outline of this paper is as follows. In Section Il, we

reformulate the model, Eq. (1), in a sign-free way so that Jio

we can study it in Monte Carlo. Section Ill contains the re- exp[—Wittain (e, t1)] = Z exp [_2_t1 + lea} (6)
sults of the Monte Carlo study. These results are presented Ji=meo

in terms of the correlation functions of the originlvari- In the actual Monte Carlo, we use,, ~,e(—m,7),

ables of Eq. (1), which already allows us to distinguish all,, (r)ez, and perform unrestricted Metropolis updates. One
phases. In Section IV we introduce several additional eXa.Céan show that physical properties measured in such a simula-
reformulations of the model using duality transfof?*>**  {jon are precisely as in the above finitely defined model.
summarized in the Appendix. These reformulations enable us |n this work, we monitor “internal energy per site?, =

to precisely describe each phase in terms of variables whicl /v], whereVol = L3 is the volume of the system, and
are gapped in that phaskThis leads us to propose continuum compute heat capacity per site, defined as

field theories for the various phase transitions in our madel

Section V. In Section VI we derive equations for “irredueibl C = ({(€*) — (¢)?) x Vol. (7)
responses” which provide a physical way to characterize the

“condensates” that give phases (IV) and (l1l). We conclude i  To determine the phase diagram, we monitor loop behavior
Section VII by comparing with thé = 7 case and discussing by studying current-current correlations, which are defias:
further generalizations.

(0

0 2

1
C%(k) = — (Jup (k) Tp (k) 8
;LV() V01< M()b( )> ()
II. MONTE CARLO METHOD AND MEASUREMENTS wherea andb are the IooE) species apdandv are directions;
Jap(k) = 32, Jau(r)e= 7. We trivially haveCle (k) =
In Ref. 18, we described a method of reformulating mod-Ci(—k). Because of the vanishing total current, we define
els with short-range interactions and statistical termshss ~ the correlators at the smallest non-zétoe.g., forCgg we

Eq. (1), in a sign-free way so that they can be studied in Monteisedk = (0, 2T”,O) andk = (0,0, 27”). In this work we



are interested in the correlations between currents ofdines

species(;7; (k), also known as the “superfluid stiffness”. For 35 r 1
example,C?? can be measured easily in our Monte Carlo, (mn
since we have direct accesskp= V x . 3+ 4

We are also interested in the correlations between currents (n
of different species, and we first need to find the correspond- 25 1
ing expressions in terms of the variables in Eq. (5). We can
couple the originalf variables to external probe fieldgext ~ 2 L 4
by adding the following terms to our action: =

55 =i i) - A () +1 Y Ju(R) - ATHR). () - V)

T R 1k (l) |

We carry the ﬁeldsﬁf‘fot through the reformulation procedure
and then take derivatives of the partition function withpest 05 T
to them. We obtain the following expression for the correla- 26)
tion between currents of different species: 0 L L L L L L L

e
Vué—=0p2,—Yubr, 0

1 7B t
12 _ ik-R 1
C,uu(k) - W< <Z JQU(R)e ) - .
R FIG. 2: The phase diagram for the model in Eq. (1) Witk 27/3.
’ SVarmae (cv o Phase (0) contains no loops. Phase (I) contains proliigateps
<z Z %‘1() ﬂ’”) >.(10) in J; and no loops iz, while in phase (11) the variables are inter-
r @ changed. In phase (1V) both species of loops are condenséugjie-
strength loops. Phase (lll) is a condensate of bound stateprised
In the above equation, it is important to note thiaand.J, are  of three charges from one species of loop and a vortex frorottier
defined on different lattices. In order to work with them oe th SPEcies. The precise description of these condensateeis igithe
same footing irk-space, it is convenient to defide= 7' +d, text.
wherer’’ is on the direct lattice andlis the offset between the
two lattices. We can choose any conventionfor this offset, & it our precise definition of the offset between the two lat-
we choosel = (1/2,1/2,1/2), which means that the sites of tices and of the Fourier transforms, to show that all theesorr
the dual lattice are located at the centers of the cubesfiymi |ators Ce% (k) are real. Lastly, we can use the? lattice ro-
the direct lattice, and we use such “physical” coordinates f tation symmetry of the action to show th@te (k) = cae (k)
all §|tes !vhen def|n|ng.the Fourler. transforms. For g g!verhnd lef,(/f) _ —C’lﬁ(k:). Whenever we present numerical
variablelV'(r) on the lattice whose sites are labeled by indicesjata, we have performed appropriate averages over all-direc
r, the quantityv x W (r) is defined on a dual lattice. Now that tions to improve statistics.
we have defined the relation between the two lattices, we can
precisely define the meaning of the curl operatiok-space,

o } } 1. RESULTS
[VxW],(k) = 2i€, sin(k, /2)ere/2e=*u/2W, (k). (11)

) A. Mappingout the phase diagram
We can use symmetry arguments to determine some prop-

. b RN
erties of the correlator§'}; (k). For simplicity, in this work We determined the different phases of the model by looking

we definek to be in thez-direction, so thak = (0,0,%.), gt the stiffnes?2(k) = C22(k) = C22(k), defined at =

and we only need to considgr,v € {x,y}. Forasym- . — (00 2r/L). Its L — oo limitis non-zero in phases
metry operation to leave our action in Eq. (1) unchanged, ifjj) and (111) and vanishes in the other phases. Since ourghod
must preserve the relative orientation of two cross-liné@d s exactly symmetric around the self-dual line, we know that
rents, like those in Fig. 1. One symmetry that satisfies #Hsr 113, . is non-zero in phases (1) and (I11). We found the
quirement involves mirror reflection about a plane whil@als |ocations of the phase transitions more accurately by gtgdy
reversing the direction of one species of loopy; (k) and C?2(kpin) - L crossings. We took data in sweeps across the
C}2 (k) change sign under such an operation about a planghase diagram (see Fig. 2), and defined the intersectiorof th
perpendicular to the-axis, and therefore must be zero. We C22(k,,;,)- L curves to be the location of the phase transition.
can also use such an operation about a plane perpendicularAg example of such a sweep is shown in Fig. 3. The dots
the z-axis to show that’;? (k) is an odd function ok, and  on the phase diagram in Fig. 2 are the locations of the phase
henceC.l(k) = C,2(—k) = —C,2(k). Our action is also transitions determined in this way. In &IF? (k. )- L sweeps,
unchanged if we take its complex conjugate while also reverswe found that the crossings did not drift with increasihg

ing the direction of one species of loop. We can use this,galonwhich suggests that these phase transitions are secoed-ord



4

L=8 In phase (IV), the/ variables are condensed. One way of
6 |FL=12 —— . expressing this condensation is to replace the integeredal

55 a0 J with real-valued variableg. This is equivalent to coarse-

5 | L=24 graining the model and integrating out the gapped vortices
= (see Sec. V). If we define new gauge varialilgs and d/;,
= 45 - — T X G rd T X O
E such that/;, = Y59 andj, = Y5%2 then we can replace
N 4r the original action Eq. (1) by an effective action in terms of
© a5t thed;;, d;, variables:

3 / . N , . Lo
N | s ap) = 53 Bl 57 Feutl
R . " .,

1.7 1.7 1. 1.81 1.82 1. i0 - .
8 9 8 8 8 83 + (2T)2 Z[V X Oéjl(R)] -OéjQ(’l’). (12)

FIG. 3: A sample of th&?? (k) - L crossings from which the lo-  In the absence of the last “mutual Chern-Simons” (CS) term,
cation of the phase transition was determined. Error bareedoom  this would be an action for two decoupled gauge fields, which
comparing runs with different random seeds. Here the tiansis  would have two gapless modes. When the mutual CS term is
from phase (IV) to phase (1l). The data is takenfpr= 1.0, and we  ncluded, it destroys the gapless modes. We can calculate th

determine the phase transition to be&at= 1.80 & 0.01. There is Ce(k) andC'2(k) correlators with respect to this gaussian
no sign of drift in the location oj the crossings, suggestrgpcond- action, and we find that@? (k) ~ k2 ~ 1/L2 for k = Euin,
order transition. Note that thé; variables are condensed in both sistent with our data. We also find @t (k) ~ —& =
phases (IV) and (Il). NeverthelesS* (kwin) - L ~ 1/Linphase  ~ 5~ 5 tork — k- Thi ity | ¢ deb th
(IV) and C??(kuin) - L ~ L in phase (l1), so the crossing analysison ~ L6 . ~ L Or v = Fmin. TNIS qUantity Is represented by the
the plot detects the transition. This subtlety is discusséde text. ~ dotted linein Fig. 5, and we can see that our Monte Carlo data

approach this value. A justification of why'? might take
this value is given in Sec. IV.
In Sec. VI, we will derive irreducible responses which pro-

Let us now consider some limiting cases. The model W'tr\/ide an additional way to distinguish between phases (ft) a
t; = 0 is a model containing only one species of Id8p. (V)

Our value for the position of the (0)-(I1) XY transitiomy( ~
0.333...) is in agreement with prior work on this mod&The
transition is in the 3D XY universality class also for small
non-zera .

Fort; — oo, the Villain weight (6) vanishes except for
o = 27 (int), which enforcesl, = V x @, = 3x(int).
Therefore, att; — oo the (1)-(Ill) transition is a transition
from no loops of/; to J, loops of strengtl3. One expects that
this transition is XY-like, and similar to the (0)-(I1) traition,
but due to tripled/s, it should occur at &, value nine times
higher. We observed the (I)-(Ill) transition to occurtat~ 3

Let us briefly remark on the use 62 (kyy,;,) - L crossings
to determine the phase boundaries. It is natural to use these
' crossings on the (0)-(11) and (I)-(lll) transitions, wheve are
going from a phase with only small, loops to a phase with
Iargef2 currents. For the transition from phase (V) to (II), we
are going between two phases where fheariables are con-
densed. However, since in phase (W¥?(kmin) - L ~ 1/L
while in phase (I1)C?2 (kuin) - L ~ L we can still use cross-
ings in this quantity to determine the transition between th
two phases. One might not expect, however, to see qualita-
for larget,, in agreement with this expectation. We give atively similar behavior between this transition and thensia
. N o A tions (0)-(I1) and (I)-(ll), yet this is what we observe. &h
precise description of phase (lll) for finite, ¢5 in Sec. V. N X ; .
, . reasons for this will be explained in Sec. IV. For the transi-
In Fig. 4 we showC??(ky,i,) - L along the self-dual line " tion between phase (1) and phase (P2 (kin) - L ~ 1/

t1 = 12, going through phases (0), (IV), and (ll). Nei- in hoth phases, and so we cannot use it to detect this tramsiti
ther of phases (0) and (IV) have a finite superfluid stiffness

C??(kmin), SO to distinguish between them we use the corre-

lator C}2 (kmin), denoted ag”'? (k) in what follows. A B. Transition (0)-(IV) along the seif-dual line
plot of C*2 (kyin) along the self-dual line is shown in Fig. 5.
C*2(kmin) - L vanishes in phase (0) in te— oo limit, but is We now investigate the apparent multicritical points on the

non-zero in phase (IV), so the two phases are indeed ditferense|s-qual line. We first study the lower regime where phases
We can understand the observations in phases (0) and (I\(), (1V), (1) and (Il) meet. We are interested in how the péms
as follows. The excitations in phase (0) are small loopsén th join. Due to the symmetry between andt,, there are three
J variables, which implies that in this phaé&®(k) ~ k2 scenarios, shown in Fig. 6. In a), all four phases meet at a
for smallk. Fork = ki, this givesC?? (kuyin) ~ 1/L% point, while in b) there is a critical line segment on the self
The smallest excitation that coptributes(tBQ consists of a dualline, and in ¢) such a segmentis perpendicular to tlfie sel
small loop in each of thg; and.J; variables. An estimate of dual line. Figure 7 show§?2 (k,,;, )-L along the self-dual line
such contributions with cross-linking between the looggle  near this transitionC?? (k,,;, ) - L vanishes in phases (0) and
to C12(k) ~ —sin()k3. (IV) [see also Fig. 4], but appears to have a finite value in the



FIG. 6: Different scenarios for how the phases can meet ordlie
dual line. In scenario a), all four phases meet at a point),Ipliases
(I) and (ll) meet on a line segment on the self-dual line, and)i
phases (0) and (IV) meet on a line segment perpendiculareo th
self-dual line. We believe that scenario c) is unlikely, ing can-
not distinguish between a) and b) at finite size. We can orlest

‘ that if such a segment exists in scenario b), it is in the maremge
0.5 1 15 2 2.5 3 t =0.335 — 0.35.

CZ(Kpin)'L

FIG. 4: C*(kmin) - L along the self-dual line. We can see that \ith system size. We can further limit this segment by study-
g h(k".ni“) t {F\Vf’t‘n'Sh?t.s 'nbpr:ases (t%) and gvt){jézgezpl'te 'tSL”dr?”S“a'ing heat capacity shown in Fig. 8, and noting that the segment
ehavior at the transition between these phases.(kmin) - L di- is no larger than the region where heat capacity increaghs wi

e, vaiables. The vertcal nes mark he ocatons of e pnas SYSTeM Size. We therefore estimate that the line segment i
: PhaS \ithin the small range < [0.335, 0.35]. In addition to the

transitions. More detailed data at the phase transitiosfidsvn in . . . .
Figs. 7 and 10. small size of the line segment, if scenario b) were true aad th

transition were first-order we would expeCt? (k,i,) to be
finite at the transition, since it is non-zero in phase (Ihefe-
fore we would expeaf?? (ki) - L to increase linearly with
L on the segment, and this is not consistent with Fig. 7.

We also wish to determine the order of the phase transition
in this region. One possibility is that the transition is tfirs
order. This is supported by the histograms of energy per site
shown in the inset to Fig. 8. These histograms were taken at
t = 0.345, L = 28 and32. In the second-order case we would
expect such histograms to be singly-peaked while in the first
order case we would expect to see two distinct peaks. We
do not see two distinct peaks, however the histograms have
a “flat top”, suggestive of two peaks which are too close to
1 1 be distinguishable on our finite sizes. However, the belavio
45 L L ! L L of C?2(kwin) - L in Figs. 4 and 7 implies that we have very

0.5 1 15 2 2.5 3 strong crossovers in our simulation variables: as we agproa
the transition from phase (IV), we need larger and largesssiz
to see the eventual vanishing 6% (i, ) - L ~ 1/L in this

X ; ; . : phase. Itis possible that the unusual shape of the energy his
{7v2e;r2 d?giﬁs(%sgttg %r;p;cgfrh/%si ufgeﬁﬁlcnaggesmvgy tograms could be -dL.JFE tq sampling in thg;e vgriables.
a horizontal line. In phase (IV);"?(kmw) - L approaches a non- 1 he other possibility is that the transition is second-arde
universal value. The vertical lines mark the locations @f tihase ~ The above arguments related to the manner in which the
transitions. phases join suggest that scenario a) is most likely. A first-
order transition in the form of scenario a) would be highly
unusual. We can also study the order of the transition by ob-
critical regime. If scenario c) were correct, we would expec serving the growth of the peaks in the heat capacity (Fig. 8)
C?2(kmin) - L to vanish at the (0)-(1V) transition since phaseswith system size. In a first-order transition, the peaks woul
(1) and (11) should not influence its behavior. In additiorew grow asL?, and we observe that in our data the growth is
have taken sweeps withhy = t; + 0t,0t = 0.002, which  much slower than this, suggesting a second-order transitio
are lines parallel to the self-dual line and displaced frobyi  However, finite size effects could be preventing us from accu
dt. We found two distinct phase transitions near the criticalrately observing the growth of the specific heat. Therefaze w
point, so if scenario c) is accurate the line segmert 5004  cannot with our data definitively say whether the transition
in size. For these reasons, we believe that scenario c) is noi this region is first- or second-order. Studying the system
taking place. at larger sizes could help to resolve this question, by more
Furthermore, if there is a line segment as in scenario [9), it iclearly resolving the histograms, further reducing thespit
no larger than the region in Fig. 7 whef&? - L is increasing of the possible line segment of scenario b), and showing the

0

C2(Kpin) 'L

FIG. 5: C*?(kwin) - L along the self-dual lineC*? (kmin) - L van-
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FIG. 7: C**(kmin) - L along the self-dual line at the bottom multi-
critical point. C** (kwin) - L vanishes as /L for sufficiently largeL
in both phase (0) and phase (IV), but is non-zero at the tiansi

FIG. 9: Heat capacity along the self-dual line at the uppéltiomiti-
cal point. The behavior of the peak with size suggests a skoater
transition. The inset shows a histogram of the energy pere skt

40 L = 32,t = 2.66, which is whereC' has a maximum for this size.

L=8' ‘ The single peak further suggests a second-order transhi@nalso
35 | L=12 14 + =28 — 1 | studied histograms at all of the other points where hea&aigpwas
L=16 —— |4 . 12 F =320 1 measured, and found only single-mode distributions eveeye.
g0 =20 —=— [ 8177 ] ]
L=24 A E & / 1
25| L=28 o V2 / 1
=32 —— | 5 / t=0.345 our modgl. We can therefore try to collgpse(h@(kr.nin) - L _
O 20 | 0 ‘ s data in Fig. 10 to one curve by rescaling the horizontal axis
-0. by (t — terit)LY¥. Applying this process, using,;; = 2.62
15 inferred from Fig. 10, gives = 0.8 £+ 0.1, consistent with
a second-order transition. We have also obtained histagram
10 of total energy at all of the points in Fig. 9, and have found
5 singly-peaked histograms at all points. The inset to Fig. 9
| shows our data fot = 2.66, L = 32, which is the location
0 ‘ ‘ ‘ ‘ : ‘ ‘ of the heat capacity maximum in the figure. This phase tran-
03 032 034 036 038 04 042 044 sition is a transition from a phase where thevariables are
t condensed in single strengths to a phase where they are pro-
FIG. 8: Heat capacity along the self dual line at the bottoritiorit-  liferated only in triple strengths. However, we have usetite

ical point. The sharpness of the peaks suggests either 4 groal  Niques for analyzing”**(kmin) - L which are valid for the

a first-order phase transition between phases (0) and (h.iiset ~ ordinary condensation of loop variables. This will be justi
shows histograms of the energy per sitat . = 28,32, t = 0.345. fied by a more precise description of the two phases and the
The irregular shape of the histogram suggests that thisiisteofider  transition between them in Secs. IV and V.

transition.

growth of heat capacity at larger sizes. IV. ANALYSISIN TERMSOF EXACT
REFORMULATIONS

C. Transition (1V)-(I11) along the self-dual line Using the duality transform shown in the Appendix, we can
derive several exact reformulations of the action in Eq.\(1§

Figure 9 shows the heat capacity in the regime where phas&&n use these reformulations to describe each phase in terms
(IV), (1), (1), and (1) meet. The peaks in the heat capac- of variables whose loops are gapped in that phase. The nature
ity evolve only slowly with system size, suggesting a secondof the different phases and the transitions between them can
order phase transition. Figure 10 shows@& (k.. )-L near  then be described in terms of these variables. We can also
this point. At this transition we are going from a phase withintroduce into our initial action external “probe” gaugeddi
C??*(kmin) - L ~ 1/L 10 C??(kmin) - L ~ L, SO we expecta coupled toJ; and.Jz, by adding terms to the action similar to
crossing at the phase transition. We observe that thisiogss those in Eq. (9):
does not drift with increasing,, further supporting the con-
clusion that the transition is second order. Finite-sizdisg =3 To(—k) - A% (k) + i To(—Fk)- At (k). (13
arguments suggest thaf? (kmin) - L = f[(t — teric)LY/¥]in o5 Xk: AR - ATER) + zk: Fa(=h)- A7 (). (13)
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L=8 We_can carry t_hese gauge fie_lds through the d_ual_ity traqs‘orm
10 as illustrated in the Appendix, and take derivatives with re
9 spect to them to obtain various exact relations betweeardiff
8 ent current-current correlators. We will use such relatitm
2 better understand the behavior of these correlators.
S 6
Q
Gy 5
4
3
2 E
1
2.58 2.6 2.62 2.64 2.66 2.68

To obtain an action suitable for describing phase (1), we
FIG. 10: C??(kwin) - L along the self-dual line at the upper multicrit- apply the duality procedure outlined in the Appendix to the

ical point. The crossings do not drift with increasing sizeplying ., variables in our initial action. We obtain the following
a second-order transition &ty = 2.62. reformulation?®

2
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wheref, , = 1 — e¢'*, as defined in the Appendix. The ac- large energy cost, and therefore both are gapped. We expect
tion is written in terms of/; variables, andjl variables that  this; since theJ; variables are condensed, the variables dual
are dual “vortex” variables to/;. In the above action, and to them should be gapped. Naturally, we can obtain a refor-
from now on, we consider the case of general intra-speciesiulation for phase (I) by applying the same steps to.fhe
interactionsy; (k) andwy (k), though in the preceding section variables.

we considered specific short-range interaction&) = 1/t

andwvy(k) = 1/t2. We also consider a more general,

dependent statistical coefficieftk). Throughout this work, To get an action suitable for describing phase (IV), we ap-
we will assume that, (k), v, (k) andd (k) are real and satisfy ply the duality procedure to thé, variables in Eq. (14). This

va (k) = va(—k) andd(k) = 6(—k). We can see in the above gives us the following action, expressed in terms of “vottex
action that for large; and smallt,, both Ql andf2 have a variables@l andQQ that are dual to theﬁ andfz variables:

—

7T [U25k2)|él(k)|2+vl( )|? ( } ZZ 271' 22 Ql( ) pQQik) ' (15)
| frlPvi(k)vz (k) + 0(k) | fkPui(R)va (k) + 0(k)

.G 1 (2
7 :gg

Here p» is an auxiliary “gauge field” encoding the flux of definev; /5 4.1 such that

@, and is defined such thal, = V x figs (because of the ,

constraints orf); », the action is independ(int oj the choice of V1 j2.auat(k) = — (27)%va /1 (k)
Po2)- Unlike the analysis of phase (1) in tiigy, J» variables, ' | fx]2v1(k)v2 (k) + 0(k)?
it is not clear that a phase with gapp@ql, Q. exists. If we

,  (16)

we see thab, /5 4,1 CANNOt both be arbitrarily large, and so



the interactions may not be large enough to gap out bﬁqth
andQQ. Considering comparablg ~ w9, the dual interac-
tions are largest for intermediate andv, and their magni-
tude increases with decreasifigWhether a phase with both

8

is a transition where th@l variables are going from gapped to
condensed, while th@, variables remain gapped. Therefore,
if we could study correlators such &9, (k)Q1,.(—k)), we
would expect them to behave in the well-understood manner

species gapped exists needs to be determined numerically. Viif one species of loop condensing, qualitatively similatht
have found that in the current model with= 27/3, phase  behavior of the/; variables in the (0)-(Il) transition. We now
(IV) is the phase wher€@; and@- are gapped. In contrast, in invoke a useful relation derived by introducing externale
the® = m model}® such a phase did not exist, and instead wefields as explained above:
expect either a critical state or phase separatigh.

We also note that the transition from phase (1V) to phase (11)

_ umIAP
[FePoa (koo (k) + 0(k)?

Cyyl(k = (0,0, k2)]

(17)

_|_

(2m)2 [0(8)(Quy (K)Quy (=) = | i1 (K)2(Qaa (k) Qe (=) + Asin(ke/2)01 (R)O(K) (Quy () Q2s (—h))
[1Fi2os (R)e

2
(k) + (k)]

Qg is gapped everywhere near the (IV)-(Il) phase transi-constant in phase (ll), even thougE is condensed in both

tion, which implies that the excitations azﬁg are small
loops, and we can show thaf)s,, (k)Q2,.(—k)) ~ k? for

phases. It allows us to ugg?? to study the condensation of
the @, variables, which is what we showed in Fig. 3. Equa-

small k& in the region of the transition. We also expect thattion (18) is also valid at the transition between phase (W) a

(Q14(k)Q24(—k)) ~ k3 in phase (V) and- k in phase (Il).

phase (I1), shown in Fig. 10. We can see from this figure that

Taking the limit of smallt, we see that most of the terms are the() variables seem to be undergoing a continuous transition;

of orderk? or smaller, and we are left with

(2)?

C§§(k> = 0(k)2

(Quy(k)Quy(=F)) + O(K*).  (18)

This explains whyC?2(kp.in) ~ 1/L? in phase (IV) and is

o120 = 2sin(k, /2)0(k)

(2)22sin(k. /2)0(k)

we will discuss this further in Sec. V B.

We can also establish the behavio@‘i(k) in phase (1V)
by invoking another relation, again derived by differetitig
the partition function with respect to external probe fields

(2m)? [|FilPor (K)o (k) - 6(h)?]

+ - 2
(175 2or (k)va(k) + 0(k)?]

(Q1y (k) Qae (—F)).

We can see that for gappe@l,g and in the smalk limit,
Ccl2

1 fePor(k)va(k) + 6(k)? (17 os (ks (k) + 0(k)2]

[v1 (k) (Qaz (k) Q22 (—k)) + v2(k)(Q1y (F)Q1y (—F))]

(19)

above analysis. We chose to express all data in terms of-corre

~ indeed approachesk: /6, as we argued from a schematic lators in the/ variables so that Section 11l could be understood

treatment of the/;, .J, condensate in Eq. (12). Note that we Without any knowledge of the various reformulations.

can use Egs. (17) and (19) to express @heorrelators in

terms of theJ correlators. We have done this, and plots of

the data (not shown), confirm the condensationi}@facross
the (IV)-(ll) and (1V)-(lll) transitions, as expected frothe

We can also give precise meaning to the treatment in
Eq. (12). From the Appendix, an intermediate step in the du-
ality procedure going frondy, J> to Q1, Q2 is:



L = 1 V x @;1(R)]? v )] .
S[ajlvaj27leQ2] = 52[?2:_7;;21)]4—2[ é:;;tQ szxaﬂl QJQ(T)
R T
—HZQ (R)- @ (R +ZZQ2 - alja(r (20)
R

Gaussian integration over th@ variables gives Eq. (15). in the partition sum, we can change the summation variables
Equation (20) is an action for two gauge fields with mutualfrom integer-valued current3; and.J, to integer-valued cur-
Chern-Simons interactions coupled to integer-valuedetsr  rents(j, and M, with the action

Q. When(@; and@- are gapped, we can formally integrate

them out and obtain the low-energy field theory description i

Eq. (12). oy g L (22 Ma (k)]

We now consider a reformulation appropriate for the de- SO=2m/m(@y, M) = 3 > o (B (22)
scription of phase (l11). Our crude intuition is that thie and k ! i
Jo loops will indeed condense strongly but only in multiples 4 lzvg(w }(k) — n@l(k)|2 . (23)
of n, wheref = %” in order to avoid the statistical inter- 2 A

action. To proceed more accurately, we start Vﬁt@h J}],

Eq. (14), and notice that for smal] andv, the combination . .
We can now consider a phase witlh, gapped and); con-

My (R) = Jo(R) +nQ1(R) (21)  densed appropriate for smail andv,. The precise meaning
- of the @, condensation is again obtained by going frah
wants to be gapped whitg; wants to be “condensed”, hence to dual variables\/; using the formal prescription in the Ap-
Jo wants to be “condensed” in multiplesof More precisely, pendix. The resultis

or /)i om)2 || My (k)2 |Ma(k)?| =27 - .
k k

whereM, = V x p2. Note that if we were to dualiz€, Since theM variables are gapped in phase (lll), we know
in S[Q1, fQ] we would of course obtain bac¥[.J;, J>] (up ~ from small loop arguments théd/,,, (k) My, (—k)) ~ k? and

to sign of.J,), while the duality procedure after the change (M1, (k)Ma, (—k)) ~ k*. We can also derive the following
of variables in Eq. (21) gives a different reformulationcgn  €xact relations at = (0,0, k.):

here we dualiz€);, while keeplngl\/[2 as an independent cur-

rent. Labelsl and2 on Ml andMQ are somewhat arbitrary,

as we mixed the original specié¢saand?2, e.g., when def|n|ng

M, in Eq. (21). We can think about a phase with gappég

as having binding of. original J, currents to one anti-vortex " 1 (27)?

in Ji, so that forJ, = n, Q; = —1, we haveM, = 0. In Cpy = T T AT 5 (Mg (k) My (—k)(25)
phase (lll) it is such., = n, Q1 = —1) molecules that are 2 ( ")Jf’“' v2(k)

condensed. These bound states are illustrated in Fig. i&. Th 12 2 _

is the more accurate description of phase (lll), made peecis Coy = n2vy (k)va (k |fk|2 (Mo (k) Moy (k) (26)

by the reformulation Eq. (24) with gappéd; . Forn = 2,

this is also the precise description of phase (IIl) in Fig.f1 o

the® = = statistics model studied previousf\We can treat

a small loop ofMQ as an excitation out of such a bound state.

The symmetric structure of the above action suggests a simi-

lar interpretation of\7; even though this field was introduced These imply that??(k) ~(constant) and’'?(k) ~ k. Note

differently. that unlike in phase (IV)C''2(kwin) - L has a non-universal
value in phase (lll), as can be seen in Fig. 5.



FIG. 11: lllustration of the “molecules” that are condenge@hase
(). Each molecule contains three charges (stars), arel anti-
vortex (circles). Black objects on white backgrounds arsp#cies
1, and white objects on black backgrounds are of species 2.
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V. FIELD THEORIESFOR THE PHASES AND PHASE
TRANSITIONS

A. Phase (0) and the (0)—(1V) transition

Equation (12) is a continuum field theory useful for describ-
ing phase (IV). In this phase, thévariables are condensed

which allowed us to use real-valued variabjes= v;ﬁ‘”.

In phase (0), th@ variables are condensed, and we can re-
place them with real-valued variablgsWe can then write a
field theory in terms of real-valued gauge fields such that

q= v;a" Performing this procedure on Eq. (15) gives:
a1 IV x @B w@m)©Y )2
Slaanden T = 530 |7 |fk|2ul Boa(k) + 6k [FilPoa (ko k)?] 0
0(k) S .
i Erim T X Gl Gl +z;[ )@ (k) + To(=k) - Ga ()]

which can be viewed as an intermediate step in the (exact) We can now take the long-wavelength limit and write a

duality map from the variable@lﬂg to flg cf. the Appendix.

(6 X &ql)Q

(6 X &qg)Q

schematic action in real space:

: (6 X &qg)

Seﬂ[&ql,&qQ,qu17W12] :/d37‘

2t20?

+/d37° [71|(6—id)q1)\11J1|2+72|(6

where we used continuum complex-valued fieldg,, ¥ o

v,
21,62 gt

(28)

— id'qg)\IlJ2|2 + m1|\I/Jl|2 + m2|\IJJ2|2 + (quartic terms) | ,

B. Phase(lll) and the (I11)—(IV) transition

to represent the matter that was represented on the lattice b

the integer-valued currentd, .J», and we did not write the

quartic terms explicitly. This is the action for two gaugédse

with mutual Chern-Simons interactions, and two matter §ield

minimally coupled to the gauge fields. Heyg ~2, mi, ma

are some effective parameters; along the self-dual line we

havey;, = v andm; = my. For gappedV i, ¥, we

can integrate these out and obtain a long-wavelength gescri

tion of (0) in terms of they, variables. Condensation 8f;,

To get another perspective on phase (lll), we first interpret
the coefficient on the last term of Eq. (15) as a statistical in
teraction for the) variables, given by

G
| fr|?v1(k)va (k) 4 62 (k)

Oauar (k) = (29)

U ;, leads to phase (IV). We therefore propose Eq. (28) as th¥éVe can shift this coefficient b@mn, for integern, without

field theory describing the transition at the lower multical

changing the Boltzmann weight °. This gives us the fol-

point. As discussed in Sec. lIl, our results on the naturaeft lowing equation for the new statistical angle:

(IV)-(0) transition are still conflicting, but we hope thétely
will stimulate further numerical and analytié&f’->°studies.

@ \fulfor (R)oa(k) g0
0 [|7ul2on (R)eah) + 62

Odual shifted (k) =
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where we have usel = 27/n. Performing formal duality that are gapped in phase (lll) as being dual tocﬁmriables

on Eq. (15) using the new statistical interact@ai shifted after the shift. The precise meaning of the duality is as & th

gives precisely Eq. (24). [The non-commutation of the du-Appendix and can be viewed as replacing the integer-valued

ality and shift of¢ by multiple of 2 is well known in the () variables by real-valued variablgswhile maintaining the

|ltefal;lllfég 32 34f4°and is kf|‘_|0W“ to corr?splond to rE’OSZ:IS:{I:I'[y information about integer- valuedness in terms of new ieteg
oblique confinement”. Here we explicitly see this retati ,Bq

by iden?ifying precise bindings of obje?:ts ir?/phase (|||)th5 \;ilt?oendM We can writey = » and obtain the following

scribed in Sec. IV.] This allows us to interpret the varighilé

2] (k)2
) + 0

(0=27/n) _} va(B)|[V x Bal(B)? | vi(k)|[V x
S [Ba1, Byzs My, My) 22}; 7 Py (Bon(k) 1 5 + 2 Y

By
2(k
. o (R)va () Lo
T = [V x V x Bul(=k) - [V x Bk B (k) + My(—k) - B (k)| -
; 0 {|fk|2vl(k)v2(/€) + 92} S . zk: { }

Compared to Eq. (27), we have used different labels for thepace while taking the long-wavelength limit and replacing
gauge fields even though the first terms are the same, to erthe current-loop representation with complex matter fields
phasize that the coarse-graining procedure will have a dif¥,,; and¥ ,,,, minimally coupled t(ﬁql anquQ:

ferent meaning after the shift ify,.;. Again, we can cast

this action into a more familiar form by returning to real

(V x B1)?  (V x Bp2)? L (V x B) - (V x V x gqg)l (32)

5(9»2271-/") ot ol U N, :/d3
off [Bq1, Ba2s Wart, Varo] " a0 5,07 T

/d 7‘[71|( —Zﬁql Uanl? + 52|(V —25q2)‘I’M2| + 11 | Uasi]? 4 Mo W asel? +(quart1cterms)}.

In phase (lll) theW,,1, ¥, fields are gapped and we (), and (Il) all meet at a single multicritical point.

can integrate them out to obtain a description in terms of We remark that while the lattice actions Eqgs. (27) and (31)
two gauge f|e|d53 1 and 5q2, with a higher-order mutual are mathematically equivalentand contain all phases in¥ig
Chern-Simons terratS2 The latter is irrelevant compared to the continuum field theories Egs. (28) and (32) are distindt a
the Maxwell terms and does not gap the gauge fields. Wepply only near the corresponding multi-critical points.
thus have two gapless modes. The transition from phase (I11)
to phase (IV) is a condensation of tie,;; and ¥ ;- vari-
ables, and along the self-dual line the two fields condense V1. IRREDUCIBLE RESPONSES
simultaneously. We conjecture that the higher-order mutua
Chern-Simons term is irrelevant at this transition as well, The current-current correlato(s’;j,, represent the response
and therefore the transition is two decoupled inverted XYof the current/,,, to an externally applied field{x. In sys-
transitions’”:5354 Returning toQ,, Q- variables, we conjec- tems with long-range interactions it is useful "to study “ir-
ture that the transition from phase (IV) to phase (lll) is two reducible responses@“b irred “which are the responses of
decoupled XY transitions where the mutual statisticalraxte  the currents to the total fieldi®*t, made up of bothA°xt
tion of le andQQ, given byOqual, shiftea iN EQ. (30) isirrel-  and an internal gauge field induced by the other currents in
evant at long wavelengths. This interpretation, togethién w the systen?>>7 In our model, the statistical interaction is
Eq. (18), explains why we are able to use finite-size argusenthe long-range interaction, and it acts between differeapl|
on the data in Fig. 10 to study the properties of the (IV)}(lll species in perpendicular current directions. In this sectie
phase transition and conclude that it is continuous. Ifithis  will derive the appropriate expressions for the irredueita-
terpretation is correct, it also means that the phases(IN)),  sponses, and show their behavior in our system.

If we apply external fields coupled to both species of loops,
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as in Eq. (13), then by the Kubo formula the response of thaevith long-range interactions. We can see that diverges

current variables is given by: with the system size and thus detects the condensatidn, of
, b ot Jo in phase (1V), while we recall from Fig. 4 that the correlator
(Jau(k)) = =iy Cib (k) A (k). (33) 22 did not. The diagonal conductivity has a crossingat
b,v

to = 0.338, which is tentatively the location of the transition
between phases (0) and (IV).
It is interesting to note that in phase (11§22 = 0 while
0,2 approaches a universal valuelof = 3/(27). We can
loosely interpret this if we recall that phase (lll) is a cend
sate of composite objects containingparticles of one type
bound to one antivortex of the other type [see Fig. 11 and
yEq. (21)]. For example, consider a situation where we have
a.J; charge current flowing in the-direction. This current
can be carried by the condensate of the bound states, in which
case there is also @, current in thez-direction, given by
(J) = —iCA™", (34) (Q2:) = —(J1z)/n. In the absence of any other curients,
(Jia) e e ot [ A we getAjs' = 0. Furthermore, we can think of th@,
[ (Jay) } € = [ _0;3 05?,’ ] AT = [Agzt } ’ variables as magnetic fluxes for thle charges. Therefgre,
c by Faraday’s law there is an electric field (acting on the

For concreteness, we will assume thas in the z direction,
k = (0,0, k), and this implies thaC;jfj = 0if porv are
in the z direction. As discussed in Sec. Il, the lattice mirror
symmetries of our action mean that the only correlators kwvhic
are non-zero in Eq. (33) a@}% andC,? with y # v. This
implies that for a gauge field in one direction, we need onl
to consider its effects on two of the six possiblg,; for con-
creteness in this work we will consideli, andJy,. This

allows us to write Eq. (33) in the following way:

()=

where we have used the fact th@f, = —C32, which we  charges) induced perpendicular to the directionggf and
can also deduce from the mirror symmetries of our model. Tayve get—z’szg‘;f = —2m(Qaz) = 2771]11_ This is exactly
characterize the response(df to the total field, we write what we would expect from the conductivity that we derived,

Atot — i(cirrcd)fl <J>
We can consider the responses for the dugl@- variables
as well. Focusing on a paip1,, Q2., we define

C _{ (Quy (k) Quy(=F)) <Q1y(k)Q21(_k)>:|
= —(Quy(K)Q20(—k)) (Q20(k)Q2s(—k)) |

<J> _ —iCiHCdAtOt, (35)

with C'*ed and At°t defined similarly to the quantities in
Eq. (34). HereA[o! is the total field, and is identified as

A:Ezc;)f = AZ);} + (Qqap ) (36)

i i i here we usedQz. (k)Q1y(—k)) = —(Q1y(k)Q22(—k)).
where the gauge fields,,, are precisely those in Eq. (27) wher ) ) Yy - Y /
mediating the/. and J, interactions. We can calculate the The interaction matrix for the specific ordering of the csida

; o " ) componentsis
expectation value&?,) in the presence afi®** by analyzing

Gaussian integrals in Eq. (27); thus, for any fixee obtain V1 dual (k) % @) o
the following: dual = | g4.0(k) T —- (V) (4)
2sin(k./2) U2,dual( ) |fk|
(a) = —=iV] (37)

o(k) where the last relation was derived by using Egs. (16) and
_ | o) - vy (k) Zen(k./2) (29), and the superscripf™ denotes the matrix transpose.
(a) = , V= —o(k) ) . ) ;
(aay) TR vy (k) The dual and direct responses satisfy the relation

T T
Inserting this into Eq. (36) and using Eq. (34) we get VC + Chpar Vaua = 1, (42)

At = (1 — VC)A®™, (38) which we can check by using Egs. (17) and (19). Re-
lation (42) is similar to the relation satisfied in the one-

and comparing Egs. (34) and (35) gives our final expressiofomponent cas&€ > We can also verify that the irreducible
for the irreducible responses: conductivities satisfy

cied — C(1 - vC) . 39 r 1

( ) ( ) 00 qual — (271')2’ (43)
We can use the irreducible responses to determine the con-

ductivities of the system, through the relation which is similar to the relation that conductivities obeyamh

there is only one species of logp>’
irred
o= C— (40)

| fx] VIl. DISCUSSION

We have plotted the diagonal and off-diagonal conducésiti
along the self-dual line in Figs. 12 and 13. As in Ref. 57, we It is instructive to compare these results to those of our ear
can use these conductivities to detect condensation iamsgst lier study at? = .18 The Boltzmann weight—° of thef = =
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FIG. 12: The conductivityy??, along the self-dual line, obtained
from the raw data in Figs. 4 and 5. Vertical lines mark the phas
boundaries. We can see thet’ diverges in phase (1V), but is zero
in phase (ll1).

0.52 r . . . .
05 | (IV)
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FIG. 13: The transverse conductivity?, along the self-dual line, at
the boundary between phases (V) and (Ill). A vertical linerks the
phase boundary. In phase (Wﬁ approaches a non-universal value,
while in phase (l11) it approaches the universal vab/@r, which is
indicated by the horizontal line in the figure. Calculati(o]ﬁsri,f, in
phase (1V) involve cancellations of similar quantities,igfhgreatly
increases the noise in this region. The origin of the caatiefi is

in the quantization of th€*? values in this phase, as seen in Fig. 5.
Therefore we have chosen not to display our data in phase Thé
reader may note that the data is irregular in the region optiase
transition; based on estimates of the error bars we belfatdtis is
due to noise and is not of physical significance.

model is invariant undef.J;, Jo) — (—.J1,.J2), while this is

13

statistical interaction, and this happens at differenti@alof
t. Phase (lll) itself is qualitatively similar in the two mdde
(except for the charge multiplicity in the bound statesyl &n
detected by>'2d jn the# = = model despite the fact that
C'? is strictly zero.

From these studies, we can anticipate the behavior of the
model with short-range interactions at general statistica
gled # w. We expect that the phase diagram will be similar
to the one in Fig. 2, except that the phase (Ill) will feature
condensation of more complex composite¥ and will oc-
cur at different values of. An open question in the present
work is the nature of the lower multi-critical point, wherero
results are conflicting between first and second-order seena
ios. It would be interesting to explore this phase transitio
in short-ranged models for other valuesfafiumerically and
analytically.

It is also interesting to explore behavior for more general
interactions, particularly for self-dual models Wlﬂﬁ P fg
interchange symmetry. For the model with short-range-inter
actions, we have seen that the statistical interactionitgual
tively changes the nature of the phases and phase tramsition
On the other hand, for loops with long-ranged interacticas d
caying asl/r in real space (behaving dgk? for small k
in momentum space), we expect that the statistical interac-
tions are less important, since here the density fluctuatioa
very strongly suppressed and the mutual statistics phases a
fluctuating les$5? In fact, starting with the original model
Eg. (1) with short-ranged interactions &at= 27 /n, our re-

formulation in terms of\/; and M, variables in Eq. (24) can
be viewed as precisely such a new model with long-ranged
interactions and;1 a2 = 27/n, so the present numerical
study already provides information about such a model with
Or1m2 = 2m/3. In the absence of the statistical interac-
tions, loops with long-ranged interactions would condesige
independent one-component Higgs transitions (inverted XY
transitions)?”-535*From our discussion in Sec. V, we conjec-
ture that this remains true also in the presence of the titalis
interactions withd #£ T, i.e., they are irrelevant at the phase
transition in the long-ranged case.

An interesting case is obtained for marginally long-ranged
interactions decaying ag'r? in real space (behaving ag|k|
for small & in momentum spacef:>° In a recent paper [57],
we studied condensation of single species with such mdrgina
interactions and found second-order transitions withicont
ously varying critical properties that depend on the coupli
of the long-range interaction. We would like to study conden
sation for two species with mutual statistics and ask whethe
the transitions remain continuous fér# 0 and explore the
critical properties (which will likely vary withd). We can
construct a lattice model where we know the phase boundaries
exactly from duality consideratiofs34and can focus on such

not satisfied in the present model. We can see that the costudies precisely at the transitions. An interesting qarss

relation between different currents;'2, changes sign under
this operation, and therefore must be zero in@tke * model.

what happens fof = 7 in such models with marginally long-
ranged interactions, whether we find a critical loop state or

This explains why that model did not contain the phase (IV)phase separation. The latter happened in a specific modrel wit
that we have seen in the present study. The location of phashort-ranged interactions that we studied in Ref. 18, whde

(1) in the two models is also quantitatively differentnsie

would like to explore if a critical state can be obtained for

the loops must condense in different strengths to avoid thenodified interactions.
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For broader outlook, our system is an example where cerin the first line, the primes on the sums signify the above con-
tain reformulations allow direct study of particles with tual straints on the current& and@ respectively. In the second
statistics. It would be interesting to look for other casé®re  line, the prime on the real-valued integration measureisign
such reformulations may be possible. Systems with morgies corresponding linear constraints realized with Direltad
complex anyons could be interestifig;**>-!] and such com-  functions,II,.o[V - j(r) = 0] andé(jiee = 0). For any
bined numerical and analytical studies could bring insight configuration@ satisfying the above constraints, we can find

about broader phase diagrams and phase transitions ingolvi 7(r) such thatj = Y % 7, and the constraints ghguarantee
hat the right-hand-side of the last equation does not ditpen

topological phases. Furthermore, the present two-loop sy

tem can be viewed as an example of more general actior‘gn the choice of
with topological terms. In fact, as discussed in Ref. 19, the
two-loop model withf = = statistical interaction is equiv- Equations (A1)-(A2) provide a precise way to go from
alent to an anisotropic O(4) sigma model with a topologicalinteger-valued sums witbonstrained .J to real-valued inte-

¢ = = term; our loop models can be viewed as providinggrals with constrained, which is achieved with the help of
precise lattice realization of this topological field the@rr® . integer-valued constrained fields A formal demon-
and show that it is important.to examine different phases;iyation can be sketched, e.g., as follows: We first im-
such a theory may have. Inspired by our two-loop SyStemSplement the constraints off using conjugater-periodic

it would be interesting to study precise lattice (discretiz phase variables. We then replace sums over integer-valued

space-time) formulations of other topological field thesrof L . .
cﬁrrentinte)re§t13‘16'25'27'60‘65Iso in oliherg'jspace-time dimen- Ju(r) with integrals over real-valueg),(r) containing a fac-
torS°°° . e~ uu(M2mpu(r) for each link. We group con-
Py (r)=—00 group

sionalities, and ask if they may also allow sign-free refoerm sl

lations and hence unbiased numerical studies. figurationsp(r) into classes specified iy = V x pand use
summation over members in each class to effectively extend
the integrations over phase variables to the full real lifiee

Acknowledgments latter integrals finally lead to the delta function consttsion
the real-valued field§ defining the measur@®;]’. In the pro-
We are thankful to A. Vishwanath, M. P. A. Fisher, cess, we see th.ﬁ can be interpreted as vortex lines in the
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research is supported by the National Science Foundation AN immediate important application is to the case with
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Qenter with support of the Gordon {;md B.et_ty Moore Founda- SoriglJ] = = Zv(k)|J(k)|2+Z‘ Z J(—k)-A(k) , (A3)

tion; and by the XSEDE computational initiative grant TG- 2 P %

DMR110052.

where we have also coupled the original currents to an exter-
Appendix A: Formal duality procedure nal probe gauge field®*t. The integration ovef in Eq. (A2)
is Gaussian and readily gives basic averages
This appendix summarizes our duality procedure for one
loop specied3>-39The original degrees of freedom are con-
served integer-valued currentér) residing on links of a sim- . o Okt k=0 Teul i
ple 3D cubic lattice¥ - J(r) = 0 for anyr. To be precise, we U (B)pwr (K)o = ok A\ T T RR ) (A4)
use periodic boundary conditions and also require vanishin
total current, /.. = 3., J(r) = 0. We define duality map-
ping as an exact rewriting of the partition sum in terms of ne — 1 _ ik, :
integer-valued curren@(R) residing on links of a dual lat- "‘ﬂ/vherefw =1 -t We then obtain
tice and also satisfying - G(R) = 0 for any R andQo; = 0:

’ . ’ B S i 31 —
Z =Y e Sl =N emSaulQl (AT il
J

)

N | =

> 27 Q(=k) + B(=k)] - [27Q(k) + B(k)]

P v(k)| fr]?

B L (A5)
oo o A B whereB = V x A®*. The relation between Eq. (A3) and

e Sanal@=Vxp] _ / [Dj] e Sorislile =122, 7278 (A2)  Eq. (A5) is what we call “duality map” in the main text.
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