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We propose a spectroscopic method of identifying broken symmetry states of bilayer graphene.
We demonstrate theoretically that, in contrast to gapped states, a strained bilayer crystal or nematic
phase of the electronic liquid are distinguishable by the dependence of the lineshape of absorption
on the polarization of the light. This property is characteristic for both the infrared and far-infrared
spectral ranges, which correspond to the absorption by transitions between low-energy bands and
split bands, and transitions between the low-energy valence and conduction bands, respectively.

In this Letter we study how symmetry breaking in
bilayer graphene (BLG) [1] manifests itself in the op-
tical spectra in the infrared (IR) and far-infrared (FIR)
spectral ranges [2-9]. Symmetry breaking in BLG may
be caused both by external perturbations and by inter-
nally developed instabilities generated by the electron—
electron interactions. For example, strain in BLG which
might be inflicted on the crystal involuntarily upon ther-
mal annealing and cooling of suspended BLG devices
would asymmetrically change the topology of the low-
energy dispersion [10-12]. Also, by applying a perpen-
dicular electric field, one breaks the inversion symmetry
of the lattice opening an externally tunable gap between
the valence and conduction bands [1]. Alternatively,
at low temperatures, undoped pristine BLG may un-
dergo a spontaneous symmetry breaking transition into
one of the recently discussed strongly correlated ground
states [13-23]. In particular, the phases favored by the
renormalization of short-range electron—electron interac-
tion constants [22-24] are: a nematic state in which
the isotropy of the band structure is reduced in a sim-
ilar way to strained BLG [10, 25|, and gapped layer-
antiferromagnetic [20] and spin flux phases [24]. Al-
though several transport experiments [25-28] reported
observations of some broken symmetry states in BLG,
the exact nature of the ground state still remains to be
established.

Here, we show how infrared (IR) and far-infrared (FIR)
absorption spectroscopy can be used to distinguish be-
tween some of the broken symmetries. The feature dis-
cussed below is that strain (or a phase transition to the
nematic state) induces a dependence of absorption of
light on the polarization of the radiation. This anisotropy
can be characterized by a factor
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where g (g1 ) is the absorption coefficient of light with
linear polarization e parallel (perpendicular) to the prin-
cipal strain axis (or direction chosen by the order pa-
rameter of the nematic phase). In contrast, the gapped

phases show isotropic absorption and notable qualitative
differences in the lineshape of their absorption spectrum
as compared to the strained (nematic) and unperturbed
BLG states.

The absorption coefficient [2, 3] analyzed in this study,
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is given by the ratio of the Joule heating and the flux
of incident radiation. Equation (2) describes transitions
between initial and final plane wave states marked by
indices A which include the band, branch, and valley (spin
is also taken into account); epy is the energy of a plane
wave with momentum p, f is the Fermi function, A is
the normalization area, and
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are the matrix elements of the current density operator
j= edpH. Since the momentum transferred by light is
negligably small, in M 0)[‘2, the momenta of electrons in
the initial and final states of the inter-band transitions
are taken to be equal. The corresponding plane wave
state wave functions are the four-component eigenstates
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where A2y and By (o) identify the sublattices of the hon-
eycomb lattices in the top (bottom) layers, £ = + dis-
tinguishes the K and K’ corners of the hexagonal Bril-
louin zone, and Pauli matrices o, oy, 0., and 7, act
on the sublattice and valley components of |...), respec-
tively. Also, 71 stands for the inter-layer coupling be-
tween atoms on A, and B; lattice sites, and v is the
Dirac velocity for monolayer graphene.

For unperturbed BLG (0H = 0), Eq. (4) determines [1]
a pair of low-energy bands near the Brillouin zone corners
with spectrum epy = +p?/2m* = +eg, m* = 1 /20 &



0.035m,. for states located mainly on sublattices A; and
Bs. Equation (4) also determines two split bands with
quadratic dispersion ep+ ~ (71 +€9) and wave functions
that have equal weight on lattices A; and B;. Note that
the split band states are almost unperturbed by the strain
or the formation of a nematic phase or one of the gapped
phases [1].

For the sake of convenience, the “valley momentum”
p in Egs. (3,4) is determined with respect to the posi-
tion of the Dirac point in the graphene monolayer, which
is shifted from the Brillouin zone corners K and K’ in
a homogeneously strained crystal [29]. In monolayer
graphene, such a shift p — p’ +a = p in the momentum
space is trivially absorbed into a gauge transformation so
that it does not influence observable characteristics, such
as the absorption spectrum. In contrast, in BLG the in-
terplay of such a shift and the interlayer skew hopping
~v3 which couples sublattices A; and Bs generates a per-
turbation which cannot be eliminated from the Hamil-
tonian by any gauge transformation. This, as well as
other possible symmetry-breaking perturbations in BLG
are included in

strain/nematic [10, 22-24],
layer asymmetry [1, 16, 17],
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u(s-S)r,0, antiferromagnetic [19-21, 24],

u(s- S)o, spin flux [24].

The first term in 0 H accounts for the effect of strain
[30] or nematic order, with the direction of the unit vector
A = (cos 26,sin 26) set by the direction £ = (cos 6, sin )
of the principal stretching direction. This perturbation
changes the low-energy electron dispersion into

1
€pt = :I:%|p — V2muwl||p + V2muwé|, (5)

which features a Lifshitz transition at € = +|w], from
an almost parabolic dispersion at || > |w| to a pair of
Dirac cones at p = +v2mwé£ shifted from each other
along the anisotropy axis £. In the following, the axis
£ will be used as the reference direction to distinguish
between “parallel”, e || £, and “perpendicular”, e L £,
polarizations of light and the corresponding absorption
coefficients g and g, in Eq. (1).

Also, in 6 H, antiferromagnetic (AF) and spin-flux (SF)
states are characterized by a splitting 2u between the va-
lence and conduction bands at the K point and have iden-
tical spectra eptr = £+/u? + €3, the same as in graphene
with an asymmetry gap opened, for example, by a per-
pendicular electric field [1]. For magnetic phases of BLG,
S characterizes the spin quantization axis, but since the
current operator j does not depend on the spin at all,
these BLG states will behave identically in the optical
absorption.

In the IR spectral range, w ~ v = 0.4eV, where w
is the energy of the incident light, the optical transi-
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FIG. 1. (a) Absorption coefficients g and g, and absorption
anisotropy @ for undoped strained/nematic bilayer graphene
with w = 5meV and T = 3K. (b) Sketch illustrating optical
transitions from the low-energy bands at p =0 and 7= 0 in
strained BLG or the nematic phase of BLG. Solid (dashed)
lines denote filled (empty) states. The two extremal parts of
the dispersion are shown for p || £ (with Dirac points at £p.,
with pw = V2mw), and p L £. The arrows mark the range of
p for which the threshold transitions with w = 1 + w exist.
(c) The absorption coefficient for undoped, gapped bilayer
graphene. (d) The absorption coefficient for the unperturbed
system with finite chemical potential u. (e) Absorption coef-
ficient and (f) anisotropy @ of strained BLG with finite dop-
ing for w = 5meV and T = 3K, for p = 2meV < w and
# = 6meV > w.



tions which are sensitive to the BLG symmetry break-
ing are those between the small momentum parts of the
split bands and the low-energy bands. In addition, the
spectral density of IR absorption includes the contribu-
tion from the transitions between the two low-energy
bands at high momentum which provides an almost-
constant background in the absorption spectrum [2, 3].
In Fig. 1(a) we show the calculated absorption spectrum
for the two characteristic polarizations of light and the
polarization factor ) for undoped, strained BLG with
w = bmeV at T = 3K. The absorption spectrum of BLG
in the nematic phase would have the same features: the
anisotropy of the absorption for w =~ ~v; + w, where the
absorption for e L £ (grey line) shows a strong peak near
the threshold whereas absorption for e || £ (black line) is
weak:
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This occurs because the matrix elements M in Eq. (3)
preferentially select transitions with p L £ for gj and p ||
£ for g, . In the first case, when p L £, only transitions
from right at the center of the K point have the threshold
energy 1 +w, but in contrast, when p || £, there is a finite
range of momenta, —v/2mw < p < v2mw, where the
low-energy valence band and conduction split band are
shifted on the energy scale by exactly v1 + w, Fig. 1(b).
(This is also true for the valence split band and the low-
energy conduction band). This produces a singularity at
the interband absorption edge, v; + w [31].

For comparison, in Fig. 1(c) we show the absorption
spectrum characteristic for any of the gapped states of
BLG. Here, the absorption coefficient does not depend
on the polarization of the photon and there is a fea-
ture at the threshold w = 7 + w of the lowest energy
inter-band transitions. The height of this peak is con-
stant for u > kgT. When kgT 2 wu (this situation
is considered having in mind the gapped state caused
by the inter-layer asymmetry due to external perturba-
tion rather than an intrinsic phase transition) thermal
occupation of the low-energy conduction band also allows
transitions to the split band with energy 71 — w, which
yields a small additional polarization-independent peak
in g(w). The absorption of IR light by unperturbed BLG
with finite doping and chemical potential y is shown in
Fig. 1(d) [32], in precise agreement with previous calcu-
lations of the optical conductivity [2, 3, 33].

Figure 1(e) shows the absorption spectrum of strained
BLG with finite doping (the chemical potential p # 0 is
counted from the Dirac point energy). Note that the ne-
matic phase is not expected to survive at finite doping.
When || < w (dashed line), the absorption spectrum
remains almost unchanged as compared to the undoped
case, but for |p| > w (solid line) a new peak appears
at w = 71 —w in the e || € polarization but not in
the e 1 £ polarization. This occurs because, with this
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FIG. 2. Absorption coefficient in the FIR frequency range
for (a) undoped strained BLG (or nematic state) with w =
5meV, T = 3K; (b) the doped, strained case with w = 5meV,
T = 3K, and p = 2mev and 6meV. (c¢) The undoped gapped
phase. (d) The unperturbed case with p > 0.

level of doping, transitions from the low-energy conduc-
tion band above the Lifshitz transition become accessible.
This asymmetry manifests itself in the polarization de-
gree @ of the absorption, shown in Fig. 1(f) for |u| < w
(dashed line) and |p| > w (solid line).

We now turn our attention to absorption in the FIR
frequency range, |w| ~ 2w < 71, where the relevant
optical transitions occur between the two low-energy
bands. Figure 2(a) illustrates features of the absorption
by strained BLG for the two characteristic polarizations
of FIR radiation, e || £ and e L £: a weak polarization
dependence described by @ =~ +40.3 at energies w ~ 2w
indicating that the absorption is strongest for light po-
larized in the direction of the principal strain axis. Note
that for FIR light the relation between absorption in dif-
ferent polarizations is opposite to what we found for the
IR spectral range. A dip in the absorption at very low
energies is due to the finite temperature. The absorption
by strained BLG with finite doping is shown in Fig. 2(b).
The only effect of the doping is to cut off the absorp-
tion for w < |u|. The absorption by the gapped phase is
shown in Fig. 2(c) for comparison: it has no polarization
dependence but has a peak at w = 2u corresponding to
the threshold of the optical transition. The doped but un-
perturbed BLG, Fig. 2(d) shows a step in g(w) at w = 2u



[3]. Therefore, one can distinguish the type of symme-
try breaking in BLG using FIR spectroscopy through the
weak absorption anisotropy of the strained /nematic state
and the band-edge peak in the gapped state.

In conclusion, we have shown that IR and FIR absorp-
tion spectroscopy can distinguish between the gapless
anisotropic nematic (or strain-induced) and the isotropic
gapped broken symmetry states of BLG. The former has
a characteristic strong dependence on the orientation of
the polarization of the incident radiation, such that in
the IR frequency range, light polarized perpendicularly
to the strain axis (or symmetry-breaking axis in the ne-
matic phase) will be absorbed very strongly at w = 1 +w
in the undoped system, whereas light polarized parallel
to this axis acquires a characteristic feature in absorp-
tion when the doping is such that ¢ > w. There is also
a weak polarization dependence for strained BLG in the
FIR regime, with the parallel polarization being absorbed
more strongly. In contrast, the isotropic gapped phases
show no absorption anisotropy, but do have qualitatively
different lineshape from both strained BLG and the un-
perturbed state at zero or finite doping.
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