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Edge currents and nanopore arrays in zigzag or chiral graphene nanoribbons as a

route toward high-ZT thermoelectrics

Po-Hao Chang and Branislav K. Nikolić∗

Department of Physics and Astronomy, University of Delaware, Newark, DE 19716-2570, USA

We analyze electronic and phononic quantum transport in zigzag or chiral graphene nanoribbons
(GNRs) perforated with an array of nanopores. Since local charge current profiles in these GNRs are
peaked around their edges, drilling nanopores in their interior does not affect edge charge currents
while drastically reducing phonon heat current in sufficiently long wires. The combination of these
two effects can yield highly efficient thermoelectric devices with maximum ZT ≃ 5, at both liquid
nitrogen and room temperature achieved, in ∼ 1 µm long zigzag GNRs with nanopores of variable
diameter and spacing between them. Our analysis is based on the nonequilibrium Green function
formalism combined with the π-orbital tight-binding Hamiltonian with up to third nearest-neighbor
hopping for electronic subsystem, or with empirical fifth-nearest-neighbor force-constant (5NNNFC)
model for phononic subsystem. Additionally, we demonstrate that different empirical FC models
typically overestimate the phonon conductance when compared to first-principles results.

PACS numbers: 85.80.Fi, 72.80.Vp, 73.63.-b, 81.07.Gf

The recent explosion of research on graphene—one-
atom-thick allotrope of carbon—has been largely focused
on its unique electronic structure and transport proper-
ties governed by the two-dimensional honeycomb lattice
of carbon atoms.1 Very recently, the exploration of its
thermal and thermoelectric properties has been initiated
by measuring the thermopower2 S and phonon thermal
conductivity3 Kph of large-area graphene. The measured
values2 of S ≃ 100 µV/K near the Dirac point (DP),
as well as the room-temperature Kph ≃ 4000 W/mK
(averaged over values obtained using different samples
and experimental techniques3) which outperforms virtu-
ally all other known materials, point out that large-area
graphene is not suitable for thermoelectric applications.
Thermoelectrics transform temperature gradients into

electric voltage and vice versa. Although a plethora
of thermoelectric energy harvesting and cooling appli-
cations has been envisioned, their usage is presently lim-
ited by their small efficiency.4 Thus, careful tradeoffs are
required to optimize the dimensionless figure of merit
ZT = S2GT/(κel + κph) which quantifies the maxi-
mum efficiency of a thermoelectric cycle conversion in the
linear-response regime where a small voltage V = −S∆T
exactly cancels the current induced by the small thermal
bias ∆T . This is due to the fact that ZT contains unfa-
vorable combination of S, average temperature T , elec-
tronic conductance G and thermal conductance κel+κph.
The total thermal conductance has contributions from
both electrons κel and phonons κph. The devices with
ZT > 1 are regarded as good thermoelectrics, but val-
ues of ZT > 3 are required for thermoelectric devices to
compete in efficiency with conventional power generators
and refrigerators.4

Thus, a number of proposals have been put forth to
evade the problem of high lattice thermal conductivity
of large-area graphene that could open a pathway for
its thermoelectric applications. For example, large-area
graphene could reach ZT ≈ 0.3 if perforated by the so-
called antidot lattice tailored to impede phonon prop-

agation.5 Switching to quasi-one-dimensional graphene
nanoribbons (GNRs) makes possible further enhance-
ment of ZT where it has been predicted that long (∼ 1
µm) GNRs with zigzag edges and disorder introduced
around edges by removing carbon atoms could reach
ZT ≃ 4 at room temperature.6 Another route is to engi-
neer structural defects in GNRs that can block phonons
while retaining quasiballistic electronic transport.7

However, it is more advantageous to search for high-
ZT devices among nanowires8 with well-defined edges
since edge or surface disorder can affect electronic con-
ductance significantly. For example, the experiments on
etched GNRs with rough edges find Coulomb blockade
effects (not taken into account in Ref. 6) and transport
gap much larger than the band gap.9

In this Rapid Communication, we exploit the pecu-
liar electronic transport properties of GNRs with zigzag
(ZGNR) or chiral (CGNR) edges, illustrated in Fig. 1,
where the local charge current density carried by quasi-
particles sufficiently close to the DP is peaked around
nanoribbons edges as demonstrated in Fig. 2(b) and
(c). Thus, drilling nanopores10 in the ZGNR or CGNR
interior will not substantially modify such “edge cur-
rents.” This is confirmed in Fig. 2 using spatial profiles of
bond currents, as well as by the transmission function in
Figs. 3(a) and 3(c) which is reduced from Tel(E) = 3 in
infinite homogeneous GNRs to Tel(E) ≃ 2 around the DP
for both ZGNR and CGNR with an array of nanopores.
Furthermore, Tel(E) around the DP does not change as
one increases the length of GNRs because “edge currents”
propagate quasiballistically.
The nanopore arrays have been explored before11 in

bulk thermoelectric materials. Furthermore, their fabri-
cation in graphene has been pursued recently by a va-
riety of experimental techniques.10 Since they break ho-
mogeneity of the nanowire, they can substantially im-
pede the propagation of phonons in sufficiently long
GNRs. This is corroborated by our results for the phonon
transmission function in Figs. 4(a) and 4(b) and the
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FIG. 1: (Color online) Schematic view of: (a) 20-ZGNR (com-
posed of 20 zigzag chains); and (b) (8,1)-CGNR with chiral
angle θ = 5.8◦. The size of the nanopores, assumed to be
drilled in the GNR interior away from its zigzag or chiral
edges, and the distance between them is illustrated by plot-
ting two repeated supercells of each GNR. The length of these
GNRs in the actual calculations is set to L ≃ 1.2 µm which
supports 300 nanopores.

corresponding lattice thermal conductance in Figs. 4(c)
and 4(d). The ZGNR and CGNR length is chosen as
L ≃ 1.2 µm, which is close to the limit beyond which fur-
ther increase of L does not reduce κph significantly. The
number of nanopores hosted by GNRs of these length is
300.

Combining these two effects, we obtain maximum
ZT ≃ 4 at T = 77 K and ZT ≃ 2 at T = 300
K in Fig. 5(a) for the case of 20-ZGNR whose identi-
cal nanopores are arranged in a periodic array. The
values of ZT for (8,1)-CGNR with periodic array of
nanopores are lower, as shown in Fig. 5(c). In realis-
tic GNR-based devices, it may be challenging10 to con-
trol the pore arrangement to a high precision assumed
in Fig. 1. Therefore, in Figs. 5(b) and 5(d) we assume
that the pore diameter D is a uniform random variable,
such as D ∈ [4.5 dAB, 7.5 dAB] for pores in 20-ZGNR or
D ∈ [1.5 dAB, 3.5 dAB] for pores in (8,1)-CGNR, as well
as that position of nanopores is shifted randomly by ∆x ∈
[−2 dAB, 2 dAB] in 20-ZGNR or ∆x ∈ [−0.5 dAB, 0.5 dAB]
in (8,1)-CGNR where dAB ≈ 0.142 nm is the C-C bond
length. This yields maximum value of ZT ≃ 5 in our
study, at both T = 77 K and T = 300 K, as shown in
Fig. 5(b).

In the rest of the paper we explain details of our
models for electronic and phononic subsystems, which
are coupled to nonequilibrium Green function formal-
ism (NEGF) to treat their elastic quantum trans-
port.12 The early theoretical studies of ZGNR-based de-
vices have utilized13 a simplistic tight-binding model

(a) (b)

(c) (d)

FIG. 2: (Color online) Spatial profiles of local charge cur-
rents in (a) 20-ZGNR and (c) (8,1)-CGNR with nanopores
for electronic transport close (EF = −0.43 eV) to the DP.
The corresponding current profiles over the transverse cross
section of nanoribbons are shown in panels (b) and (d) for
both infinite homogeneous GNRs and GNRs with nanopores.
Note that the sum of bond currents15 Jnm/V , which describe
charge flow from site n to site m of the honeycomb lattice
if hopping tm

n
6= 0 is non-zero between the two sites, gives

the conductance G = I/V (I is the total current in the leads
and V → 0 is small bias voltage driving the linear-response
transport).

(TBM) with single π-orbital per site and the nearest-
neighbor hopping only, or its long-wavelength (contin-
uum) approximation—the Dirac-Weyl Hamiltonian14—
valid close to the DP. However, both of these models
predict13,15 that the transmission function of an infinite
homogeneous ZGNR is Tel = 1 around the DP and that
current density profile is peaked15 in the middle of ZGNR
(even though local density of states reaches maximum
around the edges15). This contradicts first-principles cal-
culations,16 or TBM with up to third nearest-neighbor17

hopping parameters fitted to such first-principles calcu-
lations, which predict Tel = 3 around the DP, as well as
that the local current density is mostly confined to flow
around the zigzag edges.18 It is worth mentioning that
the majority of recent studies focused on the thermoelec-
tric properties of ZGNRs with edge disorder6 or finite
length graphene antidot lattice5 have utilized the TBM
with nearest-neighbor hopping, so that a possibility to
exploit “edge currents” around zigzag or chiral edges for
thermoelectric device applications has been overlooked.
Most importantly, the recent experiments have con-

firmed the existence of “edge currents” in metallic
ZGNRs by actually utilizing them to increase the heat
dissipation around edge defects and, thereby, rearrange
atomic structure locally until sharply defined zigzag
edge is achieved.19 Also, the very recent chemical syn-
thesis20 of (8,1)-CGNRs via carbon nanotube unzip-
ping method have exhibited properties in sub-nanometer-
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FIG. 3: (Color online) The zero-bias electronic transmission
Tel(E) for: (a) infinite homogeneous 20-ZGNR or finite length
20-ZGNR with periodic array of identical nanopores shown in
Fig. 1(a); and (c) infinite homogeneous (8,1)-CGNR or finite
length (8,1)-CGNR with periodic array of identical nanopores
shown in Fig. 1(b). Panels (b) and (d) show the the ther-
mopower at two different temperatures corresponding to fi-
nite length 20-ZGNR with nanopores in panel (a) or finite
length (8,1)-CGNR with nanopores in panel (c), respectively.

resolved scanning tunneling microscopy and spectroscopy
that can only be explained by the existence of smooth
edges supporting edge quantum states (i.e., wavefunc-
tions whose probability density is large around the
edges). Although ZGNRs21 or CGNRs20 are insulat-
ing at very low temperatures due to one-dimensional
spin-polarized edge states coupled across the width of
the nanoribbon, such unusual magnetic ordering and
the corresponding band gap is easily destroyed21 above
T & 10 K.
We adopt the TBM with single π-orbital per site:

Ĥ =
∑

n

εnĉ
†
nĉn −

∑

n,m

tmn ĉ†nĉm, (1)

to describe the electronic subsystem of 20-ZGNR and
(8,1)-CGNR in Fig. 1. The operators ĉ†

n
(ĉn) create

(annihilate) electron in the π-orbital located on site
n of the honeycomb lattice whose lattice constant is
a ≈ 0.246 nm. For impurity-free GNRs assumed here,
the on-site potential is set to zero εn = 0. We consider
up to third nearest-neighbor17 hopping parameters—
tn+dAB

n = 2.7 eV, tn+dAA

n = tn+dBB

n = 0.2 eV, and

t
n+d

AB′

n = 0.18 eV—which describe the nearest-, next-
nearest- and next-next-nearest neighbor hopping, respec-
tively. Since the honeycomb lattice of graphene is com-
posed of two triangular sublattices A and B, the param-

eters tn+dAB

n
and t

n+d
AB′

n describe intersublattice hop-
ping, while tn+dAA

n = tn+dBB

n describes the intrasublat-
tice hopping.
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FIG. 4: (Color online) (a) The phonon transmission function
Tph(ω) and (b) the corresponding phonon thermal conduc-
tance κph for an infinite homogeneous 20-ZGNR or 20-ZGNR
with periodic array of identical nanopores shown in Fig. 1(a).
(c) The phonon transmission function and (d) the correspond-
ing phonon thermal conductance κph for an infinite homoge-
neous (8,1)-CGNR or (8,1)-ZGNR with a periodic array of
identical nanopores shown in Fig. 1(b).

In realistic devices, active region consisting of ZGNR
or CGNR of finite length with nanopores will eventually
need to be connected to metallic electrodes. However,
since GNR+nanopores devices we analyze are rather long
∼ 1 µm, and screening takes place over a distance much
shorter than the active region, it is justified to use semi-
infinite homogeneous ZGNRs or CGNRs as leads for sim-
plicity.

In the elastic transport regime, where electron-phonon
and phonon-phonon scattering can be neglected, inde-
pendent electron and phonon transport quantities can be
obtained from NEGF-based formulas whose technical de-
tails can be found in Ref. 12. This methodology does not
take into account the resistive umklapp phonon-phonon
scattering which plays an important role in interpretation
of experiments on room-temperature lattice thermal con-
ductivity of large-area graphene.3 However, this effect,
which is easy to describe using the Boltzmann equation
but is very expensive computationally within the NEGF
formalism,22 does not play an important role in GNRs de-
picted in Fig. 1 because their width is much smaller than
the mean-free path ℓ ≃ 677 nm due to phonon-phonon
scattering in large-area graphene at room temperature.23

The widely used methodology to compute κph of GNRs
couples6,24 NEGF to empirical fourth-nearest-neighbor
force-constant25 (4NNFC) or 5NNNFC26 models. The
parameters of 4NNNFC and 5NNNFC models have been
refined over the years to reproduce the newly acquired ex-
perimental data on the phonon dispersion of graphite,26

fit DFT calculations25 for infinite graphene sheets, and
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FIG. 5: (Color online) The thermoelectric figure of merit
ZT vs. energy at two different temperatures for (a),(b)
ZGNR+nanopores and (c),(d) CGNR+nanopores. In panels
(a) and (c) we assume a periodic array of identical nanopores,
as illustrated in Fig. 1, while in panels (b) and (d) the
nanopore diameter and the distance between neighboring
pores is a uniform random variable. The curves plotted in
panels (b) and (d) are computed for a single sample.

satisfy the symmetry imposed conditions (such as rota-
tional invariance25). However, direct application of these
models to GNRs is not warranted since force constants
on the edge carbon atoms will be modified when com-
pared to those in their interior. While the resulting shift
in the phonon density of states and the corresponding
reduction of κph are typically assumed to lead only to a
minor improvement,6 here we explicitly compare κph ob-
tained from these models to first-principles calculations.
We also include the Brenner empirical interatomic poten-
tial29 (EIP) which offers much faster numerics than full
DFT methodology while being able to match the DFT
results for some device geometries.5,12

The first-principles extraction of the FC matrix K

is performed via the GPAW package,27 which is a real
space electronic structure code based on the projector
augmented wave method.28 The electronic wavefunctions
are expanded in atomic orbitals with a double-zeta po-
larized (DZP) basis set, and Perdew-Burke-Ernzerhof
(PBE) parametrization of the generalized gradient ap-
proximation for the exchange-correlation functional is
used. The whole active region, composed of a segment
of 8-ZGNR with or without a nanopore and few lay-
ers of the semi-infinite 8-ZGNR leads, is first relaxed
to a maximum force of 0.01 eV/Å per atom. Subse-
quently, we displace each atom I by QIα in the direc-
tion α = {x, y, z} to get the forces FJβ(QIα) on atom
J 6= I in direction β. The elements of K-matrix are then
computed from finite differences KIα,Jβ = [FJβ(QIα) −
FJβ(−QIα)]/2QIα. The intra-atomic elements are cal-
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FIG. 6: The phonon thermal conductance as a function of
temperature for 8-ZGNR with and without a single nanopore
(of diameter D = 0.59 nm) computed by coupling NEGF for-
malism to empirical 4NNNFC,25 empirical 5NNNFC,26 Bren-
ner EIP,29 and DFT (using the basis of local DZP orbitals and
PBE exchange-correlation functional). The FC matrix in the
case of Brenner EIP and DFT methodology was computed
using the GPAW package.27

culated by imposing momentum conservation, such that
KIα,Iβ = −ΣJ 6=IKIα,Jβ. In the case of Brenner EIP-
based calculation, we initially relax the active region and
then compute the force constant between atom I in direc-
tion and atom J in direction β using analytical deriva-
tives, KIα,Jβ = ∂U/(∂RIα∂RJβ), where U is the total
energy. These calculations are also performed using the
GPAW package.27

Since calculations based on 4NNNFC and 5NNNFC
models do not include passivation of edge carbon atoms
with (usually assumed) hydrogen, we do not include
hydrogen atoms in DFT- or Brenner EIP-based analy-
sis. This approximation is further justified by the first-
principles results of Ref. 30 where ZGNRs with and with-
out hydrogen-passivation exhibit virtually the same κph

due to the fact that edge C-C bonds are only slightly
perturbed in the presence of hydrogen.

The comparison of different κph values, computed by
coupling NEGF to four different FC matrices in Fig. 6,
shows that all three empirical models overestimate the
phonon thermal conductance of ZGNR+nanopore when
compared to first-principles result. In the case of an in-
finite homogeneous ZGNR, Brenner EIP and DFT cal-
culations yield virtually the same κph in Fig. 6, while
4NNNFC and 5NNNFC models lead to an overestimate
of this quantity. While the first-principles calculations of
κph are too expensive to be applied to our L ≃ 1.2 µm
GNRs (that are also wider than the 8-ZGNR example
used in Fig. 6), the comparison of different methods ap-
plied to a testbed in Fig. 6 demonstrates that actual ZT
or the proposed ZGNR and CGNR devices will be even
higher than the one computed in Fig. 5 using 5NNNFC
model.
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In conclusion, we predicted that ZGNRs and CGNRs
perforated by an array of nanopores in their interior
could serve as the building blocks of highly efficient ther-
moelectric devices. This is due to the fact that local
charge current density is peaked around their edges, as
demonstrated explicitly by Fig. 2 and confirmed experi-
mentally,19 so that nanopores do not impede such “edge
currents” while drastically reducing phonon conduction
in sufficiently long ZGNRs or CGNRs. In the case of pe-
riodic array of identical nanopores, we find that largest
ZT ≃ 4 at T = 77 K and ZT ≃ 2 at T = 300 K can be
reached using ZGNR-based devices. On the other hand,
if the pore diameter takes a random value within some in-

terval and the distance between the pores is varied, then
we find a possibility of even higher figure of merit which
can reach ZT ≃ 5 at both T = 77 K and T = 300 K in
the case of ZGNR+nanopores devices.
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