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The central spin decoherence problem has been researched for over 50 years in the context of
both nuclear magnetic resonance and electron spin resonance. Until recently, theoretical models
have employed phenomenological stochastic descriptions of the bath-induced noise. During the last
few years, cluster expansion methods have provided a microscopic, quantum theory to study the
spectral diffusion of a central spin. These methods have proven to be very accurate and efficient
for problems of nuclear-induced electron spin decoherence in which hyperfine interactions with the
central electron spin are much stronger than dipolar interactions among the nuclei. We provide an
in-depth study of central spin decoherence for a canonical scale-invariant all-dipolar spin system.
We show how cluster methods may be adapted to treat this problem in which central and bath
spin interactions are of comparable strength. Our extensive numerical work shows that a properly
modified cluster theory is convergent for this problem even as simple perturbative arguments begin
to break down. By treating clusters in the presence of energy detunings due to the long-range
(diagonal) dipolar interactions of the surrounding environment and carefully avaraging the effects
over different spin states, we find that the nontrivial flip-flop dynamics among the spins becomes
effectively localized by disorder in the energy splittings of the spins. This localization effect allows
for a robust calculation of the spin echo signal in a dipolarly-coupled bath of spins of the same
kind, while considering clusters of no more than 6 spins. We connect these microscopic calculation
results to the existing stochastic models. We furthermore present calculations for a series of related
problems of interest for candidate solid state quantum bits including donors and quantum dots in
silicon as well as nitrogen-vacancy centers in diamond.

PACS numbers: 03.65.Yz; 76.30.-v; 76.60.Lz; 03.67.Lx

I. INTRODUCTION

The problem of decoherence of a spin interacting with
a bath of spins (the “central spin problem”) has its roots
in classic works on Electron and Nuclear Magnetic Reso-
nance (see Ref. 1 and references cited therein). In these
early works the dynamics of an ensemble of spins being
resonant with external control field (spin species A), and
interacting with a larger ensemble of off-resonant spins
(species B), was considered. The fluctuations of the B
spins (due to their mutual spin-spin interactions and due
to spin-lattice relaxation) leads to precession frequency
fluctuations of the A spins (the spectral diffusion), which
were then modeled as a classical stochastic process. Spin
echo (SE) signals of A spins were calculated using differ-
ent assumptions about the statistical properties of this
process.2–4

The central spin decoherence problem has received re-
newed attention due to emergence of ideas for using local-
ized spins in solid state systems as qubits in a quantum
computer. The currently studied systems include gate-
defined quantum dots,5 self-assembled quantum dots,6,7

phosphorous donors in silicon,7 and nitrogen-vacancy
(NV) centers in diamond.8 In all of these systems the
coupling of the central (qubit) spin to a bath of other
spins is the dominant process of the loss of coherence in

a superposition of spin up and down states (i.e. dephas-
ing).

A lot of attention has been recently devoted to the
problem in which the electron spin is coupled by a con-
tact hyperfine (hf) interaction to a bath of nuclear spins.
For large magnetic fields only the longitudinal part of
this interaction should be relevant (due to a large Zee-
man splitting mismatch between the electron and nuclear
spins suppressing their mutual flip-flops), and the deco-
herence of the qubit should occur due to intrinsic fluctua-
tions of the nuclear spins caused by their mutual dipolar
coupling. Quantitative comparison between theory1,9–11

and experiments for spin echo in Si:P system12–15 and
Si:Bi system16 has shown that for natural concentration
of spinful isotope of 29Si this is indeed the case. The same
origin of spin echo decay was predicted for electron spins
in III-V compound based quantum dots in the regime
of large magnetic fields.10,17,18 Recent experiments19 in
GaAs singlet-triplet qubit agree with these calculations
for magnetic fields higher than ∼ 0.5 T. At lower fields
the electron-nuclear spin flip-flops cannot be completely
ignored, and the SE decay is dominated by the contact
hf interaction,20–22 with dipolar dynamics being only a
correction.

The case of a purely dipolarly-coupled system, more
closely analogous to the original spectral diffusion prob-
lem, was also recently brought back into focus by devel-
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opments in spin qubit physics. One motivation is the
fact that silicon can be isotopically enriched to reduce
the concentration of spinful 29Si. Below a certain concen-
tration threshold, one can expect that the dipolar inter-
actions between the electron spins themselves will limit
the coherence time. In fact it was pointed out years ago
that at large P concentrations the decay of the observed
SE signal of the donor-bound electrons might decay due
to dipolar interactions between these electron spins.3 A
theory addressing the range of currently studied small
concentrations of both P donors and the 29Si nuclei was
proposed recently.23 In that work it was shown that (1)
the SE decay time in Si:P is bounded by a few seconds
due to long-range dipolar interactions between electron
spins for realistically small donor concentrations (about
1013 cm−3); (2) the presence of some 29Si can actually
increase the T2 time considerably by suppressing donor-
induced decoherence. The latter effect is due to the nuclei
providing quasi-static Overhauser shifts of electron spin
splittings, which increase the detunings between the elec-
tron spins, and suppress the dipolar flip-flop dynamics in
the bath.24 The predictions of Ref. 23 for SE decay times
have been recently confirmed experimentally.25

Another system for which both the qubit-bath and
the intrabath couplings are of the dipolar origin is the
nitrogen-vacancy (NV) center in diamond.8,26–31 In this
case, decoherence of the qubit (which is made out of two
levels of an electronic spin triplet) is dominated either
by interaction with a bath of electron spins of nitrogen
atoms (so-called P1 centers), as in Refs. 27,29, or, in the
case of purer samples, by interaction with a bath of nu-
clear spins of 13C atoms, as in Refs. 26,28,31.

In this paper we present a detailed description of a
cluster-based theory applicable to a sparse dipolarly cou-
pled system,23 and we give multiple examples of applica-
tions of the theory. In order to put this work into context,
let us briefly review the modern microscopic approaches
to spectral diffusion (for an attempt at pedagogical in-
troduction to these theories see Ref. 32). A method us-
ing a cluster expansion of bath dynamics was developed
in Refs. 9,10 and applied in the context of spin qubit
decoherence in semiconductors. This theory produced
results in remarkable agreement with experimental spin
echo decay measurements using only well-known micro-
scopic (no fitting) parameters.33 Various theories of this
type have been applied to problems in which an elec-
tron spin decoheres due to contact hf interactions with
a dynamical nuclear spin bath.9,10,17,33–36 In all of these
works based upon cluster expansions of some form, the
contributions of the bath dynamics to central spin deco-
herence were grouped according to the number of bath
spins participating in a nontrivial way (e.g., undergoing
flip-flop processes). In all of these nuclear-induced spec-
tral diffusion problems, the coupling of the central elec-
tron spin to nuclear spins is typically much larger than
dipolar interactions that couple the nuclear spins to each
other. The cluster expansions are essentially perturba-
tive expansions in the intra-bath coupling, (related to a

diagrammatic linked cluster expansion11 but less cum-
bersome to compute numerically) and are therefore well
suited to problems in which these interactions are rela-
tively weak. Problems in which the interactions among
bath spins are comparable to their interactions with the
central spin (e.g., sparse, dipolar coupled electron spins)
present a challenge for these cluster methods. In this ar-
ticle, we show that we can adapt the cluster correlation
expansion (CCE) of Refs. 37,38 to treat these problems
successfully. The CCE of Refs. 37,38 is essentially equiva-
lent to the original cluster expansion9,10 but greatly sim-
plified and more convenient for considering large cluster
corrections. This method was recently applied to the
NV center coupled to the nuclear spin bath where it was
used to predict interesting effects related to the qubit
back-action on the bath dynamics.31,39,40 Without rely-
ing upon the large-bath approximations or cumbersome
corrections of the earlier cluster expansion theory,10 or re-
lying upon the clustered grouping approximation of the
disjoint cluster approach,36 the CCE is well suited for
including larger spin clusters. These larger clusters need
to be calculated when considering dynamical decoupling
of the central spin41,42, or when the bath is sparse and
multi-spin correlations build within it on the timescale of
the central spin decoherence. The latter case applies to
the problem that is the focus of this article.

It may appear at first that the cluster expansion, which
depends critically on the higher order clusters making
systematically weaker contributions to decoherence in
a parametrically well-behaved manner, would be com-
pletely impractical for problems involving a sparse bath
of environmental spins and/or a bath environment con-
taining similar spins to the central spin. One may won-
der that in either case (i.e. sparse bath or qubit-bath
interaction being the same as the intra-bath interaction)
it may simply be impossible to define ’clusters’ in any
meaningful manner for a reasonable cluster expansion
technique to work. In fact, this has inhibited the appli-
cation of the cluster expansion technique, in spite of its
great success in the standard spectral diffusion problem
of spin decoherence in Si and GaAs, to a number of im-
portant problems of increasing experimental importance.
In the current work, we establish the applicability of a
cluster expansion technique for the central spin decoher-
ence problem for a sparse bath which is weakly coupled to
the central spin (i.e. intra-bath coupling comparable to
bath-qubit coupling). Once such a theoretical technique
is established, we can then solve a number of central spin
quantum decoherence problems of current experimental
relevance using it, and we apply the technique to solve
several problems of interest in Si and diamond quantum
computing architectures.

The key insight, which follows from a careful imple-
mentation of the CCE to the sparse dipolar bath and
from extensive numerical calculations involving increas-
ing cluster sizes, is our finding of an effect of localization
of flip-flop dynamics of bath spins that is not obvious
a priori. For any given group (cluster) of spins, their
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mutual energy detunings are affected by the state of all
the other spins, outside of the cluster. This is due to
the diagonal (Szi S

z
j ) part of the dipolar interaction. Our

calculations show that in a sparse dipolarly coupled bath
these interactions are introducing strong disorder in the
energy splittings of bath spins. This disorder suppresses
the contribution from larger cluster sizes in an appro-
priately modified CCE. We find that the CCE can be
adapted to converge well for a sparse dipolar bath by
defining cluster contributions to include these externally-
induced energy splittings and to be effectively, but effi-
ciently, averaged over internal and external spin states.
(We note that Ref. 17 had previously included effects of
externally-induced energy splittings in its pair approxi-
mation). The results and the convergence can be strongly
dependent upon the arrangement of bath spins, but the
convergence of results that are averaged over different
spatial realizations of the bath are well controlled. In
our modified formulation of the CCE, we can obtain con-
vergent results for SE decay up to times at which the
coherence had decayed by an order of magnitude while
calculating clusters of at most 4 spins (with 6 spins clus-
ters being shown to contribute a negligible correction at
this timescale).

Our main focus is thus the case of a central spin cou-
pled to the bath spins of the same kind by dipolar in-
teraction, e.g. an electron spin coupled to other electron
spins. Such a situation has been extensively studied the-
oretically by Dobrovitski et al. in Refs. 27,29,43,44. The
most important conclusion of these papers, based on ex-
tensive comparison between exact numerical calculations,
stochastic model, and diverse experiments for NV cen-
ter coupled to electron spins, is that the decoherence of
a single NV center (coupled to an electron spin bath)
can be modeled very well by replacing the bath by a
source of classical Ornstein-Uhlenbeck noise.27,29,44 For
spin echo this means decay of the exp[−(t/TSE)3] form
crossing over at long times to exp[−t/Tlong]. An impor-
tant distinction43 was also made between the results of
experiments on an ensemble of qubits, and results ob-
tained by repeated measurement of the same qubit (as
it is done in experiments on a single NV center). This
distinction is very important for our work here: we con-
sider both cases (the ensemble of qubits, and a single
qubit), since the first of them is important for current
experiments on Si:P, while the second is relevant for cur-
rent NV center experiments as well as considerations for
addressable quantum bits. It is important to note that
these studies using exact numerics are limited to very
small bath sizes (tens of spins with current computing
technology) and that cluster expansions do not have that
limitation.

The paper is organized in the following way. In Sec. II
we describe the Hamiltonian of the system of interest, a
central spin dipolarly coupled to an ensemble of randomly
positioned spins, all of them also coupled by dipolar inter-
actions, and define the coherence measurement procedure
(the spin echo) which our theory addresses. In Sec. III

we provide a detailed description of a variant of cluster
expansion theory applicable to such a problem. There we
give all the details of the theory used in Ref. 23 to predict
the 29Si and P concentration dependence of the electron
spin coherence time is Si:P system. In Sec. IV we describe
many interesting and experimentally relevant variations
of the “canonical” problem defined in Sec. II. There we
discuss the role of the intra-bath coupling strength rela-
tive to their interactions with the central spin, the possi-
ble geometrical variants of the problem (i.e. the case of
the bath spins being localized in a plane some distance
from the central spin), and generalizations of spin echo
experiment to sequences of multiple pulses (dynamical
decoupling). Finally, in Sec. V we present theoretical re-
sults for many example systems: donor-bound electrons
in bulk silicon or near an interface, Si-based quantum
dots, and NV centers in diamond.

II. CANONICAL PROBLEM: DECOHERENCE
IN A SPARSE ALL-DIPOLAR SPIN SYSTEM

In this section, we describe our canonical problem of
interest, the spin echo decoherence of a central spin in
a sparse all-dipolar spin 1/2 system in a strong, homo-
geneous magnetic field environment. In this canonical
problem, we assume that the central spin is shifted off
of resonance from the spins of the bath, but relax this
assumption for one of the variants in Sec. IV. Using spin
1/2 particles is relevant for applications to electron spin
systems; however, our methods equally capable of treat-
ing spins of larger magnitude.

A. System of Spins

For our canonical problem, we consider a sparse sys-
tem of electron spins uniformly distributed at random
in a 3-dimensional continuum (or on a lattice in which
the diluteness of the spins makes the lattice structure ir-
relevant). The electrons are localized (bound to donors,
for example) and dilute to the extent that they may be
treated as point dipoles. In fact, it is not essential that
they be electrons, but we employ conventions of notation
(such as g-factor) that are consistent with electron parti-
cles. We also assume the existence of a uniform magnetic
field that we choose, for convention, to lie along the ’z’ di-
rection. Our Hamiltonian, written in atomic units (~ = 1
and 1/4πε0 = 1), is thus

Ĥ =
∑
i

µBgiBiŜ
z
i +µ2

B

∑
j>i

gigjŜi ·D(Ri−Rj) · Ŝj , (1)

where Ŝi are spin operators for the spin 1/2 particles,
µB is the Bohr magneton, gi is the g-factor of the ith
electron (typically, gi = 2), Bi is the externally applied
magnetic field at each electron site, and D(r) is a tensor
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to characterize dipolar interactions and is defined by

Dα,β(r) =

[
δαβ − 3rαrβ/r

2

r3

]
, (2)

with α, β = x, y, z. δαβ is the Kronecker delta and rα is
the α vector component of r. Our convention is to index
the central spin as i = 0.

For our canonical problem, we set gi = 2 and take
the limit of a large applied magnetic field that is equal
among all bath spins but different for the central spin.
That is, all except the central spin are on resonance with
each other (neglecting at this point the energy offsets due
to dipolar interactions). If our central spin represents a
quantum bit, it make sense that we would be able to ad-
dress it individually and shift its Zeeman energy to be
off resonant from the bath spins. In taking this limit of a
large applied magnetic field, we should disregard interac-
tions which do not preserve the net Zeeman energy (the
secular approximation). Thus, our effective Hamiltonian
for our canonical problem becomes

Ĥeff =
∑
i,j>0

bi,jŜ
+
i Ŝ
−
j − 2

∑
i,j

bi,jŜ
z
i Ŝ

z
j , (3)

with

bi,j = −1

4
(gµB)2~

1− 3 cos2 θij
R3
ij

, (4)

where θij is the angle that the vector from spin i to spin
j makes with the ’z’ unit vector (the direction of applied
magnetic field) and Rij is the length of this vector. By
forcing the magnetic field of the central spin to be dif-
ferent from the rest and taking the large field limit, we
suppress any flip-flopping between the central spin (with
index zero by our convention) and bath spins. This is,
then, a standard spectral diffusion problem in which the
polarization of the central spin is preserved but the qubit
will dephase due to bath-induced variations of its preces-
sional frequency (i.e., its spectral line “diffuses”). We
later treat the case in which the central spin is resonant
with the bath spins in Sec. IV A.

Note that the effective Hamiltonian of Eqn. (3) has
a 1/R3 dependence entirely. The entire Hamiltonian,
therefore, scales with the concentration of the spins
(CE). The dynamics is therefore scale invariant, with
time that scales inversely with the CE . Likewise, time
scales inversely with the square of the g-factors. Our
results, unless otherwise specified, apply to a bath of
CE = 1013/cm3 and g = 2. However, adjusting these
parameters only serves to rescale the time axis.

Since we are specifying that the spins are at random
positions in space, there are many spatial realizations of
this problem. As a way to visualize a particular instance
of a spatial realization of the problem, we use “celestial
map” diagrams as shown in Fig. 1. These diagrams rep-
resent each particular “universe” from the perspective of
a central spin. Positions of the bath spins are projected

onto a sphere (centered at the central spin) as cylinders
whose size is proportional to the strength of the interac-
tion with the central spin. The left and right hemispheres
are split apart so we can look out in any direction from
the central spin. We connect the representives of the bath
spins with rods in proportion to the strength of their mu-
tual interaction as well as their interactions to the central
spin (where these interactions are beyond some criteria in
strength). In these way, we get effective “constellations”
of bath spins. We chose six random instances labelled A
through F depectied in Fig. 1, and will refer to these by
letter throughout the text.

We consider the limit of an infinite bath temperature in
which the initial bath state is random without bias. We
generate random initial bath states as product states of
each bath spin being up or down with equal probability.
We consider the finite temperature variant in Sec. IV A.

B. Spin Echo

If one considers an ensemble of the spin systems de-
scribed in the previous section, each with a different spa-
tial configurations of spins and initial spin states, one
would observe a relatively rapid dephasing occur simply
due to the ensemble averaging. This inhomogeneous de-
phasing time is known as T ∗2 . The central spin of each
system would experience a different shift of precessional
frequency as a result of the magnetic field generated from
its environment. The standard approach to remove this
trivial effect is to apply refocusing pulses to the central
spin. The simplest of these is the Hahn spin echo in
which one rotates the central spin by an angle of π about
an axis perpendicular to the applied magnetic field mid-
way through the evolution. A τ → π → τ sequence, for
example, will give a refocused signal at time t = 2τ . We
report, in the study of our canonical problem, the nor-
malized spin echo as a function of the total time, t, of
the sequence. At t = 0, no signal is lost and we report a
spin echo value of one. The general trend will be a decay
of the spin echo as the pulse sequence time is increased.
We identify the dephasing time T2 with the time at which
the signal reaches a value of exp (−1).

In our study, we assume that the central spin may be
addressed individually, and that our refocusing pulses
are instantaneous and ideal. The methods we describe
should be applicable to problems that relax these as-
sumptions, and also consider other types of pulse se-
quences, but we choose to keep the problem simple in
the scope of this work. For ESR measurements in which
all of the spins are essentially resonant with each other, it
is possible to extrapolate the central spin echo decay by
adjusting the angle of the refocusing pulse12,25. Other-
wise, the decay can be dominated by the inhomogeneous
decay from the environment of like spins which are all
flipped together (known as instantaneous diffusion). By
using a smaller angle in the refocusing pulse, the signal
of the echo is reduced and harder to measure, but the
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F 

FIG. 1: “Celestial map” representations of six randomly cho-
sen spatial configuration instances of our canonical problem.
Each show left and right hemispheres with the applied mag-
netic field in the up (North) direction.

effects of instantaneous diffusion are reduced. Extrapo-
lating to a refocusing pulse angle of zero yields the proper
spin echo decay.12,25

III. METHODS

In this section, we describe methods we use for solving
the central spin decoherence problem with a particular
focus on our canonical problem. We start, in Sec. III A,
with a general description of the CCE method. We show,
through examples of instances of our canonical problem,
a need to modify the original expansion, and demonstrate
effective techniques that overcome the arising difficulties.

A. Cluster Correlation Expansion

Explicitly evolving bath states becomes infeasible even
for baths of moderate size,45 with number of bath spins
> 20. Recently developed cluster techniques,9,10,37,38

however, can make such evaluations possible by breaking
up the problem into smaller pieces. Our approach will
use the CCE method. This was developed to resolve de-
ficiencies of previously developed spin decoherence clus-
ter expansion techniques9,10 in small bath scenerios. In
hindsight, the formulation of Refs. 9,10 should be viewed
as a large bath approximation to the CCE which may be
convenient where applicable (in principle, the approxima-
tion may be systematically corrected, but if corrections
are necessary than one is better off using the CCE for-
malism).

The CCE has a simple and easily generalized formula-
tion. In principle, it is always exact in the large clus-
ter limit (apart from division by zero situations that
may arise). In practice, the expansion converges best
for sufficiently short simulation times but becomes nu-
merically instable for long simulation times. Let L de-
note the bath averaged quantity of interest. For the spin
echo dephasing problem, we choose L = ρ+−

q (t)/ρ+−
q (0),

where ρ+−
q (t) is the off-diagonal component of the re-

duced density matrix for the central spin after evolving
a t = 2τ spin echo sequence. Since it is not feasible
to solve this directly for a moderately-sized bath, let us
define LS , where S is any subset of bath spins, as the re-
sult of ρ+−

q (t)/ρ+−
q (0) as computed when we only involve

spins outside of set S in a trivial manner (to be explained
below). Here we are choosing to be more general than
the original derivation of the CCE and only require that
LS = L when S includes the full set of bath spins and
leave some flexibility in the way that we define LS for
smaller sets. We refer to a given set of bath spins, S, as
a cluster although there is no requirement that the con-
stituent spins of the set necessarily be closely spaced (or
clustered).

At this point, the CCE formulation will approximate
L in terms of the LS for various S up to some maximum
“cluster” size and will be exact when the maximum size
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limit reaches the size of the bath. To do this, we will
implicitly define L̃S such that

L =
∏
S
L̃S , LS =

∏
C⊆S

L̃C = L̃S
∏
C⊂S

L̃C , (5)

with products over all subsets meeting the specified crite-
ria. There will be, therefore, overlapping clusters. These
are not disjoint sets as they are in the approach of Ref. 36.
Explicitly, L̃S is then

L̃S = LS/
∏
C⊂S

L̃C (6)

as a recursive definition for any L̃S . This is simply a
tautology that serves as the definition of L̃S . It becomes
useful when we can disregard the vast majority of the L̃S
factors for L such as limiting the cluster size. We define
the kth order of the CCE as the approximation of L with
a maximum cluster size k:

L
(k)
CCE =

∏
‖S‖≤k

L̃S . (7)

Even though we are including overlapping sets of clus-
ters, overcounting of contributions are systematically cor-
rected as increasingly large clusters are included in the
approximation. We know this simply by the fact that the
CCE is exact when all clusters are included.

To get an intuition for why the CCE takes the form
of a product of contributing factors, consider the ide-
alized scenario with our effective canonical Hamiltonian
[Eq. (3)] in which there are two sets of non-central spins,
A and B, with no cross interactions (e.g., two clustered
groupings that are far apart with negligible interactions
to each other):

Ĥeff =
∑
i,j∈A

bi,jŜ
+
i Ŝ
−
j +

∑
i,j∈B

bi,jŜ
+
i Ŝ
−
j

− 2
∑
i,j

bi,jŜ
z
i Ŝ

z
j , (8)

In this scenerio, with L defined as ρ+−
q (t)/ρ+−

q (0), we
may factorize L as L = LA × LB. Beyond the ideal sce-
nario, this factorization is only approximate but relates
the perturbation theory discussed in Sec. III B.

We report various spin echo results calculated using

the CCE up to various maximum cluster sizes: L
(k)
CCE. In

practice, we don’t generally include all clusters of a given
size in the calculations. We use heuristics with cut-off
parameters to select the clusters of the most potential
importance. We adjust the cut-off parameters until we
are quite confident in our results. Our cluster sampling
heuristics are described in Appendix A.

B. Perturbation Theory and the Cluster
Correlation Expansion

The fact that L
(k)
CCE equals L in the large k limit is

apparent from our derivation above. But how well does

1

3

2

4

FIG. 2: Example of a connected cluster of Lemma 1 where
edges represent the existence of bi,j factors of a given term of
L̃C.

this expansion converge? The key to understanding the
convergence properties of CCE is to understand the prop-
erties of L̃C with respect to a perturbation in the interac-
tion that couples the bath spins. Using perturbation the-
ory, one may express LS as an infinite power series with
respect to the coupling constants between bath spins, de-
noted with bi,j = bj,i (in reference to the Hamiltonian of
Sec. 4, but is general for any pairwise interaction Hamil-
tonian and may be generalized for n-way interactions).

It is also possible to expand L̃C into such a power series
by recursively expanding the denominators of Eq. (6).
This expansion is possible (with only positive powers of
the coupling constants) as long as LS , for any S, is non-
zero when all coupling constants are taken to be zero; in
the case of L = ρ+−

q (t)/ρ+−
q (0) and using our effective

Hamiltonian in Eq. (3), LS = 1 + O(bi,jt) and, by the

recursive definition of Eq. (6), L̃C = 1 +O(bi,jt).

As defined and noted in Ref. 37, L̃C = 1 + O(bki,jt
k)

with k = ‖C‖. In our generalization, such a result is con-
ditional. The following definition, lemma, and theorem
specify the conditional perturbative properties of L̃C .

Definition 1

We say that LS is factorable under disconnected in-
teractions if, for any S, given X ∈ S, Y ∈ S such
that X ∪ Y = S, X ∩ Y = ∅ (disjoint), and that all
bi∈X ,j∈Y = 0, then LS = LXLY .

Lemma 1 If LS is factorable under disconnected inter-
actions, all non-constant (bi,j dependent) terms of L̃C
in a power expansion with respect to bi,j, must contain
factors of bi,j that, when viewed as graph edges between
nodes i and j, connect all spin “nodes” in C fully. In
other words, each non-constant term will involve all spins
in C and may not be factored into parts that involve dis-
joint, non-empty sets of spins (Fig. 2).

Theorem 1 If LS is factorable under disconnected in-
teractions, L̃C = const. + O(bk−1

i,j tk−1) where k = ‖C‖
(the size of C).

The above Theorem follows directly from the Lemma
considering the simple fact in graph theory that a set
of k nodes cannot form a connected graph with less than
k − 1 edges; the Lemma is proven in Appendix B. The
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lowest non-constant order will contain an additional fac-
tor of bi,j under certain circumstances, so that L̃C =
const. +O(bki,jt

k), but this is not an important consider-
ation for this discussion.

The important point is that larger clusters will intro-
duce higher order corrections with respect to bi,j . This is
the essence of the CCE37 and previous9,10 cluster expan-
sions. However, bi,jt � 1 is not a strict requirement for
convergence; a localization effect in disordered systems
has been demonstrated to extend convergence into the
bi,jt > 1 regime37. This in fact happens in our canoni-
cal problem, albeit a few modifications of the CCE (ex-
plained in detail below) are necessary to capture this ef-
fect. In any case, the best practice is to test convergence
by computing an extra order in the expansion, providing
an estimate of the error.

The CCE works extremely well out into the tail of the
spin echo decay in those central spin decoherence prob-
lems, such as nuclear-induced spectral diffusion,9,10 in
which the central spin is strongly coupled to many bath
spins relative to the coupling strength among bath spins.
In this case, the decay timescale is typically short com-
pared with interaction strength among the bath spins
(i.e., the bath is slowly evolving). Our canonical prob-
lem pushes us into the challenging regime of this pertur-
bation because the central spin has interactions to the
bath spins that are comparable to the strength of the
interactions among the bath spins. This presents chal-
lenges to the cluster method, but we shall demonstrate
effective techniques to address these challenges.

C. Treatment of “External” Spins

The CCE that we described in Sec. III A has some flex-
ibility. We have stated that LS is to be defined in a man-
ner that involves external spins trivially. The most simple
way to define LS would be to ignore all the external spins
entirely. That is, LS is the result of ρ+−

q (t)/ρ+−
q (0) when

only including those bath spins into the problem that are
contained in set S. We show the CCE results from apply-
ing this definition for the spatial configuration instance

A (Fig. 1) in Fig. 3. At short times, the L
(3)
CCE (up to 3-

clusters) exhibits a small correction to L
(2)
CCE (2-clusters).

The CCE, in this form, does not provide a robust solution
to our canonical problem except to study the initial part

of the decay. Before significant decay occurs, L
(3)
CCE blows

up and becomes numerically unstable. We note that the
primary contribution from 3-clusters near the onset of
this numerical instability comes from the suppression of
flip-flopping dynamics due to the magnetic field gradi-
ents generated by external spins as depicted in the upper
cartoon of Fig. 3. That is, the 2-cluster contributions are
overestimated when we completely ignore all of the ex-
ternal interactions, and this must be compensated at the
3-cluster level. When we ignore all other bath spins, any
pair of spins is completely resonant and can freely flip-

FIG. 3: Top: Depiction of a 2-cluster whose flip-flops are sup-
pressed by the magnetic field gradient generated by a third
spin. Bottom: Spin echo results from the CCE applied to
spatial configuration instance A (Fig. 1) when we don’t de-
fine a cluster contributions to be “externally aware.” Each
“spaghetti” strand is the result for a different random initial
spin state (a product state of up or down for each spin) with

the mean of L
(2)

CCE [L
(3)

CCE] as encircled +’s [triangles]. The
3-cluster contributions must compensate for the lack of “ex-
ternal awareness” which leads to numerical instability at later
times.

flop. Considering the presence of these other bath spins,
they are generally off-resonant to some degree. That is,
the Ising-like part of the long-range dipolar interactions
plays an important role regarding whether or not a given
pair of spins, for example, are resonant with each other
for flip-flopping. Capturing this effect for small clusters
is crucial for obtaining our computationally feasible and
convergent theory of spectral diffusion in the canonical
problem.

Ideally, one would want to define things in such a way
that Lemma 1 would be applicable with respect to just
the flip-flop interactions and that the Ŝzi Ŝ

z
j interactions

would come for free. We have not found such an effi-
cient solution that achieves this, but a step in the right
direction is to include these Ising-like interactions with
spins outside of S for a given LS . That is LS excludes
only the flip-flop interactions involving spins external to
S. For each bath state |J〉, let LJ = 〈J+(t)|J−(t)〉
where J±(t) = Û(t)|J,±〉, using ± for the up/down cen-
tral spin states. Now define LJS = 〈J+

S (t)|J−S (t)〉 where

|J±S (t)〉 = ÛS(t)|J,±〉; here, ÛS gives the evolution which

disregards all except the Ising-like Ŝzi Ŝ
z
j interactions with

bath spins external to S. We thus have the CCE defined
for each J state independently. For a given density ma-
trix ρ =

∑
J pJ |J〉〈J |, L =

∑
J pJL

J ≡ 〈LJS〉J .

We show the results of these CCE calculations, with
“external” spin awareness as described above, in Fig. 4
for each of the spatial configurations depicted in Fig. 1.
Comparing with Fig. 3, considerable improvement is ap-
parent. However, these results, which still show strongly
unstable behavior at longer times can be further im-
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proved.

D. Interlaced Spin State Averaging

As we have just discussed, disorder in a system may
improve the CCE convergence due to a localization. It
can also be problematic and create numerical instability,
however. The problem arises when some LC attains, by
chance of the disorder, a very small value for a time that
is short compared with the overall decoherence time. In
the calculation of L̃S for some supercluster S ⊃ C, LC
may be a factor in its denominator so that L̃S attains a
very large value, disproportionate to its order, i.e., ‖S‖,
in the CCE. We note this effect in the numerical insta-
bility observed in Fig. 4 for later spin echo times.

We find that this ill effect from disorder may be mit-
igated very effectively by defining the CCE to use “in-
terlaced” spin state averaging. Rather than computing
a separate L for each given bath state J , we can self-
consistently average over the bath states internal to the
computation of LS . In terms of the definitions of the
previous sub-section, we may define LS = 〈LJS〉J , as an
average over bath states J , and use the standard CCE
equations [Eqs. (5), (6), and (7)]. In the large cluster
limit, this will approach the correct solution. Defined in
this way, LS is not factorable under disconnected inter-
actions (this is because 〈Ŝz〉2 6= 〈(Ŝz)2〉), so the Lemma
and Theorem of Sec. III B does not carry through. How-
ever, we find the convergence behavior to be significantly
improved (see Fig. 6) by using this sort of strategy.

It is only feasible to approximate LS with this spin
state averaged definition because explicit averaging over
the state of all external spins has exponential complex-
ity. In practice, we instead use the following formulation
which approximates interlaced spin averaging in a man-
ner that corrects itself as more clusters are included in
the approximation. Let Γ be a set of clusters (e.g., up to
a certain size) that we include to approximate the solu-
tion. Let J be some bath spin state, as a product state
of up or down for each spin, that will serve as a template.
We now define

LJΓ =
∏
C∈Γ

L̃
K(J,C,Γ)
C , (9)

where K(J, C,Γ) is the set of all spin states that may
differ from J only for spins in superclusters of C that are
contained in Γ. That is,

K(J, C,Γ) = {J ′| ∃C′ ∈ Γ, C′ ⊇ C,D(|J〉, |J ′〉) ⊆ C′},
(10)

where D(|J〉, |J ′〉) is the set of spins whose state differs
between |J〉 and |J ′〉:

D
(⊗

n

|jn〉,
⊗
n

|j′n〉
)

= {n| |jn〉 6= |j′n〉}. (11)
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FIG. 4: L
(2)

CCE (left) and L
(3)

CCE spin echo results corresponding
to spatial configuration instances A-F (Fig. 1) of our canon-
ical problem using the “externally aware” treatment of clus-
ters. Each “spaghetti” strand is the result for a different
random initial spin state (a product state of up or down for

each spin) with the mean of L
(2)

CCE [L
(3)

CCE] as encircled +’s
[triangles].
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↑

FIG. 5: Illustration of K(J, C,Γ) [Eq. (10)]. Bath spins are
denoted by the circles; up/down arrows denote the spin state
“template” J . Clusters in Γ (the included clusters) are de-
noted by ovals that encompass multiple bath spins, C be-
ing the one with the solid, thick outline. Superclusters have
dashed outlines and all other clusters have dotted outlines.
K(J, C,Γ) are all spins states, including J , that only differ
from J in spins within superclusters of C, shown with the
thicker outline and ↑↔↓ or ↓↔↑ inscriptions (the up/down
arrow on the left, say, denotes the state of the J template,
but all combinations of these are included in K).

An example for K(J, C,Γ) is illustrated in Fig. 5. Then
we define

L̃KC = 〈LKC 〉K∈K/
∏
C′′⊂C

L̃KC′′ , (12)

where LJC solves the LC problem for the given spin state
J . Importantly, this yields the exact spin state average
solution for LJΓ in the limit that Γ includes all clusters
(J becomes irrelevant). Furthermore, it may be com-
puted relatively efficiently if we are sufficiently selective
in choosing the clusters of Γ (see Appendix A). With
proper bookkeeping, each Hamiltonian (for a given clus-
ter and external spin state) need only be diagonalized
once, and each LJC need only be computed once and raised
to the proper power to be multiplied into the solution.

We present results using this revised CCE for our six
respective spatial configurations (Fig. 1) in Fig. 6. The
numerical instabilities we observe in Fig. 4 have been re-
moved, and the convergence appears to be well-behaved

as we go from L
(2)
CCE on up to L

(4)
CCE. We still see some

unphysical results (larger than unity) for some spin state
templates, but not as widely ranging and erratic as be-
fore without interlaced spin averaging. In principle, the
CCE results should be exact when all clusters are in-
cluded and any non-physical results would go away. This
trend toward the physically valid range is oberved in go-

ing from L
(3)
CCE to L

(4)
CCE (L

(2)
CCE always gives results in

the physical range). We also note, as an indication of
convergence, that a split between averaged 4-cluster and
3-cluster results in each case (particularly visible in spa-
tial configurations A, C, and F) occurs later in the time
parameter than the split between averaged 3-cluster and
2-cluster results. The convergence isn’t always great for
this challenging problem, but a good fraction of the de-
cay appears to be captured well. As an aid to intuition
about what is going on for the different cluster sizes, we
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FIG. 6: L
(2)

CCE (left), L
(3)

CCE (middle), and L
(4)

CCE (right) spin
echo results corresponding to spatial configuration instances
A-F (Fig. 1) of our canonical problem using “external aware-
ness” and “interlaced spin averaging” in our implementation
of the CCE as expressed in Eq. (9). Each “spaghetti” strand
is the result for a different random spin state template J [see

Eqn. (9)]. The mean of L
(2)

CCE, L
(3)

CCE, and L
(4)

CCE are repre-
sented as encircled +’s, triangles, and squares respectively.
The brown (color online) dashed curves of the form exp (−t3)
on the right panels are presented for comparison.
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central B 

B central 

FIG. 7: Depiction of important 3-cluster (top) and 4-cluster
(bottom) contributions in our adapted CCE with “external
awareness” and “interlaced spin averaging.” At the 2-cluster
level, all flip-flopping pairs are treated independently. The
3-cluster level must compensate for overlapping flip-flopping
pairs that cannot be independent because they share a bath
spin. The 4-cluster level must compensate for the fact that
two separate flip-flopping pairs in close proximity influence
each other magnetically (through the Ising-like Ŝz

i Ŝ
z
j iterac-

tions) as they flip-flop. This can enhance spectral diffusion,
for example, if the two pairs are off resonance independently,
but on resonance (conserve energy) together as a simultane-
ous process.

depict important 3-cluster and 4-cluster contributions in
Fig. 7.

We include decay curves of the form exp (−t3) on the
right panels of Fig. 6 for comparison with the calcula-
tions. Such behavior is expected in the initial decay
for Ornstein-Uhlenbeck noise. With exception to spatial
configuration A, the exp (−t3) form fits the calculated
results very well for the first 25% to 50% of the decay,
confirming the results from Refs. 27,29,44 using a calcu-
lation starting from a microscopic model of the dipolarly
coupled bath.

E. Ensemble of Spatial Configurations

We show results for a large ensemble of different spa-
tial configurations in Fig. 8. We indicate the median and
mean results for the ensemble (well converged to approx-
imate the infinite ensemble). Both the median and mean
are computed separately for the statistical results at each
point in time; that is, the median values at different time
points do not necessarily come from the same spatial con-
figuration result. The median and mean differ drastically
at short times because the mean is dominated by rare
cases where the spin echo dips down early (for example,
when a pair of bath spins happen to be particularly close
to the central spin). Our CCE expansion, with “exter-
nal awareness” and “interlaced spin averaging” exhibits
very good convergence as demonstrated most clearly in
Fig. 9; as we increase the cluster size in even numbers
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FIG. 8: L
(2)

CCE (left) and L
(4)

CCE (right) spin echo results of
our canonical problem using “external awareness” and “inter-
laced spin averaging” in our implementation of the CCE as
expressed in Eq. (9). We use the scaling parameter ζ: time
is scaled inversely with ζ and g2CE = ζ × 4× 1013/cm3 (i.e.,
ζ = 1 is the result for g = 2 and CE = 1013/cm3). Each
“spaghetti” strand is the result for a different random spatial
configuration averaged over a large number of spin state tem-

plates. The mean of L
(2)

CCE and L
(4)

CCE are represented as en-

circled +’s and squares respectively. The median of L
(2)

CCE and

L
(4)

CCE are represented as encircled x’s, and diamonds respec-
tively. The bottom figures show the same spin echo results
on a logarithmic scale for the decay.

(two, four, and six), we get slight corrections that push
down the tails of the spin echo decay curves. Let us stress
again that the fact that only relatively small clusters of
flip-flopping spins are enough to describe the SE decay is
due to our use of a modified version of CCE. Averaging
of these cluster contributions over the states of external
spins, while keeping the diagonal dipolar interactions be-
tween the spins from the cluster and from its outside,
allows us to capture the effect of localization of spin dy-
namics over the duration of appreciable coherence.

F. Convergence

We demonstrate convergence of the ensemble average
spin echo for our canonical problem in Fig. 9. To be confi-
dent in our results, we must ensure sufficient cluster sam-
pling (Appendix A) and the inclusion of sufficiently large
clusters. The cluster sampling described in Appendix A
relies upon radial cutoffs and cluster counting cutoffs.
Our confidence in our results increases as we increase ei-
ther of the cutoffs. We employ convenient methods that
automatically increase the cutoffs as needed by compar-
ing results from differing cutoff values; for example, if
there is a significant difference in results that include dif-
ferent numbers of clusters, we increase the cluster count
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cutoff.
It is best to evaluate and analyze the effects of larger

clusters in terms of their correction to solutions that ex-
clude them: L

(k)
CCE − L

(k−1)
CCE . For the most rapid con-

vergence, this correction (difference) should be averaged
over the ensemble of spatial realizations of the bath

rather than the individual L
(k)
CCE results. Such correc-

tions, for successive cluster sizes, are presented in the
lower panel of Fig. 9. The corrections are only significant
toward the tail of the decay with an onset time that in-
creases with increasing cluster size. At later times, larger
cluster corrections will often become numerically unsta-
ble, but the ealier parts of the decay are most important
for quantum information considerations.

We note that odd cluster sizes tend to increase the spin
echo decay time (enhanced coherence) and even cluster
sizes tend to decrease the spin echo decay time (further-
ing decoherence). Furthermore, 4-cluster corrections are
the same order of magnitude as 3-cluster corrections and
6-cluster corrections are the same order of magnitude as
5-cluster corrections. The reason for this even/odd trend
relates the spin up/down symmetry when regarding non-
polarized baths and was noted in Ref. 10 for the case of
nuclear-induced spectral diffusion. A similar argument
applies here. When averaging over a bath described by
density operator proportional to unity (as it is the case
at high temperatures and low magnetic fields), the oper-
ation of reversing the sign of the Hamiltonian leaves the
expression for spin echo signal unchanged [see Eqs. (60)
and (61) in Ref. 10]. Therefore, in the non-polarized av-
erage, only even perturbation order terms survive. Also
note that contributing processes must perform a full cy-
cle in state space, looping back to some initial state; that
is because the bath states are traced out in obtaining the
reduced density matrix of L. Thus, 3-clusters are fourth
order in such a perturbation expansion and 5-clusters are
sixth order. For this reason, also, 3-cluster, are not dom-
inated by the process of three flip-flops since this is can-
celled by the symmetry of the unpolarized bath [this was
also noticed in Ref. 11, see the discussion there above
Eq. (12)]. Instead they are dominated by double flip-
flops of two pairs sharing one spin in common as in the
top panel of Fig. 7. This provides a correction to the
2-cluster level which overcounts these as two indepen-
dent flip-flopping pairs; at the 3-cluster level, we see that
the shared spin cannot simultaneously flip-flop with two
partners. Presumably, a similar situation occurs at the
5-cluster level, though the picture is substantially more
complicated. As a side note, a nice aspect of the CCE
over the linked cluster expansion11 in practice is that we
do not have to decompose this complicated picture to
obtain results.

IV. VARIATIONS OF THE PROBLEM

Our canonical problem was chosen for its simplicity as
a problem to study in depth without complicating details
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FIG. 9: Ensemble-averaged spin echo results and corrections
for our canonical problem within various approximations us-

ing our adaptation of the CCE. The upper panel gives L
(2)

CCE
for various cutoffs in our cluster sampling heuristics (Ap-
pendix A). The ζ scaling parameter is used as in Fig. 8.
Relative to corresponding solid line curves, dotted lines in-
clude twice as many clusters (Nk), dashed lines increase the
radial cutoff (RC) by 30%, and dot-dashed lines do both. The
blue curves (color online) in the top panel demonstrate cut-
offs that are insufficient at later time scales (N2 = 200 and
RC = 600 nm for the solid blue line). The black curves use
good cutoff values (Nk ∼ 30, 000 and RC ∼ 1000 nm); for
this reason, it is difficult to distinguish corresponding curves
of differing line patterns. The lower panel shows successive
corrections as we increase the maximum cluster size.

to serve as distractions. In the study of real-world prob-
lems, many variations of our canonical problem arise.
In this section we consider some natural variations of
this problem and discuss resulting trends in generality.
The canonical problem will provide a convenient refer-
ence point as we analyze these trends. We will reference
each of these variations in Sec. V where we discuss spe-
cific problems of interest in the realm of (solid state spin)
quantum information.

A. Coupling Strengths, Polarization, and
Resonances

In this section, we consider variations of the canonical
problem with regard to coupling strengths, resonances
among pairs of spins, and polarization of the bath spins.

We first consider the effects of adjusting the coupling
strengths by simply adjusting the g-factor of the central
spin. Only the relative strength of intra-bath interactions
versus central spin-bath spin interactions are of qualita-
tive importance (the absolute strengths only affect the
scale of the time parameter). By adjusting g0 and hold-
ing gi>0 constant, we explore the transition from a cen-
tral spin that is weakly coupled to the bath (g0 small)
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FIG. 10: Comparison of Hahn echo results for different g0
values (the central spin g-factor) in the large magnetic field
limit and off-resonant central spin treatment (e.g., the canon-
ical problem otherwise). The ζ scaling parameter is used as
in Fig. 8 with g2i>0CE = ζ × 4× 1013/cm3. The upper panels

display L
(2)

CCE (+’s), L
(3)

CCE (triangles) and L
(4)

CCE (squares)

mean value results. The lower panels display L
(4)

CCE median
(diamonds) as well as mean (squares) value results on a log-
arithmic scale.

to one that is strongly coupled to the bath (g0 large). In
relative terms, this is also an exploration of the transi-
tion from strong (gi>0 large) to weak (gi>0 small) cou-
pling within the bath respectively, although this requires
a translation of our timescales to reflect holding g0 con-
stant instead of holding gi>0 constant. We again treat
the case in the large magnetic field limit where the central
spin is off-resonant with the bath spins (either by a local
magnetic field offset or the g-factor difference), as char-
acterized by Eq. (3). We compare three difference cases
in Fig. 10: g0 = gi>0/10 (weak coupling to the bath),
g0 = gi>0 (comparable interactions), and g0 = 10gi>0

(strong coupling to the bath). The time scaling factor
is dependent upon the value of gi>0. Increasing g0 in-
creases the coupling of the central spin to the bath with
causes a decrease in decoherence time. It also makes
sense that larger clusters become more important in the
regime in which the coupling within the bath is relatively
strong. In our g0 = gi>0/10 case, the cluster expansion
is only well-behaved during the initial part of the de-
cay. Furthermore, the statistical spread of the results
(exemplified by the discrepancy between the median and
the mean) is reduced as we approach the weakly-coupled
bath regime.

Thermal polarization of an electron spin bath is of-
ten feasible with the temperatures and magnetic fields
typically proposed in solid state spin quantum informa-
tion processing. At the standard g = 2 value, the elec-
tron Zeeman splitting corresponds to 1.3 K per Tesla. In
Fig. 11, we compare results for various polarized versions
of our canonical problem. At the 2-cluster level, the ef-
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FIG. 11: Comparison of Hahn echo results for different de-
grees of thermal polarization: zero polarization (left), B/T =
1 Tesla / Kelvin (center), and B/T = 2 Tesla / Kelvin
(right). The zero polarization, infinite temperature results
are shown in blue (color online), provided for compariza-
tion along the polarization columns. The upper panels dis-

play L
(2)

CCE (+’s), L
(3)

CCE (triangles) and L
(4)

CCE (squares) mean

value results. The lower panels display L
(4)

CCE median (di-
amonds) as well as mean (squares) value results on a loga-
rithmic scale. The ζ scaling parameter is used as in Fig. 8:
g2CE = ζ × 4× 1013/cm3.

fects of polarization are fairly straightforward. Since we
are taking the limit of large applied magnetic field and
using the secular approximation [Eq. (3)], the number of
pairs that may contribute at the 2-cluster level is propor-
tional to the probability of each spin being up times the
probability of each spin being down: Npairs ∝ p↑p↓ with
p↑/↓ = exp (±Ez/2kBT )/2 cosh (Ez/2kBT ) according to
Boltzmann statistics where Ez is the electron Zeeman en-

ergy splitting. Since L
(2)
CCE is a product over contributing

pairs, log (L
(2)
CCE) ∝ p↑p↓. Note, however, that contri-

butions from larger clusters play a more significant role
earlier in the decay as we increase the polarization.

Now we consider variations pertaining to resonances.
In our canonical problem, all spins except for the central
spin are taken to be resonant with each other. What
happens when the central spin is resonant with the bath
spins? In this case, we replace Eq. (3) with

Ĥeff =
∑
i,j

bi,jŜ
+
i Ŝ
−
j − 2

∑
i,j

bi,jŜ
z
i Ŝ

z
j , (13)

which allows flip-flops with the central spin. This induces
both depolarization and dephasing together (i.e., where
T2 may be T1 limited). These direct flip-flops produce
non-trivial 1-cluster contributions in the CCE (depicted
on the lower left of Fig. 12). At short times, this dom-
inates the spin echo decay. The spin echo that results
in this scenario actually exhibit oscillations at the Zee-
man precessional frequency (i.e., induced by the exter-
nally applied B-field). These oscillations are extremely
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FIG. 12: Top: Comparison of Hahn echo results for differ-
ent resonance scenarios. We compare one bath species (left)
and two bath species (right) with a 50/50 random mixture
[Eq. (14)]. Furthermore, results when the central spin is res-
onant with bath spins [Eq. (13)] are shown in blue (color

online). The upper panels display L
(1)

CCE (filled circles) L
(2)

CCE

(+’s), and L
(4)

CCE (squares) mean value results. Below those,

the panels display L
(4)

CCE median (diamonds) as well as mean
(squares) value results on a logarithmic scale. The ζ scaling
parameter is used as in Fig. 8: g2CE = ζ×4×1013/cm3. Bot-
tom: Depiction of a 1-cluster process when the bath spins are
resonant with the central spin (left) and of an important type
of 4-cluster process when there are two bath species (right).

fast, about 30 GHz at g = 2 and B = 1 Tesla. For
numerical stability, we computed the CCE in this case
by averaging over a few of these oscillation about each
evaluated spin echo time; we define LS in this manner.

Relevant to many of our applications, another variant
is to have multiple bath species that are only resonant
within respective species. This applies to a bath of elec-
trons bound to donor nuclei that have non-zero spin. For
example, phosphorus nuclei have a 1/2 spin magnitude;
this yields two bath species because up and down nuclei
generate opposite hyperfine shifts for the electron spins.
For this case, in the large applied magnetic field limit,
we have

Ĥeff =
∑
i,j∈A

bi,jŜ
+
i Ŝ
−
j +

∑
i,j∈B

bi,jŜ
+
i Ŝ
−
j

−2
∑
i,j

bi,jŜ
z
i Ŝ

z
j . (14)

Note that this is not quite the same as the combined inde-
pendent effects of two baths at half concentration because
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FIG. 13: Top: Hahn echo results on logarithmic scales for
a central electron spin at various distances from a sheet of
random electron spins at a density of ζ2/3 × 1011/cm2 with
a magnetic field parallel (left) and perpendicular (right) to

the sheet. The distances (color online) are ζ−1/3 × 10 nm

(black), ζ−1/3 × 20 nm (red), ζ−1/3 × 40 nm (green), and

ζ−1/3 × 80 nm (blue), as labelled and generally from left to
right (central spins more distant from the surface have longer

coherence times). The upper panels display L
(2)

CCE (+’s),

L
(3)

CCE (triangles), and L
(4)

CCE (squares) mean value results.

Below those, panels display L
(4)

CCE median (diamonds) as well
as mean (squares) value results. Bottom: Contour plots show
relative strengths of dipolar couplings to the central spin from
points on the sheet of bath spins (darker regions have larger
relative coupling strengths).

there are inter-species Ising-like interactions. We com-
pare various resonance scenarios (one versus two species
and the central spin being resonant versus off-resonant
with bath spins) in Fig. 12 along with schematic depic-
tions of important process.

B. Bath Geometry

High concentrations of impurity spins may occur at
the interface between materials. For example, dangling
chemical bonds may host unpaired electrons. As a vari-
ation of our canonical problem with this in mind, we
consider two dimensional geometries of bath spins. Our
central spin may be at various distances (depths) from
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this sheet of bath spins. We consider the limit of a large
applied magnetic field, but the results will depend upon
the angle of this applied field relative to the sheet of bath
spins. We show Hahn echo results in Fig. 13 comparing
various central spin depths for a magnetic field that is
parallel or perpendicular to a sheet of bath spins. The
spin echo curves in the parallel case are fairly smooth
compared with the perpendicular case; this is due to dif-
ferences in the spatial dependence of the dipolar coupling
to the central spin for the different magnetic field angles
(see the bottom of Fig. 13).

Since our effective Hamiltonian [Eq. (3)] scales in-
versely with distance cubed (dipolar interactions), we use
a scale factor ζ for rescaling time, concentration, and
depth together appropriately. ζ = 1 is for a bath concen-
tration of 1011/cm2. These results are therefore applica-
ble to various bath concentrations at the appropriately
rescaled central spin depths.

C. Finite Spatial Extent of the Central Spin
Electron Wavefunction

Our canonical problem idealizes the central spin and
bath spins as being localized with zero extent (points)
for the purposes of computing the dipolar interactions
[Eq. (2)]. This is a reasonable approximation for a sparse
system of donor-bound electrons such as Si:P. However,
electrostatically-defined quantum dots may have consid-
erable lateral extent (e.g. roughly 50 nm in Ref. 46). To
explore the impact of this finite extent of the central elec-
tron’s wavefunction, we use a simple Gaussian-shaped
wave-function model in which the relative probability of
electron occupation is given by

P (x) ∝ exp

(
−x

2
1 + x2

2

r2
0

)
cos2

(
π
x3

δ

)
, (15)

for |x3| < δ/2 and P (x) = 0 otherwise. We use
r0 = 50 nm as a defining lateral radius and δ = 5 nm as
a defining thickness. The coordinates are labelled with
1, 2, and 3 so they will not be confused with the co-
ordinate system of Eqs. (1) and (3) which define z to
point in the direction of the applied magnetic field. The
x3 direction is normal to an imagined surface forming a
two-dimensional electron gas out of which the quantum
dot is isolated.

The finite extent of the electron’s wavefunction im-
pacts the dipolar interactions between the central spin
and any bath spin. We may still use the effective Hamil-
tonian of Eq. (3), but must redefine the b0,i = bi,0 such
that

b0,i =
−1

4
〈Dz,z〉 (ri), (16)

where ri is the position of the nth bath spin relative to
the center of the quantum dot and we define

〈Dα,β〉 (r) =

∫
dxP (x)Dα,β(r− x). (17)

x
1
 (nm)

x 3 (
nm

)
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FIG. 14: (color online) Color map representation of the non-
zero dipolar tensor elements of Eq. (17) in the x2 = 0 plane
for interactions with a quantum dot electron geometrically de-
fined by Eq. (15). By the x1 versus x2 symmetry, the x2 = 0
plane is sufficient to express the dipolar information. Fur-
thermore, due to the reflection symmetry about the x1 axis
and x3 axis, one quadrant is sufficient for each of the non-
zero tensor elements. We multiply the tensorial values by
x3 = (x21 + x23)3/2 for convenience. The probability density of
the electron in the x2 = 0 plane is represented in a grayscale
image (black for high probability ranging to white for low
probability) between the upper and lower quadrants.

Here, Dz,z is an element of the dipolar tensor of Eq. (2)
where z refers to the direction of the applied magnetic
field. For full generality, we compute the 〈Dα,β〉 tensor
in the quantum dot coordinate system and then rotate
as appropriate to obtain 〈Dz,z〉. Due to the symmetry
between x1 and x2 in our round quantum dot defined by
Eq. (15), we may express all of the tensorial information
in the x2 = 0 plane. In this plane, it is clear from Eq. (2)
that 〈D1,2〉 = 〈D2,1〉 = 〈D2,3〉 = 〈D3,2〉 = 0. The re-
maining non-zero tensor elements, 〈D1,1〉, 〈D2,2〉, 〈D3,3〉,
and 〈D1,3〉 = 〈D1,3〉 are displayed in color map form in
Fig. 14. Each tensor element is represented in a different
quadrant of the x2 = 0 plane; due to reflection symmetry
about the x1 axis and the x3 axis, one quadrant each is
sufficient to convey the information for all quadrants.

We generated the information that is represented in
Fig. 14 from Eq. (17) using integration by Monte Carlo
sampling at each point, r, on a two-dimensional grid of
the x2 = 0 plane. Using data generated in this fashion,
and linear interpolation between grid points, we com-
pute the Hahn spin echo of the quantum dot amongst
various concentrations of a bath of point dipole electron
spins in a 3-D bath (despite using a quantum dot typ-
ically defined from 2DEGs). Results are shown in the
upper panels of Fig. 15 for two different magnetic field
directions: parallel to the surface (e.g., along x1 or x2),
and perpendicular to the surface (i.e., along x3). To en-
sure adequate grid spacing and precision for our dipolar
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tensor data, we compared our Hahn echo results with re-
sults using independent dipolar tensor data generated for
larger grid spacing by a factor of two and found there to
be no significant difference.

In our canonical problem, we found that a rescaling of
the concentration of bath spins is equivalent to an inverse
rescaling of time. In Fig. 15, we show the deviation from
this behavior for our quantum dot qubit by plotting Hahn
echo data versus a time scale that adjusts inversely with
the concentration of bath spins. This deviation is not
terribly large up to CE = 1015/cm3. At CE = 1016/cm3,
the spatial extent of the central spin causes decoherence
that has a significantly faster initial decay than a point
dipole central spin. This can be understood by consider-
ing the enhancement of dipolar interaction strengths for
bath spins that are near some part of the laterally ex-
tended quantum dot region but not particularly close to
the center of this region. However, in some regimes, such
as at later times, the lateral extent actually causes en-
hanced coherence. This counter-intuitive enhancement is
an effect of the anisotropy of the dipolar interactions. It
is erratic and differs for the two cases of the differing B-
field directions. The lower panel of Fig. 15 shows results
using an artificial 1/R3 potential for the interactions with
the central spin, removing the anisotropy, and we find a
consistent decrease in the relative coherence, quantum
dot central spin versus point dipole central spin, as the
bath concentration is increased. Thus, the intuitive un-
derstanding is only thwarted, in some regimes and only
slightly, by the anisotropy of the dipolar interactions.

D. Bath Geometry and the Wavefunction of the
Central Spin

Combining bath geometry considerations of Sec. IV B
with finite extent of the central electron’s wavefunction
discussed in Sec. IV C, we see a variety of different trends.
In Fig. 16, we compare the decoherence effects from a
two-dimensional sheet of bath spins at random positions
for a point-like central spin and a Gaussian-shaped quan-
tum dot central spin with the bath sheet at a distance of
3 nm from the center of the central spin. For the quan-
tum dot central spin case, this corresponds to 5 Åabove
the edge of the wavefunction, x3 = δ/2 + 5 Å[Eq. (15)];
we are considering this roughly as a limiting case for a
sheet of electron spins that is very close to the quantum
dot but spatially independent. Unlike the trend observed
when changing the qubit’s wavefunction in the canoni-
cal three dimensional sparse bath (Fig. 15), the coher-
ence time for the quantum dot central spin is actually
increased relative to the point-like central spin. In the
former case, more decoherence resulted from enhanced
dipolar interactions near the laterally extended quantum
dot region. Here where we consider a 2-D bath at densi-
ties of 1011/cm2 or 1012/cm2, the extent of the quantum
dot actually reduced decoherence because it tends to re-
duce its sensitivity to flip-flopping pairs of nearby bath
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FIG. 15: Top: Comparison of Hahn echo results affected by
the spatial extent of the central spin electron to various de-
grees. Given a central spin “quantum dot” geometry defined
by Eq. (15), we show results for various electron spin bath
concentrations, CE , and compare with the canonical results in
which the central spin has zero extent. The applied magnetic
field is parallel (left) or perpendicular (right) to the surface
whose normal is the x3 direction of Eq. (15). We use g = 2
(g2CE = ζ × 4 × 1013/cm3). Using the scaling parameter ζ,
time is rescaled inversely with the bath concentration so that
the “zero extent” curves are universal for all concentrations.
The upper panels display L

(2)

CCE (+’s), and L
(4)

CCE (squares)

mean value results. Below those, panels display L
(4)

CCE median
(dashed line with diamonds) as well as mean (solid line with
squares) value results. Bottom: Corresponding results when
we use an artificial isotropic 1/R3 interaction with the central

spin. L
(2)

CCE mean value (solid +’s) and median value (dashed
x’s) results are displayed. Showing only 2-cluster results is
sufficient to make our point: without the anisotropy of the
interactions there is a consistent trend, monotonic in ζ.
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FIG. 16: Top: Hahn echo result of a Gaussian-shaped quan-
tum dot defined by Eq. (15) with decoherence induced from a
two-dimensional bath, in the x1, x2 plane, 5 Å from its edge
(x3 = 3 nm). This was chosen as somewhat of a limiting
case in terms of the closeness of the bath to the central spin
quantum dot. Dashed lines show results for a point-like cen-

tral spin for comparison. We show mean value L
(2)

CCE (+’s),

L
(3)

CCE (triangles), and L
(4)

CCE (squares) results, as well as me-

dian value L
(4)

CCE (diamonds) results. Different colors (color
online) are used to help make the curves more easily distin-
guishable. Bath densities are 1011/cm2 (left) and 1012/cm2

(right), and the applied magnetic field is perpendicular to the
bath and dot (upper) or parallel to the bath and dot (lower).
Bottom: Depiction of a laterally extended quantum dot in
the presence of sheet of bath spins.

spins. To put this another way, the important factor is
the difference in the effective magnetic field experienced
by the central spin as bath spins flip-flop, not the ab-
solute magnitude of their interactions. Thus, while the
extent of the quantum dot wavefunction tends to increase
the strength of dipolar interactions to the bath spins, in
certain geometries, this difference in interactions amongs
nearby bath spins may be reduced. The depiction at
the bottom of Fig. 16 helps to illustrate this effect. It
should also be noted that, in going from the point-like
limit to the extended quantum dot wavefunction, we en-
ter a regime in which the mean and median of the Hahn
echo decay are nearly identical; indeed, for a sufficiently
dense bath, we expect the decay to result from a large
number of small cluster contributions to govern the deco-
herence and, as an effect of the Central Limit Theorem,
most random instances of the bath should and do yield
similar results.

In Fig. 17, we show decoherence induced by 2-D sheets
of randomly located bath spins at various depths from a
quantum dot central spin. We show only the 2-cluster
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FIG. 17: Hahn echo result of a Gaussian-shaped quantum
dot defined by Eq. (15) with decoherence induced from a
two-dimensional bath, in the x1, x2 plane, at various depth
distances along x3. Dotted lines show results for a zero ex-
tent (point-like) central spin for comparison. Bath densities
are 1011/cm2 (left) and 1012/cm2 (right), and the applied
magnetic field is perpendicular to the bath and dot (top)
or parallel to the bath and dot (bottom). As labelled, the
depths (color online) are defined in correspondence to Fig. 13:

ζ−1/3 × 10 nm (black), ζ−1/3 × 20 nm (red), ζ−1/3 × 40 nm

(green), ζ−1/3 × 80 nm (blue), ζ−1/3 × 160 nm (orange), and

, ζ−1/3 × 320 nm (purple) where ζ = 1 for 1011/cm2 and

ζ = 103/2 ≈ 32 for 1012/cm2 (ζ−1/3 = 10−1/2 ≈ 0.32). Ad-
ditionally, the 3 nm depth results from Fig. 16 are displayed

in thick brown. These are all results of L
(2)

CCE mean values
(+’s) as a reasonable short time approximation to understand
trends.

results as a rough approximation to understand general
trends as we approach the large distance limit in which
the zero-extent approximation of the central spin is valid.
Some peculiarities emerge. First, in all of the cases
we consider [1011/cm2 (left) and 1012/cm2 and different
magnetic field orientations], there is actually an initial
decrease in coherence time as we move beyond a 3 nm
depth from the bath. This is somewhat counterintuitive,
but the effects of the change in dipolar interactions with
changing depth is not so straightforward due to the angu-
lar denendence of the dipolar interactions. Beyond about
10 nm, however, it follows the more intuitive trend that
increasing the depth causes coherence times to increase.
There is an exception for the case with a 1012/cm2 bath
density and parallel B field in going from ζ−1/3×160 nm
to ζ−1/3 × 320 nm depth (51 nm to 101 nm); this is a
relatively minor effect that is apparently related to the
anisotropy of dipolar interactions. Generally we find that
we approach the large distance limit at a depth of about
ζ−1/3 × 320 nm for the two densities we study. In this
limit, we can neglect the spatial extent of the central spin
wavefunction and use the results from Sec. IV B.
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E. Pulse Sequences

As we discussed in Sec. II B, we chose an ideal Hahn
spin echo as the context of our canonical problem as a
standard approach of eliminating the effects of inhomo-
geneous broadening. In this section, we consider other
pulse sequence scenarios. We first examine the effects
of inhomogeneous broadening itself which can incur er-
rors when refocusing pulses are not used. We display the
probability distribution of magnetic field shifts of an en-
semble, responsible for inhomogeneous broadening, due
to background electron spins in the infinite temperature,
point dipole limit on the upper left side of Fig. 18. On
the upper right side of Fig. 18, we compare coherence ver-
sus time calculations in four different contexts: ensemble
free induction decay (FID), FID with characterization,
Hahn spin echo, and a two-pulse Carr-Purcell-Meiboom-
Gill (CPMG)47,48 sequence.

The ensemble FID corresponds to the previously de-
scribed case of ensemble averaging of the signal which
has no dependence upon bath dynamics whatsoever. FID
with characterization, or narrowed state FID (NFID),
takes the inhomogeneity out of the problem by account-
ing for a static offset in the magnetic field character-
ized individually for each qubit; coherence of the central
spin is lost, however, due to dynamics of the bath.17,35

This corresponds to an experiment in which the central
spin splitting is pre-measured, or prepared with a well
fixed value. The Hahn spin echo is simply the case of
the canonical problem. In the context of ideal applied
pulses in a dephasing-only limit, the CPMG is equiva-
lent to the Carr-Purcell sequence and is represented as
(τ → π → τ)n with t = 2nτ . The two-pulse CPMG se-
quence, τ → π → 2τ → π → τ , is equivalent to the two-
pulse Uhrig dynamical decoupling49,50 (UDD) sequence
as well as a first-level concatenation of the spin echo se-
quence34,51 Our CCE methods, as discussed in Sec. III
work well for FID with characterization and for the two-
pulse CPMG down to below 50% of the decay. For these

cases, we do not show the tail of the decay for L
(4)
CCE mean

results because we fail to obtain convergent results. How-
ever, the initial part of the decay is often most relevent
for quantum computation in any case.

The coherence time improves successively in the FID-
NFID-SE-CPMG2 sequence of experiments. In Refs. 52
and 42, CDD sequences were shown to work well for spec-
tral diffusion in cases where the intra-bath coupling is
weak compared with the qubit-bath coupling and UDD
sequences work even better in cases where the relevant
time scale is short compared with all of the couplings.
Neither of these perturbations are particularly relevant
in the problem considered here. If we were in the regime
of weak intra-bath coupling, larger clusters (than pairs)
might dominate the two-pulse CPMG results as observed
in Refs. 52 and 42. This is not observed here. If we were
in the short time regime, we would see an exp (−t4) decay
for the Hahn spin echo and exp (−t6) decay for the two-
pulse CPMG. We do not; in the log-scale plots of Fig. 18,

we do not observe a significant change of slope between
the Hahn spin echo decay and the two-pulse CPMG de-
cay. We do see some improvement with the two-pulse
CPMG sequence in any case; although, as a function of
the time between pulses τ , we roughly break even relative
to the Hahn spin echo (Bottom of Fig. 18). This is con-
sistent with the calculations based on classical Ornstein-
Uhlenbeck noise: the 1/ω2 tail of the spectral density
of this noise leads to exp(−t3) decay for any dynamical
decoupling pulse sequence, and it leads to a sublinear
T2 ∼ n2/3 scaling of the coherence time with the number
of pulses.29,53–55

V. APPLICATIONS

Now that we have presented a detailed study of our
canonical problem in Sec. II and III and looked at several
variants of the problem in Sec. IV, we now discuss specific
applications. We consider two crystalline material sub-
strates, silicon and carbon (in diamond form), in which
nuclear spins may be nearly eliminated through enrich-
ment. In both of these cases, however, impurity electron
spins can become the predominant source of decoherence.
Such spin baths relate to our canonical problem and its
variants.

A. Donor in silicon

Donors in silicon make a promising candidates to host
quantum bits in the form of electron spins. In bulk, ex-
periments indicate that donor-bound electrons can main-
tain spin coherence on the timescale of a second by us-
ing enriched silicon with few nuclear spins,25 and single-
spin read-out56 as well as coherent control57–59 has been
demonstrated. In this section, we consider common spin
baths that may affect these qubits: 29Si, background
phosphorus donors, and electron spins at an interface.

Previous work9,10,33 has demonstrated remarkable
agreement of cluster expansion calculations for spin echo
decay with corresponding electron spin resonant mea-
surements in natural silicon12,14 and accurately predicted
the effects of varying 29Si concentrations with experimen-
tal measurements,12,14,15. In Ref. 23, we examined the
effects of background phosphorus donors when the 29Si
has been reduced to very low concentrations through en-
richment and demonstrated agreement with experiments
now published in Ref. 25.

Ignoring the background phosphorus donors for a mo-
ment, we note that a spin bath of 29Si in the low concen-
tration limit, in which the spins act as point dipoles, cor-
responds to the gi>0 < g0 variant of Fig. 10. In this case,
g0 ≈ 3000×gi>0; the electron spin has a much larger mag-
netic moment than the 29Si. The background phosphorus
donor spin bath alone, in the low concentration limit,
corresponds to the two bath species variant of Fig. 12
because of the spin-1/2 phosphorus nucleus; to a good
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shifts due to background electron spins in the infinite tem-
perature, point dipole limit. The distribution is over different
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spins. Top Right (color online): coherence versus time for
ensemble FID (black), FID with characterization (red), Hahn
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trend respectively. We show mean values of L
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CCE (solid +’s)

and L
(4)

CCE (solid squares). The bottom of the right panels
displays results on a logarithmic scale and includes median

values of L
(4)

CCE (dashed diamonds). Bottom: coherence ver-
sus τ , the time between π pulse for the same pulse sequences.
τ = t/2 for the Hahn spin echo and τ = t/4 for the two-
pulse CPMG. The ζ scaling parameter is used as in Fig. 8:
g2CE = ζ × 4× 1013/cm3.

approximation, we can assume that donors with differ-
ing nuclear polarizations do not flip-flop with each other.
In Fig. 19, we show Hahn spin echo T2 times as a func-
tion of 29Si (nuclear spin) concentration, CN , in combi-
nation with various concentrations of phosphorus donors
(electron spins), CE . The 29Si bath induces decoher-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ppm

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
2
 (

s
)

Theory, B || [100]

Theory, B || [111]

Experiment, B || [100]

Experiment, B || [111]

Experiment,
1.2×1014/cm3 donors

10
17

10
18

10
19

10
20

10
21

10
22

29Si concentration, CN (cm-3)

B || [100]

B || [111]
exp[-(t/t

0 ) 2.3
]

H ∝ 1/R3 regime (dipolar)

contact hyperfine regime

CE=10
13

/cm
3

CE=1.2×10
14

/cm
3

←

→

C
E=0

FIG. 19: Hahn spin echo T2 times, when the Hahn echo
reaches a value of exp (−1), for phosphorus donors as a func-
tion of the fraction of 29Si donors, or corresponding concentra-
tion CN , as well as the concentration of background donors
CE . At high CN , contact hyperfine interactions dominate
and T2 is dependent upon the magnetic field direction rela-
tive to the lattice orientation. At low CN , T2 is dependent
upon CE , and eventually dominated only by dipolar inter-
actions (which includes dipolar-approximated electronuclear
interactions). Experimental results are shown as square sym-
bols, from Ref. 15, and a star symbol at 50 ppm 29Si, from
Ref. 25. This figure is slightly revised from that of Ref. 23,
updating the 50 ppm 29Si experimental value to the published
T2 = 450 ms.

ence through its flip-flopping dynamics, but it also sup-
presses donor-induced decoherence via Overhauser shifts
that cause the donors to be off-resonant with each other.
This effect is demonstrated in Fig. 19 by the initial in-
crease of T2 as 29Si is increased for the CE > 0 cases.
However, this effect is not very prominent in the short
time regime that is of most interest for meeting quantum
error correction thresholds.23

In Fig. 20, we examine the Hahn spin echo correspond-
ing with the T2 ≈ 450 ms experiment from Ref. 25. This
is a bulk experiment in which all the donors are sub-
ject to the spin echo refocusing pulses. As a result, the
measured decoherence signal is dominated by instanta-
neous diffusion, the inhomogeneous broadening effects
of the donors that are mutually flipped by the refocus-
ing pulse. In other words, the spin echo is only able to
cancel the effects of inhomogeneous broadening from the
parts of the bath that remain unchanged by the refo-
cusing pulse. However, by performing a series of mea-
surements in which the angle of the refocusing pulse is
varied (i.e., smaller than π pulses), they extrapolate the
effective single-spin decoherence. Our calculations ap-
ply to this extrapolated result. In order to confirm that
the dominant decoherence is due to flip-flopping donors,
Ref. 25 presents measurements of donor decoherence in
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T2 regime near 600 ms, the decoherence is a combined effect
from 29Si flip-flops as well as donor flip-flops.

the presence of a significant magnetic field gradient, pro-
longing T2 to an extrapolated value of about 10 s. Such a
gradient suppresses donor flip-flopping by shifting them
off resonance from each other.

Two types of decoherence induced by donor flip-
flopping are distinguished in Ref. 25 as indirect flip-flops
(flip-flops among bath spins) and direct flip-flops (flip-
flops with the central spin). In Ref. 23, we did not con-
sider the effects of direct flip-flops between the central
spin and background donor spins. This effect, which we
examine in Fig. 12 (where the central spin is resonant
with bath spins), results in 1-cluster contributions that
dominate in the short time regime. We include both di-
rect and indirect flip-flops in Fig. 20 and note that the
direct flip-flops have a negligible effect on the T2 time but
significant effect on the short time behavior.

It is important to keep in mind that there will be large
statistical variations for different spatial realizations of
spin baths when we are in the low concentration regime.43

This has been indicated by differences in the median and
mean values throughout this paper. The statistics are
examined in greater detail in Fig. 21 for 29Si spin baths
and for background donor spin baths separately.

In addition to 29Si and background donors, interfaces
that play important roles in semiconductor technology
may introduces additional baths of spins that may in-
duce decoherence. Experiments60 have demonstrated
that donors closest to an interface have shorter coher-
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concentration scale, having an inverse relationship in the low
concentration limit.

ence times which have thus far proven to be much shorter
than the coherence times observed in the bulk. We re-
fer to Fig. 13 with spin echo calculations for decoherence
induced by a 2-D bath of electron spins. This is ap-
plicable where we can approximate spin interactions as
point dipole interactions and where bath spins are reso-
nant with one another. Dangling bond spins at an inter-
face may have g-factor variations that cause them to be
off-resonant with one another and suppress flip-flopping
noise. The experiments of Ref. 60 exhibit faster spin echo
decay than we would expect from calculations along the
lines of Fig. 13, even assuming no g-factor variation. A
different theory of dangling bond spin -induced decoher-
ence proposed in Ref. 61, involving phonons and spin-
orbit interactions, matches with Ref. 60 but it requires
dangling bond concentrations as high as 1013/cm2, which
might be unrealistic. There is no consensus at this time
as to the true cause of the decoherence in Ref. 60. One
suspicion is that the noise is induced by exchange-coupled
parasitic dots at the interface such as observed in Ref. 62.

B. Nuclear spin qubit

It has been proposed63 to use donor nuclei for quan-
tum memory storage in between quantum information
processing. Nuclear spins have much weaker magnetic
moments than electrons and are thus less susceptible to
magnetic field noise, leading to longer coherence times.
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FIG. 22: L
(2)

CCE Hahn spin echo results for a phosphorus nu-

clear spin in a bath of 29Si. Mean values are encircled +’s
and median values are encircled x’s. The left panels are for
natural Si with 4.67% 29Si and includes lattice effects. The
right panels are for varied low concentrations of 29Si in the
continuum limit. The bottom panels present the same data
as respective top panels but in a logarithmic scale.

It is interesting to note that the scenario of a central nu-
clear spin in a nuclear spin bath, where the interactions
strengths with the central spin and among the bath are
comparable, is essentially the same as a central electron
spin in an electron spin bath. Thus, our methods are
applicable to nuclear spin decoherence that is caused by
other nuclei. In Fig. 22 we present calculated results
for the Hahn echo decay of a nuclear spin of a phos-
phorus donor in silicon with 29Si as bath spins. The
left panels are for natural Si and include lattice effects
while the right panels apply to varied 29Si concentra-
tions in the continuum limit. The range of T2 values for
different spatial configurations of the 29Si are consistent
with recently reported single P nucleus T2 measurement
of roughly 60 ms58 and 30 ms.64,65 The right panels are
analogous to the 2-cluster part of Fig. 8; however, it dif-
fers from the canonical problem in that the central spin
gyromagnetic ratio is roughly a factor of two larger than
that of the bath spins. The variant that is explored in
Fig. 10 of Sec. IV A is applicable here. For that variant,
we found that the cluster expansion has better conver-
gence when the central spin has a larger gyromagnetic
ratio (e.g., g-factor) than the bath spins. For that rea-
son, the decay is well approximated with 2-clusters.

C. Quantum Dot in Silicon

Quantum dot electron spins are promising for qubit re-
alizations. In particular, using a singlet/triplet encoding
for two electrons in double quantum dots, demonstrated
in GaAs19,46,66, fast single-qubit operations with elec-
trical controls and readout67,68 are possible. In silicon,
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FIG. 23: Computed Hahn spin echo T2 times, when the Hahn
echo reaches a values of exp (−1), as well as T ∗2 times, when
the ensemble FID decay reaches exp (−1), for P donors as well
as quantum dots (q-dots) defined with the probability density
of Eq. (15) in Si. We consider decoherence induced by various
concentrations of 29Si. For our quantum dot model, we chose
the lattice orientation such that [100] corresponds with the
x3 direction (normal to the confinement well) as depicted.

quantum dot spin qubits are starting to be realized,69–77

and long coherence times are possible, particularly with
isotopic enrichment of Si78 (and also Ge in Si/SiGe quan-
tum dots79).

Even with very high isotopic enrichment, as with the
silicon donor qubits discussed in Sec. V A, coherence
times will be limited by a background of impurity phos-
phorus donors. In Sec. IV C, we found that the effects of
the spatial extent of a quantum dot electron in such a spin
bath are negligible up to concentrations of 1014/cm3. So
at very acheivable levels of silicon purity, the wavefunc-
tion extent is insigificant and the background phosphorus
induced decoherence problem is essentially the same as
that of Sec. V A and the two-species variant (due to the
two P donor nuclear polarizations) of the canonical prob-
lem as presented in Fig. 12.

In addition to background phosphorus donors, 2-D
electron spin baths may be present. For example,
Si/SiGe quantum dot structure may employ modulation
doping layers with some fraction of un-ionized donors.
For these effects, we refer to Sec. IV D where we study
electron spin decoherence for a quantum dot extended
wavefunction with a 2-D electron spin bath at various
distances. This study has important implications for tol-
erated densities and distances of such a bath in order to
achieve desired decoherence times.

It is also important to understand how the effects of
various 29Si concentrations may differ for a quantum dot
compared with the donor qubit discussed in Sec. V A. In
Fig. 23, we present decoherence time versus 29Si concen-
tration in contrast with results for the donor qubits and
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observe the effects of the difference in the qubit wavefunc-
tion shape. At very low concentrations, the wavefunction
shape is irrelevant and a point-like model works for either
type of qubit. At moderate concentrations, the laterally
extended quantum dot qubit has increased coupling to a
number of bath spins so that decoherence times are faster
than those of the donor qubit. This is the same effect
observed in Fig. 14 of Sec. IV C for an extended central
electron spin in an electron spin bath at 1015/cm3. At
higher concentrations, the situation is reversed. The ef-
fect here is analogous to what was observed in Fig. 16 of
Sec. IV D for the effects of a laterally extended central
spin near a 2-D bath; the common cause is a reduced
sensitivity to flip-flopping of neighboring bath spins.

At higher concentration, the decoherence is affected
by the magnetic field angle relative to the lattice orien-
tation, having the shortest coherence times when the B-
field is aligned with the nearest neighbor direction. For
the quantum dot wavefunction, this effect is less pro-
nouned compared with P donors but is still appreciable.
Around 2 to 4 ppm of 29Si, the quantum dot case with B
parallel to [111] is affected by the anisotropy of the dipo-
lar interactions in an unusual way that causes T2 to be
long compared with other B-field directions. With just
these few exceptions, however, T2 is not strongly depen-
dent upon the B-field direction.

We also plot T ∗2 in Fig. 23 for P donors and quantum
dots. Above roughly 30 ppm 29Si, the quantum dot ex-
hibits longer T ∗2 times than the P donors as expected
from the central limit theorem that predicts longer T ∗2
for wavefunctions with greater spatial extent: T ∗2 ∝

√
N .

The central limit theorem, however, does not apply well
to the donor case, particularly at low densities. In fact,
the magnetic field shift probability distribution for point
dipoles in the top left of Fig. 18 fits a Lorenzian distribu-
tion much better than a Gaussian distribution. In the low
concentration regime, the roles are reversed; T ∗2 is shorter
for the quantum dot that has a few strong 29Si contact
hyperfine interactions than for the donor with negligible
29Si contact hyperfine interactions. At low enough con-
centrations, the extent of the qubit wavefunction should
be negligible in either case and the T ∗2 times should be
the same, but that regime is well below the range we
present. It is interesting to note that we do approach
that regime for T2 but not T ∗2 . To understand this, con-
sider that all bath spin give direct contributions to T ∗2
while, in our large B-field limit, bath spins contribute to
T2 only indirectly via near-resonant flip-flopping pairs.

The effect of the magnetic field angle is negligible for
the T ∗2 data we present. This is expected where the
isotropic contact hyperfine interaction dominates. It is
also expected in the low concentration limit where the ex-
tent of the wavefunction has a negligible upon T ∗2 ; in the
presented range, this limit is approached for the donor
but not the quantum dot.
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and diamonds respectively. The bottom figures show the same
spin echo results on a logarithmic scale for the decay.

D. NV Center in Diamond

Nitrogen vacancy (NV) defect centers in diamond form
remarkable qubits which may be coherently controlled at
room temperature.8,26–29,31,80–82 Electron spins of nitro-
gen atoms known as P1 centers in typical diamond are
a major source of decoherence. At concentrations of be-
low 200 ppm (3.5 × 1019/cm3), spin echo decoherence
times of about T2 ∼ 3µs have been observed at room
temperature.29 High-purity diamond with low concen-
trations of nitrogen decohere due to 13C nuclear spins
with spin echo times of T2 ∼ 13 µs.26 In isotopically en-
riched high-purity diamond, 0.3% 13C and paramagnetic
defects below 1013/cm3, spin echo coherence as long as
T2 = 1.8 ms has been measured.28

The NV decoherence problem in the presence of P1
centers in a large magnetic field is similar to our canoni-
cal problem. There are a few important differences. De-
tails of the interactions of the NV and P1 center system
appear in the supplemental online material of Ref. 27.
The important features for our consideration are the fol-
lowing. The NV center is treated as a localized spin with
S0 = 1 and g = 2 (the free electron g-factor). The two-
level qubit system in Ref. 27, and in our calculation, is
the ms = {0,−1} subspace. The P1 centers are spin 1/2
electrons (with g = 2) bound to spin 1 nitrogen nuclear
spins. Each center has a delocalization axis indicating the
neighboring carbon atom is sharing the electron with the
nitrogen atom. This delocalization axis changes over a
time that is much longer than the characteristic time of a
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single experimental run in Ref. 27. In the large magnetic
field regime, e.g., B = 740 G, as in Ref. 27, the delocaliza-
tion axis simply determines a hyperfine energy coupling
of the P1 centers: A1 = 114 MHz for the [111] axis and
A1 = 86 MHz for [1̄11], [11̄1], or [111̄] where A1S

z
kI
z
k is

the hyperfine energy shift with Sk as a P1 electron spin
operator and Ik as its nitrogen spin operator. We there-
fore have 5 different species in our spin bath correspond-
ing to 5 different hyperfine shifts with various popula-
tion percentages: 1/12 fraction each for A1 = 114 MHz
and Izk = ±1, 1/4 fraction each for A1 = 86 MHz and
Izk = ±1 and 1/3 fraction for Izk = 0. For our high field
limit calculation, we neglect flip-flopping between spins of
different species; these are off-resonant with each other.
We can also safely neglect flip-flopping between the NV
center and any bath spin. Our results in Fig. 24 show
T2 ∼ 3 µs for a P1 center concentration of 1019/cm3, con-
sistent with measurements reported in Refs. 27,29 where
1019 − 1020/cm3 concentrations are estimated.

VI. CONCLUSION

We have presented a detailed account of a cluster-based
theory of spin echo decoherence of a central spin (qubit)
interacting dipolarly with a bath of spins of the same
kind (i.e. we focused on the case of the qubit-bath cou-
pling being the same as the intrabath coupling). While
the previously developed cluster theories were proven to
be very successful in the case of the intrabath coupling
being much weaker than the qubit-bath coupling, the all-
dipolar problem with symmetric couplings requires the
cluster-based approach to be nontrivially modified. We
have shown that the decay of the spin echo signal can
be calculated reliably by solving for evolution of finite
groups (clusters) of bath spins coupled to the central
spin, provided that the offsets of the splittings of these
spins cause by dipolar interactions with the rest of the
bath are properly taken into account. In a sparse bath
the disorder in energy splittings of bath spins leads to
localization of flip-flop dynamics, i.e. at the timescale at
which the qubit’s coherence decays it is enough to con-
sider the dynamics of still rather small clusters (up to
4-6 spins). This result does not follow from any kind of
simple perturbative argument, and while it could have
been suspected, the existence of such an effect had to be
checked by careful numerical simulations.

Our theory allows for quantitative evaluation of de-
coherence in an all-dipolar system of spins. It presents
a microscopic (i.e. derived from the Hamiltonian of the
system) solution to the original spectral diffusion prob-
lem, which has been approached by phenomenological or
semi-phenomenological stochastic theories for more than
fifty years. We have presented a broad selection of re-
alistic applications of this theory, including calculations
of spin echo decay for (1) electrons bound to phospho-
rus donors in isotopically purified silicon (reported pre-
viously in Ref. 23 and recently confirmed experimentally

in Ref. 25); (2) nuclear spin qubits in silicon; (3) quan-
tum dots in isotopically purified silicon; and (4) nitrogen-
vacancy (NV) centers in diamond, in the case in which
the nitrogen spins are the dominant source of decoher-
ence. Although we have mainly emphasized Hahn spin
echo decoherence, our technique is very general and can
be applied to any quantum control context in principle.
Together with previous works on cluster theories of de-
coherence due to dipolar interactions among the bath
spins9,10,17 (in which the qubit-bath hyperfine coupling
was much stronger than the intra-bath interaction), the
theory from this article completes a body of work de-
voted to realistic calculations of decoherence in systems
in which the dipolar interactions within the bath play a
dominant role.

The temporal nature of these decoherence problems is
an important aspect for allowing cluster expansions to
succeed. The perturbative arguments always have a fac-
tor of time accompanying interaction energies. As time
increases, the effective perturbation parameter increases,
reducing the performance of the perturbative (cluster)
expansion. At long times, we observe that the expansion
fails entirely. We consider a cluster expansion successful,
however, when it is well-behaved and convergent on the
timescale of the decay. Furthermore, only the initial part
of the decay is of interest for typical quantum computing
applications. Although we do not prove formal conver-
gence in the cluster expansion or our selection heuristics,
we demonstrate good convergence in practice going out
to the 6-cluster order of the expansion provided that sim-
ulation times are sufficiently short.

While a standard desktop computer is capable of pro-
ducing many of the results that we present here in a rea-
sonable amount of time (hours for a 2-cluster spin echo
decay of a typical scenario with good accuracy), we made
significant use of Sandia’s high performance resources to
acquire accurate results for the wide range of scenarios
in our study as well as a lot of experimentation with
our methods and heuristics. Runtimes increase signifi-
cantly with increasing cluster size. The cluster selection
heuristics we use are critical for making larger cluster cal-
culations feasible. Fortunately, the calculations are easy
to parallelize with each processor treating a particular
instance of a random bath instantiation.

Possible future directions will be to probe spectral den-
sities of the bath directly using cluster techniques and
to answer questions regarding conditions under which
the bath may be treated independently from qubit con-
trol (i.e., a classical bath). Spectral density descriptions
are very convenient and are commonly probed in exper-
iment. Whether or not a bath acts classically has im-
portant implications for quantum control. The connec-
tion to Ornstein-Uhlenbeck noise in our all-dipolar model
that others have noted and we confirm does imply that a
classical noise model is applicable in some manner (i.e.,
for a particular spatial configuration averaged over spin
states).
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Appendix A: Cluster Sampling Heuristics

The relative importance of clusters may be judged,
heuristically, by the following two factors: the strength of
coupling between the central and bath spins of the clus-
ter, and the strength of coupling among the bath spins of
the cluster. We address the first factor with a radial cut-
off. Since interactions decrease with increasing distance,
we’ll ignore clusters that are fully outside of some cutoff
radius, RC relative to the central spin. For the remaining
clusters, those with at least one bath spin within RC from
the central spin, we apply a heuristic to address the sec-
ond consideration (the coupling strength among spins).
Motivated by Lemma 1 of Sec. III B, which is not com-
pletely valid when using the interlaced spin state averag-
ing of Sec. III D but should still have some approximate
validity, we want clusters that may be fully connected
with sufficiently strong interactions. We will therefore
assign a heuristic strength of a cluster to be the small-
est interaction neccessary to complete the connectivity
of the cluster (as in Fig. 2). Algorithmically, we may
compute this by successively picking off the strongest in-
teraction among bath cluster spins until the cluster has
full connectivity from the picked interactions; the last
interaction picked (the smallest necessary interaction) is
the heuristic strength of the cluster.

In addition to RC , we also employ a cutoff for the
maximum number, Nk, of clusters to be considered for
each cluster size, k. For each CCE computation (which is
typically averaged over bath spin locations and initial po-
larizations) and for each cluster size k (up to some max-
imum), we select the Nk clusters of the highest heuristic
strength for evaluation. In the donor spectral diffusion
application, we use one more cutoff in which we only
consider, for the sake of cluster selection, intereractions
among donors with comparable Overhauser shifts; this is
a resonance energy cutoff, EC .

The key to an efficient algorithm for finding each set of
Nk clusters, one that avoids iterating over the potentially
vast number of clusters not be evaluated, is to recognize
that a valid cluster (containing a spin that is within RC)

2
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FIG. 25: Illustration of the constructive proof for Lemma 2,
showing a path, with numbered edges and vertices, that tra-
verses the entire graph G. A connected sub-graph H is formed
from the edges and vertices of the path with the exclusion of
the final edge and vertex. The edges and vertex that are
excluded from H are in gray.

of some heuristic strength may be built by adding a single
spin to a valid sub-cluster of at least this same strength.
This is formalized in the following theorem:

Theorem 2 For any cluster, S, with a particular heuris-
tic strength s and any spin in that cluster, i, there exists
a sub-cluster C containing i of size ‖C‖ = ‖S‖− 1 with a
heuristical strength c ≥ s.

This theorem follows from the heuristic strength defini-
tion ensuring that S may be connected by interactions of
strength s or greater and the following Lemma:

Lemma 2 For any connected undirected graph, G, and
contained vertex, v, there exists a connected sub-graph,
H, containing v but having one fewer vertex.

Lemma 2 has a simple constructive proof. Starting from
v, traverse G until all vertices are visited; it doesn’t mat-
ter if any vertices or edges are traversed multiple times
as long as we stop at the point at which all vertices have
been visited. Since G is connected, this must be possible.
Because our stopping point comes once all vertices have
been visited, the last vertex must have been visited only
once. A sub-graph, H, with the desired property from
Lemma 2 is formed by the vertices and edges of the tra-
versed path excluding the final traversed edge and final
visited vertex. This is illustrated in Fig. 25.

Given Theorem 2, we may find the clusters of size
k with the highest heuristic strength by constructively
building from clusters of size k−1 with the highest heuris-
tic strength. The algorithm works with three different
lists: strongest clusters S, potential clusters P , and the
desired clusters D. The algorithm starts by adding into
S all clusters of size one for each of the spins within the
RC cutoff and proceeds as follows:

1. Take the strongest cluster C off of list P (which
should be kept sorted) and add it to S.

2. If D does not yet contain Nk clusters of size k =
‖C‖, add C to this D list as well.

3. Add into P any new cluster C′ (not already con-
tained in S) that may be generated by extending C
by one spin.
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FIG. 26: Schematic illustration of our algorithm to find the
strongest clusters, the set of desired clusters D, with Nk

quotas (in this example, 13 2-clusters, 7 3-clusters, and 2
4-clusters). The dashed circle denotes the RC cutoff. The
black dot in the center represnent the central spin and other
dots represent bath spins. (a) shows the initial population of
1-clusters within RC that must seed all selected clusters. (a)-
(f) shows a progression of cluster selections, skipping a few
selections at a time. The clusters grow from previously con-
sidered clusters (which may are may not be in D depending
on the Nk quotas) based upon the interactions strengths of
the spin system being represented.

4. Optionally, to minimize memory usage, remove all
clusters that are too weak to be relevant (i.e., clus-
ters that cannot compete or be built upon to com-
pete for one of the Nk spots of strongest k-clusters
for any k).

5. While ‖D‖ <∑kNk, repeat from step 1.

At the end of this process, D will contain, for each k, the
Nk strongest clusters of size k. A schematic example of
this process is shown in Fig. 26.

Appendix B: Proof of Lemma 1

We will prove Lemma 1 using induction and contra-
diction. As the base case of our induction, note that L∅
and L̃∅ are constants which follows from our prerequisite

that L and L̃ are constant when all coupling constants
are taken to be zero. For convenience, let us denote the
bath coupling power series as LS = fS({bi∈S,j∈S}) = fS
and L̃S = f̃S({bi∈S,j∈S}) = f̃S . The bi,j parameters of

fS and f̃S are occasionally dropped for convenience but
are still implied (they should be regarded as power series
functions of bi,j). By Eqs. (5) and (6),

fS =
∏
C⊆S

f̃C , (B1)

f̃S = fS/
∏
C⊂S

f̃C . (B2)

By induction, let us assume that f̃C({bi∈C,j∈C}) obeys
the connected graph Lemma for all C whose size is
less than k. For the contradictory part of the proof,
we assume that the lemma does not hold for some
f̃S({bi∈S,j∈S}) with ‖S‖ = k. Thus, there exists in

f̃S({bi∈S,j∈S}) some non-constant term, g({bi∈S,j∈S}),
and non-empty disjoint sets X ,Y ⊂ S, such that
g({bi∈S,j∈S}) does not depend on any bi∈X ,j∈Y . Such
a term is therefore unaffected if we impose that all
bi∈X ,j∈Y be zero. By our assumed factorability property
of LS = fS({bi∈S,j∈S}), then

fS({bi∈S,j∈S})|bi∈X ,j∈Y=0 = fX fY . (B3)

By inductive reasoning, for all C ⊂ S such that C∩X 6= ∅
and C ∩ Y 6= ∅,

f̃C({bi∈C,j∈C})
∣∣∣
bi∈X ,j∈Y=0

= const (B4)

since all non-constant terms would contain bi∈X ,j∈Y fac-
tors that are taken to be zero. From Eqs. (B2), (B3),
and (B4),

f̃S({bi∈S,j∈S})
∣∣∣
bi∈X ,j∈Y=0

∝ fX fY∏
C1⊆X f̃C1

∏
C2⊆Y f̃C2

.

(B5)
Applying Eq. (B1) for S = X and S = Y, the numerator
and denominator above will cancel and we are left with a
constant. This is a contradiction since this function, by
the contradiction-proof assumption, should contain the
non-constant g({bi∈S,j∈S}) term that is not affected by
imposing that bi∈X ,j∈Y = 0.
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