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Inversion Center

A.N. Poddubny,1 M.O. Nestoklon,1 S.V. Goupalov1,2
1Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya St., 194021 St. Petersburg, Russia

2 Department of Physics, Jackson State University, Jackson, Mississippi 39217, USA

We demonstrate that confinement-induced inter-valley splittings of electron energy levels in PbSe
and PbS nanocrystals are sensitive to arrangement of atoms within a nanocrystal. The splittings
are strongly suppressed for stoichiometric nanocrystals of Td point symmetry lacking a center of
inversion as opposed to non-stoichiometric nanocrystals of Oh point symmetry having an inversion
center. Our findings are supported by both atomistic sp3d5s∗ tight-binding calculations and a
symmetry analysis.
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I. INTRODUCTION

Interest in almost spherical nanocrystals (NCs) made
of lead chalcogenides (PbSe, PbS) has recently ex-
ploded due to their enabling potential for applications in
photovoltaics.1–5 Lead chalcogenides have band extrema
in the four inequivalent L-points of the Brillouin zone,
and such effects as confinement-induced valley-mixing
and effective mass anisotropy should be considered to
fully account for the properties of lead salt NCs.6,7 More-
over, theoretical description of lead salts on atomistic
level is challenging due to the fact that the ionicity of
chemical bonds and spin-orbit interaction strength are
much larger as compared to most semiconductors. As
a result, many conventional approximations in the elec-
tronic structure calculations should be reconsidered when
applied to lead chalcogenides.

It has been demonstrated that lead salt NCs can be
synthesized by a multitude of techniques.8 Although
their crystalline structure has been experimentally estab-
lished9–11 the stoichiometry, point symmetry, and struc-
tural homogeneity of lead salt NCs grown by different
procedures remain the subjects of discussions.11–13 It is
therefore important to study how the variations in NC
structure affect the energies of confined electrons. In this
work we consider NCs of almost spherical shape centered
on an anion or cation atom, serving as a center of in-
version, along with NCs having no inversion symmetry
and study how these structural variations influence the
valley-orbit and spin-orbit splittings of one-particle en-
ergy levels of confined electrons and holes. We found that
in NCs without a center of inversion the valley-orbit and
spin-orbit splittings of electron energy levels are strongly
suppressed. This effect is quite unusual because typi-
cally a higher symmetry of a physical system implies a
higher degeneracy of its energy levels, while in our case
the suppression of the splittings occurs in NCs having
lower symmetry. Nevertheless, we were able to explain
this puzzling behavior using mathematical apparatus of
the group theory.

The confinement-induced inter-valley splittings of elec-
tron levels can in principle be analyzed by either ab initio

calculations14,15 or semi-empirical atomistic methods.6,7

The present-day first-principle calculations based on the
density functional theory14,15 do not yet allow for a
comprehensive analysis of the inter-valley splittings (see
Refs. 16,17 for details ). The semi-empirical methods,
on the other hand, can handle NCs of any size and are
versatile in terms of the involved physics. In this work
we develop a semi-empirical sp3d5s∗ tight-binding (TB)
method for lead chalcogenides.

II. TIGHT-BINDING PARAMETRIZATION

Lead chalcogenides (PbSe, PbS) are semiconductor
compounds with a rocksalt crystal lattice and a narrow
and direct band gap.18 The extrema of both the conduc-
tion and valence bands are located at the four L-points
of the Brillouin zone:

k1,2 = π
a
(1,±1,±1) , k3,4 = π

a
(−1,±1,∓1) , (1)

where a is the lattice constant. Success of the empiri-
cal TB method depends on the choice of basis functions
and on the accuracy of the fit of the bulk band structure.
The simplest TB parametrizations of lead chalcogenides
are based on the basis set of the three p orbitals play-
ing major role in the formation of the valence and con-
duction band states.19,20 More quantitatively accurate
models include also s∗ and d orbitals.6,21–23 However, no
attempts (with the only exception of Ref. 20) have been
made to fit the actual effective masses of the electrons
and holes near the L-points. On the other hand, the
second-nearest neighbors p3 model of Ref. 20 fails to re-
produce the bulk dispersion for wavevectors far from the
L points7. Consequently, even the most advanced exist-
ing TB parametrizations of lead chalcogenides6 are not
suitable24 for an adequate description of the NCs.
We have performed an independent atomistic sp3d5s∗

TB parametrization of the electron energy dispersion in
bulk PbSe and PbS by fitting the spectra calculated
by the state-of-the art GW technique of Ref. 16. The
goal values for the carrier effective masses near the L-
points were set to the experimental values:25 mexp
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FIG. 1: Electron energy dispersion of bulk PbSe (a) and PbS
(b) calculated ab initio16 (solid line) and by tight-binding
method with parameters of Table I (dashed line).

0.070m0, m
exp
c,t = 0.040m0, mexp

h,l = 0.068m0, m
exp
h,t =

0.034m0 for PbSe and mexp
c,l = 0.105m0, mexp

c,t =

0.080m0, m
exp
h,l = 0.105m0, m

exp
h,t = 0.075m0 for PbS

(m0 is the free electron mass), as even the modern ab

initio approach16 does not satisfactory reproduce the ef-
fective masses.

The TB parameters we obtained are listed in Table I.
The resulting effective masses mc,l = 0.068m0, mc,t =

TABLE I: TB parameters for PbSe and PbS. The transfer
integrals are meausured in eV and given in the Slater-Koster
notations.26 The spin-orbit splittings are defined according to
Ref. 27

PbS PbSe

a0, Å 5.900 6.100

Esa −10.596 −10.722

Esc −5.444 −6.196

Epa −1.797 −1.463

Epc 4.819 4.279

Eda 7.468 7.984

Edc 20.900 26.114

Es∗a 17.878 15.117

Es∗c 25.807 28.244

ssσ −0.567 −0.292

s∗s∗σ −2.478 −1.346

scs
∗

aσ −1.535 −0.654

sas
∗

cσ −0.693 −1.743

sapcσ 1.623 1.611

scpaσ 1.371 1.291

∆a 0.096 0.420

PbS PbSe

s∗apcσ 2.606 2.258

s∗cpaσ 2.177 1.731

sadcσ −1.852 −1.917

scdaσ −1.399 −1.256

s∗adcσ 0.040 0.146

s∗cdaσ −0.792 −0.271

ppσ 2.223 2.159

ppπ −0.468 −0.463

padcσ −1.200 −1.272

pcdaσ −1.219 −1.332

padcπ 0.442 0.912

pcdaπ 0.983 0.966

ddσ 0.778 0.244

ddπ 1.202 1.826

ddδ −1.305 −1.235

∆c 2.380 2.380

FIG. 2: Central parts of the three types of nanocrystals.

0.041m0, mh,l = 0.069m0, mh,t = 0.039m0 for
PbSe and mc,l = 0.098m0, mc,t = 0.079m0, mh,l =
0.104m0, mh,t = 0.074m0 for PbS are quite close to the
experimental values. The spin-orbit coupling constants
of p orbitals at Pb, Se, and S were not changed dur-
ing the fitting procedure and were taken from Refs. 28
and 29 for Pb and for the anions, respectively. Calcu-
lated dispersion, shown in Fig. 1 by the dotted curves,
demonstrates a good overall agreement with the GW re-
sults (solid curves).

III. APPLICATION OF THE MODEL TO

NANOCRYSTALS

When modeling lead salt NCs one should take into ac-
count that the actual structure of realistic QDs depends
on the specific growth procedure and may vary from sam-
ple to sample. Although the structure can be determined
using nuclear magnetic resonance,30 X-ray diffraction,
and electron microscopy,9,10,13 only few studies11,30 went
beyond a simple statement of a crystalline structure.
Among the samples studied to date, one can distin-

guish NCs belonging to one of the two types. The first
type (I) is characterized by non-stoichiometry. NCs of
this type were studied by Moreels et al.12 NCs of the sec-
ond type (II) are characterized by the lack of a center of
inversion. Samples of this type were reported by Cho et

al.11

In our study we will consider NC geometries belonging
to one of these two types. They are illustrated in Fig. 2.
For the structures of type Ia, Ib, shown in Figs. 2a, 2b,
the center of the spherical NC is on a cation (anion) atom
while for the structure in Fig. 2c the center of the sphere
lies halfway between a cation and an anion on a line par-
allel to the [111] direction. The non-stoichiometric QDs
of the type Ia and Ib both have centers of inversion and
are characterized by the cube symmetry group Oh. The
stoichiometric QD of the type II has no inversion center
and is characterized by the tetrahedron symmetry group
Td. Theoretical study of such idealized structures with
different symmetries is prerequisite to understanding the
fundamental physics of more realistic structures.
Note that the QDs in our model cannot be perfectly

spherical due to the discretness and lower point symme-
try of the underlying crystal lattice. In our work the QDs
are formed by all the atoms within a certain distance
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FIG. 3: (Color online) Energy levels in PbSe (a,b,c) and PbS
(a′,b′,c′) NCs with diameter D ≈ 4.9 nm and D ≈ 4.6 nm,
respectively. Panels (a–c) and (a′–c′) correspond to cation-
centered NCs, anion-centered NCs and NCs without an inver-
sion center, respectively (see Fig. 2). States of the odd and
even parity are marked by the long thick blue and short thick
red lines, respectively. The thin black lines correspond to the
states without a certain parity. The degeneracies of the low-
est electron and hole confined states are indicated near each
line.

from the center of the NC. It is convenient to measure
this distance with a dimensionless integer number. Thus,
we define the “number of shells” as the number of atomic
layers within the distance from the center of the QD to
its surface along the [100] direction.
Usually one should consider the impact of surface

passivation when calculating the confined states in a
nanocrystal. Passivation of the dangling bonds is a char-
acteristic feature of NCs made from covalent semicon-
ductors, like Si.31 In particular, the ground valence and
conduction band states in Si are formed by bonding and

FIG. 4: (Color online) Energy levels in PbS NCs with core
diameter D ≈ 2.5 nm with coated (a,b,c) and abrupt (a’,b’,c’)
boundary. Notation is the same as on Fig. 4. Calculation
details are given in the text.

antibonding orbitals, which are nonzero on both atoms
of the unit cell. For non-passivated surfaces this leads
to appearance of defect states lying inside the band gap
of Si NCs.32 However, the situation is considerably dif-
ferent for lead chalcogenides,31 which are characterized
by strongly ionic atomic bonds making them relatively
insensitive to the surface chemistry.24 Due to the strong
ionicity, the ground state orbitals are strongly localized
either on an anion, or on a cation. As a result, no sur-
face states appear in the fundamental band gap of non-
passivated lead chalcogenide NCs, as has been also indi-
cated by other TB studies.6,24 Consequently, in our cal-
culations we do not passivate surfaces, unless otherwise
stated. In real QDs of the types (Ia) and (Ib) (cf. Fig. 2)
such passivation might be necessary to compensate for
the surface charge.33

Another important effect is the relaxation of the lattice
in the nanocrystal from ideal bulk rocksalt structure near
the NC surface. For PbSe NCs this effect was studied
by Franceschetti using density-functional approach.14 He
found that Pb-Se bonds are significantly distorted within
a ∼ 8 Å-thick layer near the NC surface. However, his
work totally neglected the spin-orbit coupling which is
of key importance for our study and can be accurately
accounted for in tight-binding calculations. To take into
account lattice relaxation within tight-binding model one
has (i) to find optimized atomic positions minimizing the
total energy of the system and (ii) to recalculate transfer
integrals for the relaxed lattice. However, almost ferro-
electric nature of lead salts34 presents a real challenge to
the theorist. Even calculation of phonon spectra in bulk
lead salt compounds involves difficulties.35 On the other
hand, analysis of the strain dependence of the transfer
integrals of the tight-binding method in case of lead salts
is hindered by the lack of reliable band structure calcu-
lations of strained lead salts.36

In any case, both surface passivation and surface re-
laxation are not as important for ionic materials as for
covalent semiconductors. A simple termination of bulk
lattice structure is considered to be a satisfactory ap-
proximation for ionic materials6,24,31 and we adhere to it
here.

The calculated energy levels of confined carriers for
PbSe and PbS NCs of the diameter D ≈ 5 nm (corre-
sponding to 9 shells) are shown in Fig. 3. For each mate-
rial three panels (a–c and a′–c′) correspond to the three
possible NC geometries Ia, Ib, II, illustrated in Fig. 2.
The band gap in both cases agrees well with the results
of Ref. 6.

All the states can be divided into distinct groups char-
acterized by a certain parity. For NCs with a center of
inversion, each state automatically has a certain parity.
Indeed, in bulk lead chalcogenides the lowest electron
state in the conduction band has the L−

6 symmetry,16

i.e. it is odd with respect to the inversion symmetry
operation when the center of inversion is chosen on the
cation atom. The uppermost electron state in the valence
band has the opposite parity. For QDs without an inver-
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sion center one can define approximate projectors to the
even and odd states. We have attributed a certain parity
to the states, for which the squared projections differed
more than in three times.

Energy splittings within each multiplet characterized
by a certain parity are clearly seen in Fig. 3 and can be
explained by the confinement-induced inter-valley cou-
pling and the carrier effective mass anisotropy. The im-
portance of these two effects for lead chalcogenide NCs
has been emphasized in Ref. 7. However, the dependence
of the splittings on the NC geometry clearly manifested
in Fig. 3 has never been reported.

A striking feature of Fig. 3c is the suppression of the
energy splittings for the type (II) NCs lacking a center
of inversion. The splittings are quite small and cannot
be distinguished within the energy scale of Fig. 3. On
the contrary, for QDs with an inversion center [panels
(a), (b), (a′), (b′) of Fig. 3], the ground-state multiplets
for both electrons and holes have well-pronounced struc-
tures with substantial splittings even for QD diameters
as large as 4.9 nm. This observation refers to both the
conduction and valence band electron states. The effect
is more pronounced for the PbS QDs than for the PbSe
QDs, which can be related to the more isotropic effective
masses of the band extrema in bulk PbS.

To demonstrate the robustness of the splitting suppres-
sion in type II NCs we show in Fig. 4 energy levels cal-
culated for small PbS NCs with diameter D ∼ 2.5 nm.
Levels in panels (a′–c′) were calculated using the same
boundary conditions as in Fig. 3, without passivation.
Levels in panels (a–c) were calculated for a NC with the
same core, coated by an extra single-layer shell of atoms.
For the shell layer the positive (negative) atomic ener-
gies of the orbitals were increased (decreased) by 4 eV,
respectively. As a result, the NC boundary potential ef-
fectively becomes more smooth than in a NC without
coating. Comparing panels (a–c) and (a′–c′) of Fig. 4 we
see that the band gap of a NC is slightly affected by the
coating. On the other hand, the valley splittings are very
sensitive to properties of the boundary and are substan-
tially quenched for the coated NCs having a smoother
boundary. Nevertheless, the splittings are substantially
suppressed in coated type II NCs as compared to those
of type I, see Fig. 4c. This is a strong signature of a
physical effect, demanding an explanation.

To analyze this puzzling behavior more systematically,
we have studied the dependence of the splittings on the
NC diameter. For simplicity, we restrict our considera-
tion by the electron and hole ground states. Within the
effective mass approximation, the ground state of con-
fined carriers is fourfold degenerate with respect to the
valley index and twofold degenerate with respect to the
spin projection, i.e. the total degeneracy is eightfold. If
we neglect the spin and consider valley-orbit interaction
only, the ground state is split into a state of A1 sym-
metry (singlet), and a state of F2 symmetry (triplet), as
sketched in insets of Figs. 5,6. When the spin degree
of freedom is taken into account then both the singlet

FIG. 5: (Color online) Energies of levels belonging to the
ground state multiplet of the conduction band electron in PbS
NCs as functions of NC diameter. Panels (a), (b), (c) corre-
spond to Pb-centered NCs, S-centered NCs and NCs without
inversion center, see Fig. 2. Squares, triangles and circles
correspond to the states with the symmetry G′, E′

2 and E′

1,
respectively, see the level splitting scheme in the inset.

and the triplet states acquire extra degeneracy. This de-
generacy is partly lifted, as the six-fold degenerate state
corresponding to the triplet is split by the spin-orbit in-
teraction into a two-fold degenerate state of E′

2 symme-
try and a four-fold degenerate state of G′ symmetry.37

As a result, the carrier ground-state level is split into the
three multiplets: the two doublets (of E′

1 and E′

2 sym-
metry, respectively) and the four-fold degenerate state of
G′ symmetry. As far as the spatial inversion is not con-
sidered, the symmetry groups Td and Oh are equivalent.
Therefore, this symmetry analysis applies to all types of
NC geometries presented in Fig. 2.

Figures 5 and 6 show the energies of the resulting con-
duction (valence) band multiplets in PbS NCs as func-
tions of the NC diameter. The panels (a)–(c) correspond
to the three NC geometries considered throughout the
paper (see Fig. 2). The energies of the states are counted
from the averaged value (EE′

1
+EE′

2
+2EG′)/4. The split-

tings strongly oscillate with the number of shells N in a
NC. Such oscillations are typical for the valley splittings
in various semiconductor structures. Similar behavior
has been reported for SiGe/Si38,39 and GaSb/AlAs40,41

quantum wells and Si NCs.42 The phase of the oscillations
is determined by the product of the intervalley wavevec-
tor and the structure size.

Comparison of panels (a) and (b) of Figs. 5,6 on one
hand with the panels (c) of Figs. 5,6 on the other hand
clearly shows that the suppression of valley splittings in
NCs without a center of inversion is a general feature
persistent in a wide range of NC sizes. Vertical scale on
all the panels of Figs. 5,6 is the same and the overall span
of the points on the panels (c) is substantially smaller.
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Although certain exceptions from this rule are possible,
for example for the valence-band state with 5 shells, see
Fig. 6, the suppresion of splittings is quite systematic.
Comparison of Fig. 5 with Fig. 6 also enables one

to conclude that the spin-orbit interaction is much
stronger for conduction-band electrons than for valence-
band holes. Indeed, the energies of the hole states with
the symmetry G′ and E′

2 in Fig. 6 are almost the same,
while, for conduction-band electrons, all the splittings
in Fig. 5 are of the same order.

IV. SYMMETRY ANALYSIS

Let us explain the anomalous suppression of the valley
splittings in lead salt NCs without an inversion center.
We want to account for the inter-valley coupling in the
lowest non-vanishing approximation. To this end we con-
sider electronic states originating from the four inequiva-
lent L valleys of a bulk semiconductor and neglect the k·p
mixing of conduction and valence band states.18 Then
the wave function of the confined electron state in the j-
th L-valley can be written as 〈r|Lj〉 = eikjruj(r)Φj(r) ,
where Φj(r) is the smooth envelope function, uj(r) is
the periodic Bloch amplitude for the bulk state in the
j-th valley, and spin indices are omitted. We will fur-
ther assume that the bulk material has isotropic effective
masses of the band extrema in L points. In this approxi-
mation the envelopes Φj(r) are invariant under rotations.
The confinement-induced inter-valley coupling can be de-
scribed by the following matrix element:

Ij,k = 〈Lj |HQD|Lk〉, j, k = 1 . . . 4, j 6= k , (2)

where HQD is the microscopic QD Hamiltonian. Then
it follows that the integral Ij,k vanishes when the QD
lacks inversion symmetry, i.e. belongs to the type (II).

FIG. 6: (Color online) Same as Fig. 5, but for the valence-
band ground state.

TABLE II: Phase factors in Eq. (3) for the coordinates of the
anion atoms in Fig. 2c.

a

4
(1, 1, 1) a

4
(1, 1̄, 1̄) a

4
(1̄, 1, 1̄) a

4
(1̄, 1̄, 1)

ei(k1−k2)Rn -1 -1 1 1 −x

ei(k1−k3)Rn -1 1 -1 1 −y

ei(k1−k4)Rn -1 1 1 -1 −z

To show this let us rewrite Ij,k as

Ij,k ≈

∫

u.c.

e−ikjr u∗

j (r + τ )Hbulk e
ikkr uk(r + τ )dr

×
∑
Rn

ei(kk−kj)Rn Φ∗

j (Rn)Φk(Rn) , (3)

where the integral in the right-hand side is over a unit
cell and contains the Hamiltonian of a bulk material, τ
determines the position of a cation (or anion) atom with
respect to the center of the unit cell, and the summation
runs over all the cation (or anion) sites within the QD. It
is this summation that is sensitive to the arrangement of
atoms within the QD. For the type (II) geometry the sum
is exactly zero. This cancellation takes place indepen-
dently of the radius of the QD and is fully determined by
the symmetry. To see this one can use the following well
known fact.37 If a given function describing some crys-
talline physical system transforms according to a certain
representation of the system’s symmetry group, then the
sum of this function over the lattice sites belonging to
the system may be different from zero if and only if the
decomposition of this representation into irreducible ones
contains the identity representation.
In our case one can distinguish three linearly indepen-

dent functions exp[i(kk−kj)Rn] which may be chosen as
shown in the first column of Table II. Table II gives the
values of these exponent functions when Rn sweeps the
coordinates of the anion atoms shown in Fig. 2c. These
atoms may be obtained from one another by the rota-
tions of the type (II) QD. The last column of Table II in-
dicates that the exponent functions transform according
to the vector irreducible representation F2 of the group
Td. This representation is different from the identity rep-
resentation A1. Therefore, for type (II) QDs Eq. (3) is
zero. Table III gives the values of the same exponent
functions when Rn sweeps the coordinates of the anion
atoms shown in Fig. 2a. These atoms may be obtained
from one another by the rotations of the type (Ia) QD.
The last row of Table III shows that the sum of the ex-
ponent functions remains invariant under such rotations.
More precisely, the exponent functions transform accord-
ing to the direct sum of the two irreducible representa-
tions A+

1 ⊕E+ of the group Oh. Thus, for type (Ia) QDs
Eq. (3) is different from zero.
This consideration is no longer valid if the function

Φj(r) is anisotropic. This is the case of real lead salts
NCs, as in bulk lead chalcogenides the longitudinal mass
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TABLE III: Same as Table II but for anion atoms in Fig. 2a.

(± a

2
, 0, 0) (0,± a

2
, 0) (0, 0,± a

2
)

ei(k1−k2)Rn 1 -1 -1

ei(k1−k3)Rn -1 1 -1

ei(k1−k4)Rn -1 -1 1
∑4

j=2 ei(k1−kj)Rn -1 -1 -1 A+
1

in the L valley is larger than the transverse one. Con-
sequently, in real NCs lacking inversion center the valley
splitting is not exactly zero but determined by the de-
gree of the effective mass anisotropy in L valleys. This
explains the fact that in PbS NCs the splitting is smaller
than in PbSe ones, cf. panels (c) and (c′) of Fig. 3. The
non-zero valley splittings in lead salt NCs without a cen-
ter of inversion may also result from the k · p-induced
mixing of the conduction and valence band states18 or
from an admixture of the states originating from other
band extrema of a bulk semiconductor to the wave func-
tions of the electron and hole ground states.7 For certain
small sizes the latter effect may be efficient and can ex-
plain the absence of splitting suppression for hole states
in a 5-shell NC, see Fig. 6c.

V. CONCLUSIONS

In conclusion, we obtained a new set of sp3d5s∗ TB pa-
rameters for the bulk PbSe and PbS semiconductor com-
pounds and calculated the electron and hole energy levels
in NCs made of these materials. We demonstrated that
the valley-orbit and spin-orbit splittings of the ground
state of electrons and holes are very sensitive to a partic-
ular arrangement of atoms in the NC and can be strongly
suppressed for a certain geometry, when the NC lacks a
center of inversion.
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Rev. B 83, 115206 (2011).

18 I. Kang and F. W. Wise, J. Opt. Soc. Am. B 14, 1632
(1997).

19 D. L. Mitchell and R. F. Wallis, Phys. Rev. 151, 581
(1966).

20 B. Volkov, O. Pankratov, and A. Sazonov, Soviet J. Ex-
perimental and Theoretical Phys. 58, 809 (1983).

21 C. S. Lent, M. A. Bowen, J. D. Dow, R. S. Allgaier, O. F.
Sankey, and E. S. Ho, Superlattices and Microstructures

2, 491 (1986).
22 M. Lach-hab, D. A. Papaconstantopoulos, and M. J. Mehl,

J. Phys. Chem. Solids 63, 833 (2002).
23 J. A. Valdivia and G. E. Barberis, J. Phys. Chem. Solids

56, 1141 (1995).
24 A. Paul and G. Klimeck, Appl. Phys. Lett 98, 212105

(2011).
25 H. Preier, Appl. Phys. A: Materials Sci. and Processing

20, 189 (1979).
26 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
27 D. J. Chadi, Phys. Rev. B 16, 790 (1977).
28 F. Herman, C. D. Kuglin, K. F. Cuff, and R. L. Kortum,

Phys. Rev. Lett. 11, 541 (1963).
29 F. Herman and S. Skillman, Atomic structure calculations

(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).
30 I. Moreels, B. Fritzinger, J. C. Martins, and Z. Hens, J.

American Chem. Soc. 130, 15081 (2008).
31 W. Harrison, Elementary Electronic Structure (World Sci-

entific, 2004), ISBN 9789812387080.
32 C. Delerue and M. Lannoo, Nanostructures. Theory and

Modelling (Springer Verlag, Berling, Heidelberg, 2004).
33 R. Leitsmann and F. Bechstedt, ACS Nano 3, 3505 (2009).
34 H. Bilz, A. Bussmann-Holder, W. Jantsch, P. Vogl,

A. Bussmann-Holder, H. Bilz, and R. Vogl, in Dynamical

Properties of IV-VI Compounds (Springer Berlin / Heidel-
berg, 1983), vol. 99 of Springer Tracts in Modern Physics,
pp. 51–98.

35 O. Kilian, G. Allan, and L. Wirtz, Phys. Rev. B 80, 245208
(2009).

36 N. E. Christensen, A. Svane, M. Cardona, A. N. Chantis,
R. Laskowski, M. van Schilfgaarde, and T. Kotani, physica
status solidi (b) 248, 1096 (2011).

37 G. Bir and G. Pikus, Symmetry and Strain-Induced Effects

in Semiconductors (Wiley, New York, 1974).
38 M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko, Phys.

Rev. B 73, 235334 (2006).
39 M. Friesen, S. Chutia, C. Tahan, and S. N. Coppersmith,

Phys. Rev. B 75, 115318 (2007).
40 D. Z. Y. Ting and Y.-C. Chang, Phys. Rev. B 38, 3414

(1988).
41 J.-M. Jancu, R. Scholz, G. C. La Rocca, E. A. de Andrada e

Silva, and P. Voisin, Phys. Rev. B 70, 121306 (2004).
42 C. Bulutay, Phys. Rev. B 76, 205321 (2007).


