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We study the dephasing of two-electron states in a single quantum dot in both GaAs and Si.
We investigate dephasing induced by electron-phonon coupling and by charge noise analytically for
pure orbital excitations in GaAs and Si, as well as for pure valley excitations in Si. In GaAs, polar
optical phonons give rise to the most important contribution, leading to a typical dephasing rate
of ~ 5.9 GHz. For Si, intervalley optical phonons lead to a typical dephasing rate of ~ 140 kHz
for orbital excitations and ~ 1.1 MHz for valley excitations. For harmonic, disorder-free quantum
dots, charge noise is highly suppressed for both orbital and valley excitations, since neither has an
appreciable dipole moment to couple to electric field variations from charge fluctuators. However,
both anharmonicity and disorder break the symmetry of the system, which can lead to increased
dipole moments and therefore faster dephasing rates.

PACS numbers: 73.21.La,03.65.Yz,71.38.-k,85.35.Be,42.50.Lc

I. INTRODUCTION

Both Si and GaAs quantum dot technologies are now
well-established as candidates for the implementation of
scalable quantum computation.’? Working qubits have
been fabricated with several different architectures in-
volving singly-occupied dots, including the single-spin
qubit architecture,® !' the singlet-triplet scheme,?'2715
and three-dot logical qubits.'6:17

Recently, we proposed a new “hybrid” qubit
architecture'® with three electrons in two quantum dots
that is potentially advantageous because fast qubit op-
erations can be performed in a relatively simple nanos-
tructure. Because the hybrid design is capable of all-
electrical, fast qubit gates, the qubit wavefunctions have
some charge character that gives rise to decoherence
mechanisms that are not present in pure spin qubits.
This means that characterizing decoherence becomes a
more pressing issue, because charge decoherence is typ-
ically much faster than spin decoherence. In GaAs, the
single-spin decoherence time T5 has been measured to be
1 ns for charge qubit'®29, while T4 for single-spin qubits
has been measured to be greater than 100 ps.?!

In the singlet-triplet qubit, when there is a finite
exchange-induced energy splitting between the singlet
and triplet states, the dominant sources of decoherence
have been found to be charge noise??2* and electron-
phonon coupling.??> Much of the physics of the hybrid
qubit is similar to that of the singlet-triplet qubit, with
the main differences in the decoherence properties aris-
ing because one of the dots contains two electrons. In
the doubly-occupied dot, both electrons in a singlet can
occupy the orbital ground state, while at least one of the
triplet electrons must lie in an excited state. A further
complicating factor in silicon-based quantum dot devices
is the presence of two nearly degenerate, low-lying valley
states.26733 These levels are split near a sharp interface
by an amount that is typically comparable to the orbital

energy spacing. Hence, single-electron first excited states
have two characteristic types: orbital, where the electron
occupies the same valley state but the P-like first ex-
cited state of the lateral confinement potential, and val-
ley, where the electron is in the orbital ground state and
a higher valley state.

In this paper, we calculate singlet-triplet dephasing
rates in a doubly-occupied quantum dot, extending the
spin relaxation calculations previously done for both
GaAs3* and Si?® due to finite spin-orbit coupling and hy-
perfine coupling to nuclear fields. For GaAs, the singlet-
triplet relaxation rate has been measured to be on the
order of kHz for applied magnetic fields up to 6 T.36 In
Si, this rate has been measured to be on the order of Hz.'®
Unlike relaxation, pure dephasing is due to processes that
conserve spin and does not involve energy exchange with
the environment. For both electron-phonon coupling and
charge noise, we consider the limiting cases of purely or-
bital (for both GaAs and Si) and purely valley (for Si)
excited states.

We find that for GaAs, polar optical phonons are the
main source of dephasing, leading to a decoherence rate
of ~ 5.9 GHz. For Si, the phonon-mediated dephasing
rate depends on the type of excitations supported by the
quantum dot. For a first excited state that is orbital-like,
intervalley optical phonons lead to a decoherence rate of
~ 140 kHz. For a valley-like first excited state, this same
phonon channel results in a faster decoherence rate of
~ 1.1 MHz. For a perfectly harmonic, disorder-free dot,
we find that dephasing due to charge noise is strongly
suppressed. This is because the effective dipole moment
between the singlet and triplet states vanishes for both
orbital- and valley-like excitations. If we allow for anhar-
monicity and an effective dipole moment, we find that
both phonon and charge noise dephasing channels are
of similar strengths in Si, but phonons are the limiting
mechanism in GaAs. Assuming a gate operation speed of
10 GHz (quite feasible for the hybrid qubit), the decoher-



ence rate in silicon is consistent with the achievement of
10* operations per coherence time, while the decoherence
rate in GaAs is too fast for viable hybrid qubit operation.

This paper is organized as follows. In Sec. I, we briefly
review the quantum states that are relevant to the system
considered in this paper. Next, in Sec. III we formulate
the problem of intra-dot singlet-triplet dephasing due to
the electron-phonon coupling, following the formalism of
Ref. 25. We consider first GaAs, then both pure orbital
and valley excitations in Si. In Sec. IV, we calculate
dephasing due to charge noise, and compare to phonon-
induced dephasing. Finally, in Sec. V we discuss the role
that the dephasing mechanisms we have addressed are
likely to play for qubits and suggest methods for miti-
gating decoherence.

II. TWO-ELECTRON STATES IN A QUANTUM
DOT

The lowest energy eigenstates of two electrons in a sin-
gle quantum dot (neglecting spin-orbit interaction) are
the singlet
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and the three triplet states
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where [1)g) is the two-electron spatial ground state and
|th1) is the first excited state. If spin-orbit interaction
is included, the charge density fluctuations considered in
this paper would have led to singlet-triplet relaxation as
well, in addition to the calculated pure dephasing. How-
ever, based on existing spin relaxation calculations,?® we
believe such relaxation would be a much weaker decoher-
ence channel, especially considering that spin-orbit inter-
action is very weak in Si. We work within the Heitler-
London approximation;?> in this approximation, [¢g) ~
|00), indicating that both electrons are in their single-
electron ground states, and |¢1) ~ (|01) — [10)) /v/2,
where one electron is in its ground state and the other is
in its first excited state. This paper considers dephasing
due to the electron-phonon coupling and charge noise,
both of which conserve spin, so from here on we will fo-
cus on the spatial component, with the appropriate spin
wavefunction understood. We refer to the triplets col-
lectively as |T') when the particular spin configuration is
not important.

In GaAs, the wavefunctions of the ground and first ex-
cited states have identical dependence on z (the direction
perpendicular to the quantum well), but have S- and P-
like transverse envelopes in the x-y plane (the plane of
the quantum well). For a quadratic quantum dot con-
finement potential, the effective mass approximation for

the ground state wavefunction is
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while the first excited state wavefunction is
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where u(r) is the periodic (with the lattice periodicity)
component of the Bloch function at the conduction band
minimum (the I'-point in GaAs), F(z) is the envelope
function along z, and L is the lateral extent of the wave-
function.

For silicon, we write the ground state wavefunction as
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and uy (r) is the periodic part of the Bloch function eval-
uated at the conduction band minimum located at +kgZ2.
In a quantum dot fabricated in a strained silicon quan-
tum well, ko ~ 0.82 x 27/a, with a = 0.543 nm the length
of the Si cubic unit cell.3® Depending on the magnitude
of the valley splitting introduced by the sharp interfaces
and the electric field in the z-direction, the lowest energy
excited states can either be valley-like or orbital-like. For
the case of an orbital-like excitation (large valley split-
ting), the wavefunction is

¢x(r) = (6)
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When the valley splitting is smaller than the or-
bital splitting, both the ground state and first excited
state have S-like transverse wavefunctions, but their z-
direction wavefunctions are different valley states. The
ground state wavefunction is still given by Eq. (5), but
the first excited state is now

i, - F(z)
P = 600 0) 2

The periodic parts of the Bloch functions, u(r), have
discrete Fourier spectra, with contributions occurring at
reciprocal lattice vectors G. Hence, when performing
calculations with the full wavefunctions, as we do in
this paper, it is convenient to decompose u(r) into the
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where the expansion coefficients a(G) are independent of
r. For low-frequency dephasing channels such as acous-
tic phonons and charge noise only the G = 0 mode con-
tributes significantly.?® For high-frequency processes such



as optical phonon couplings, contributions with G # 0
can also be important. We assume that the electron-
optical phonon couplings are independent of G. With
this assumption, one can prove that the calculation of
dephasing rates is independent of the form of the peri-
odic part of the Bloch functions. Hence, for all instances
we consider in this paper, we may ignore the periodic
part of the Bloch functions.

In a real system, disorder would cause the excited
states to have mixed valley and orbital characteristics,3’
for which pure orbital-like and pure valley-like first ex-
cited states represent limiting cases. Hence, it is impor-
tant to consider both the pure valley and orbital excita-
tions described above.

III. DEPHASING VIA THE
ELECTRON-PHONON INTERACTION

We now consider the dephasing of two-electron states
in a single quantum dot due to the electron-phonon inter-
action, following the techniques of Ref. 25. In Sec. IIT A,
we consider dephasing in GaAs due to deformation poten-
tial, longitudinal and transverse piezoelectric, and polar
optical phonons. In Sec. III B, we turn to silicon, where
we may have either valley or orbital excitations, and the
relevant dephasing channels are through intravalley de-
formation potential and intervalley optical phonons.

The general form of the electron-phonon interaction
;.38
is
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where each G is a reciprocal lattice vector, q is con-
strained to the first Brillouin zone, p is the electron den-
sity operator, aq, and aL, » annihilate and create, respec-
tively, phonons with wave vector q, and A indexes the
phonon mode. Since we will treat the the relevant modes
separately, we will suppress this sum over phonon modes
in the calculations that follow. The electron-phonon cou-
pling, My, is defined by

M(@+G) = ~Vilat@) [+ @)+ €/ 5—c—. (11

where V; is the electron-ion potential, £ is the phonon
polarization vector, p,, is the crystal mass density per
unit volume, Q is the crystal volume, and wq is the
phonon frequency. Since the singlet and triplet have dif-
ferent charge distributions, they are dressed differently
by the phonons. The phonons can themselves decohere,
which in turn causes dephasing between the singlet and
triplet states. Following Ref. 25, the singlet-triplet de-
phasing rate due to the electron-phonon coupling is
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where 74 is the phonon relaxation rate, and A is a
Fourier component of the charge density difference be-
tween triplet and singlet states:

Ala+G) =5 (T]pla+ G)|T) = (S|p(a+ G)|5)).-

(13)
Using the approximate forms for the singlet and triplet
states detailed in Egs. (1) and (2), we have
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where |1) is the single-particle first excited state and |0)
is the single-particle ground state. In the following sub-
sections, we evaluate Eq. (12) for the different types of
phonons in both GaAs and Si.

A. Phonon-induced dephasing in GaAs

For the purely orbital excitations supported by GaAs,
the ground state transverse wavefunction is an S-orbital,
while the first excited state transverse wavefunction is a
P-orbital, as given in Egs. (3) and (4). The three types
of phonon couplings that contribute to decoherence are:
deformation potential, piezoelectric, and polar optical.
These differ only in the form of the electron-phonon cou-
pling M, so their calculations proceed similarly.

In all cases, we assume a Gaussian form for the wave-
function in the z-direction:
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where d is the confinement length along the growth axis,
which is typically a few nanometers. Choosing this form
for the wavefunction represents an approximation, but
it captures the relevant physics and allows us to obtain
analytic results. Using this approximation and Egs. (3)
and (4), we use Eq. (14) to obtain
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Here, we have taken G = 0, since |A|2 goes to zero
rapidly for |q| = ¢ 2 1/d,1/L, both of which are much
smaller than the size of the first Brillouin zone.

We first consider deformation potential phonons, for
which the electron-phonon coupling M has the form?°4%

i yﬂ, (17)

Mc?cfAs(Q) = Dqg <2mewq

where D = 8.6 eV is the deformation potential con-
stant and p,, = 5.33 x 10® kg/m? is the mass density
of GaAs. The angular frequency wq is given by the stan-
dard relationship for acoustic phonons: wq = vsq, where
vs = 5.2 x 10% m/s is the longitudinal speed of sound in
GaAs, averaged over direction.!
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FIG. 1: (Color online) Calculated singlet-triplet dephasing
rates of two electrons in a single dot via the phonon mech-
anisms considered in Sec. III and the charge noise mecha-
nism considered in Sec. IV. (a): Plot of dephasing rates
versus the lateral extent of the electron wavefunctions for
the mechanisms pertinent for GaAs: polar optical phonons
(Eq. (24)), deformation potential phonons (Eq. (18)), trans-
verse piezoelectric phonons (Eq. (22)), and longitudinal piezo-
electric phonons (Eq. (20)). (b): Plot of singlet triplet de-
phasing rates versus lateral wavefunction extent for different
mechanisms in Si: intervalley phonons for valley excitations
(Eq. (33)), and intervalley phonons (Eq. (32)), longitudinal
acoustic phonons (Eq. (29)), and transverse acoustic phonons
(Eq. (30)) for orbital excitations. The dephasing rates due
to charge noise plotted for both materials systems are deter-
mined from Eq. (40), using the energy fluctuations for orbital
excitations in a single dot (Eq. (36)), and assuming zero dipole
moment.

The last piece of information we need to compute
the dephasing rate is the phonon relaxation rate ~,.
Eq. (16) implies that |A|? is strongly peaked, so it de-
termines the g-values that contribute to the integral in
Eq. (12). In GaAs, |A|? goes to zero both as ¢ goes to
zero and when ¢ > 1/d,1/L. Hence, the low- and high-
frequency behaviors of v, are not important. For suffi-
ciently high frequencies at low temperature, it is expected
that two frequency-dependent phonon attenuation chan-
nels will become relevant: anharmonic decay and isotope
scattering.*> However, the frequencies we consider here
are low enough that these mechanisms are unimportant,
and the dominant source of phonon relaxation is due to
interface scattering.*?

To obtain an estimate for the phonon relaxation rate,
we use experimental measurements of phonon attenua-
tion due to interface scattering, which were performed
at low-temperatures in Si.** To convert between the

4

two, one uses v, = 2a,vs,%® where «, is attenuation
and v, = 8.49 x 10° cm/s is the speed of sound in Si
along [100]. For LA phonons in Si, low-temperature
measurements have shown that at low frequencies (up
to 100 GHz), phonon attenuation is roughly frequency-
independent, and is about 2.5 cm™! along the [100]
direction.** This translates to a low-frequency experi-
mental limit of 'yoLA = 4.25 MHz, which will serve to
give us an estimate on the phonon relaxation rate. Since
this mechanism is due to the geometry (i.e. the finite
extent of the sample and presence of heterostructure in-
terfaces) rather than the particular material properties of
Si, we will also use the above relaxation time for acoustic
phonons in GaAs.

By switching to polar-cylindrical coordinates, evalua-
tion of the integral in Eq. (12) is straightforward. We set
wZ +(74/2)* =~ wg, which is valid because the frequencies
that contribute to the integral satisfy wq > 70. Electro-
statically defined quantum dots typically obey L > d,
so we expand the integration result to first order in d/L,
obtaining an expression for Fg;AS’DP, the singlet-triplet
decoherence rate in GaAs due to deformation potential
electron-phonon coupling:

Fg%As,DP ~ D?(41n(2L/d) — 3)7¢A N 6.9 M o,
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Here, the dependence on L and d can be understood by
power counting in Eq. (12). For the polar couplings we
consider next, the L and d dependencies can be under-
stood by examining the ¢, integral in Eq. (12) over the
range where |¢,| < |¢z|, |gy|, followed by power counting.

We next consider piezoelectric coupling, which con-
tribute in both longitudinal and transverse phonon
modes. In this case, the electron-phonon coupling is?>*°

 2ieeqy ( h )1/2 (19)
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where e is elementary charge and e;4 = 1.38 x 10° V/m
is an elasticity tensor component. For longitudinal

phonons, & = q/q. Integration of Eq. (12), ex-

panded to lowest order in d/L, yields I‘g;AS’PE’LA, the

singlet-triplet dephasing rate in GaAs due to piezoelec-
tric coupling between electrons and longitudinal acoustic
phonons:
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In the limit when the media is considered isotropic and
homogeneous, the two transverse phonon branches are
degenerate, and we can choose any two orthogonal po-
larizations. One possible polarization is

3 (21)
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and any rotation of this vector about q is also a valid
transverse polarization. We average over this plane be-
fore integrating over q. This complicates the resulting in-
tegral, but it can still be carried out analytically, yielding
I‘g;AS’PE’TA, the singlet-triplet dephasing rate in GaAs
due to piezoelectric coupling between electrons and trans-

verse acoustic phonons:
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per transverse mode.

For polar optical phonons, the electron-phonon cou-
<25,40
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where €5, = 10.89¢,4. and €y = 12.9¢,,. are the high
and low frequency limits of the GaAs dielectric func-
tion, and €,4. is the vacuum permittivity. The frequen-
cies of optical phonons are essentially g—independent,
with hwg = 36.35 meV. Since optical phonons are much
higher in frequency than acoustic phonons, they also
have much shorter lifetimes, with measurements indicat-
ing 7© ~ 160 GHz.%® The integration proceeds similarly
to the acoustic cases, and the resulting singlet-triplet
dephasing rate I‘g%AS’PO in GaAs due to polar optical
electron-phonon coupling is, to first order in d/L:

[GaAs,PO e (g — €x0) (3L — 16d)%LO
ST €0€oo 16v/27 L2hwq
240
— GHznm. (24)
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In Fig. 1, we plot the four dephasing rates considered
in this section. Typical values and scalings are listed in
Table I. Polar optical phonons are the largest contribu-
tion to dephasing, exceeding the others by at least five
orders of magnitude. This is mainly due to the extremely
fast decay of the high-frequency, optical phonons.
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B. Phonon-induced dephasing in silicon

Unlike GaAs, Si quantum dots can support both val-
ley and orbital excited electron states. The ground and
first excited states in the case of an orbital excitation are
given in Eqs. (5) and (7). As we did for GaAs, we take
the envelope in z to be Gaussian with width d. Then,
defining Q = q + G, we evaluate Eq. (14) for orbital
excitations in Si (A2}), obtaining

) L4(Q2 —|—Q2)2 2002 102 22
Si 2 _ x Y/ —LA(Q2+Q2)/2( g—d°Q2 /2
145(Q)| e D72 (4e

Lo ?(2ko+Q2)/2 | efﬁ(zerzw), (25)

where we used the fact that the three Gaussians are well-
separated in @, to drop cross-terms. If we instead have
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FIG. 2: (Color online) Cartoon of the absolute value of the
Fourier transform of the difference between the triplet and
singlet charge distributions, |A|> (Eq. (13)) in Si. Here, the
shaded regions indicate the k—values that contribute signif-
icantly to dephasing. Phonons that couple electrons in the
same valley (intravalley processes) lie near the origin, while
phonons that couple electrons in different valleys (intervalley

processes) lie near k = +2kok.. (a): The contribution re-
sulting from an orbital-like first excited state (Eq. (25)). (b):
The contribution resulting from a valley-like first excited state
(Eq. (26)).

excitations as given by Egs. (5) and (8), we evaluate
Eq. (14) for valley excited states in Si (A7), obtaining

[AFQI = gt (26)

% (e—d2(Qz+2ko)2/2 +e—d2(Qz—2ko)2/2).

The expressions for [AZI]> and |A7f|?> in Egs. (25)
and (26) above select the types of phonons that con-
tribute significantly to dephasing through the integral
in Eq. (12). For orbital excitations, both phonons that
couple electrons within the same valley and across val-
leys contribute, and |A2}|? contains contributions from
three toroids, each with peak radius \@/ L, situated in
the k; — k, planes centered at @, = 0 and Q. = +2k.
The phonons at the @, = 0 toroid correspond to in-
travalley processes, where G = 0. The remaining two
toroids at @, = £2ky are intervalley processes, where
G = F(4n/a)2. The regions of k—space relevant to
orbital excitations are shown in Fig. 2 (a). For valley
excitations, |A7¢|? contains contributions from two ellip-
soids centered at Q = (0,0, +2kg). Since the valley-like
first excited state has the same envelope function as the
ground state, long wavelength phonons cannot contribute
to the singlet-triplet dephasing. This is clearly illustrated
by the vanishing of |Ag#|? at small k (or long wavelength).
The regions of k—space relevant to valley excitations are
shown in Fig. 2 (b).

Now that we have identified the most important
phonon wave vectors for the different dephasing mecha-
nisms, we discuss which electron-phonon coupling mech-
anisms are most relevant. Since Si is not polar, the
deformation potential electron-acoustic phonon coupling



TABLE I: Typical values for the dephasing rates of the phonon-induced channels discussed in Sec. III, assuming a lateral
electron confinement of L = 40 nm and a vertical confinement along the growth direction of d = 3 nm. The channels depend
on material properties and symmetry: polar phonon couplings are absent in Si, transverse phonons do not couple electrons via

the deformation potential in GaAs,?®

at low temperatures and biases GaAs has only one band minimum that participates in

conduction, and valley excitations in Si are not connected by low-frequency phonons. The scaling column describes the primary
dependence of the dephasing rate on L, the lateral wavefunction extent and d, the vertical wavefunction extent. In the scalings,
(x) indicates a neglected logarithmic correction, while (x*) indicates that the result applies in the limit of d/L — 0.

Typical dephasing rate (Hz)

Coupling mechanism GaAs Si: orbital excitations Si: valley excitations Scaling
LA phonons
Deformation potential 4.3 x 10% 8.8 x 102 - =2
Piezoelectric 6.0 x 10% - - -
TA phonons
Deformation potential - 5.2 x 10! - L2
Piezoelectric 2.2 x 10* - - -
LO phonons
Polar optical 5.9 x 10° - - L=t
Intervalley - 1.4 x 10° 1.1 x 106 L2471

is the main contribution near the zone center (G = 0,
g < 2m/a). This coupling connects electrons to both
longitudinal acoustic phonons, with matrix element?®:0

—o  h¢? =2\’
|MLA(CI)|2 = 5327 (1 + ) (27)

and to transverse acoustic phonons, with coupling?®°
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where 24 = 5.0 eV and E,, = 8.77 eV are silicon deforma-
tion potentials. As in Sec. IIT A above, for these acoustic
modes we take the phonon relaxation rate, believed to
be due to interface scattering, to be vy = 4.25 MHz.4
The intravalley piece of the orbital excitation is found
by integration of Eq. (12), which proceeds very similarly
to the GaAs deformation potential case we considered in
Sec. IIT A. For deformation potential coupling between
electrons and longitudinal phonons in Si, the singlet-

triplet dephasing rate FgglLA, to first order in d/L, is:

FSi,LA ~ Yo [3
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As was the case for GaAs, the dependence on L and d
can be understood by power counting in Eq. (12).

We perform the same averaging procedure as was done
for the transverse phonons in the previous section and
obtain I‘g;:TA, the singlet-triplet dephasing rate in Si due

to deformation potential coupling between electrons and
transverse acoustic phonons:
i TA =240 83
374 & WM ~ 75 kHznm®. (30)
We next consider the intervalley contributions, which
occur at k, = £2kg, outside the first Brillouin zone. The
reciprocal lattice vectors that contribute significantly to
the relevant integrals are G = +(47/a)k., which give
q. ~ F0.36(27/a) = F4.17x 10° m~!. The phonons that
are responsible for this transition in silicon are due to g-
type Umklapp processes.*’ Although symmetry restricts
these to be longitudinal optical phonons, experiments
indicate that both transverse and longitudinal acoustic
phonons participate through processes in which M(q) is
first-order in q.*%*” However, the acoustic phonons do
not play a significant role here, both because their de-
formation potential coupling to the electrons is weaker?!
and they are much longer lived*? than optical phonons.
The LO phonons in Si have a nearly constant energy
hwo = 62 meV.%0 The electron-phonon coupling arises
from an optical deformation potential:40-4!

h

M 2_p2_ "
M@)ol = Dy o

(31)
where the intervalley deformation potential D;y = 11.0 x
108 eV /cm. M

Finally, we estimate the relaxation rate -, for opti-
cal phonons in Si. As for optical phonons in GaAs, the
short-wavelength longitudinal optical phonons that cause
intervalley coupling have a much shorter lifetime than the
long wavelength acoustic phonons that are responsible for
intravalley coupling. The literature value we use for the
relaxation rate is 74© = 118 GHz.*® For the intervalley



component of the orbital excitation, we get

[Si,Orbital,LO _ D0
ST 32v/213d L2 pyy, o
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Similarly, for the case of valley excitations we have
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5.3

~ T34 GHznm?®. (33)

FSi,Valley,LO _
ST -

Fig. 1 shows the dephasing rates for both GaAs and
Si. Typical values and scalings with L and d are listed
in Table I. In Si, as in GaAs, most of the dephasing is
due to the fast decay of optical phonons: in silicon these
high-frequency phonons couple electrons across valleys.

So far, we have only considered pure valley and pure
orbital excitations. However, for non-ideal interfaces
such as those with atomic steps, valley-orbit mixing
occurs??31:39  Since both of the limiting cases exhibit
strong dephasing due to intervalley phonons (with orbital
excitations suppressed by a factor of 8 from valley excita-
tions; see Egs. (32) and (33)), we expect that valley-orbit
mixing cannot be used to suppress substantially this de-
phasing.

IV. DEPHASING DUE TO CHARGE NOISE

We now consider the other expected major dephasing
mechanism for our system: charge noise.?? 2449 This de-
phasing arises because remote charge fluctuations induce
random variations of the energy splitting between sin-
glet and triplet levels by coupling to their non-equivalent
charge distributions via the Coulomb interaction. These
variations in the energy splitting lead to the accumula-
tion of a random phase between the singlet and triplet
states. In turn, this introduces a phase difference be-
tween the logical qubit states. The dephasing mechanism
and the estimated decay rates are essentially equivalent
for GaAs and Si quantum dots, so we do not treat these
two systems separately in this section.

Because the hybrid qubit has a potentially strong
charge characteristic, it can couple to remote charge
traps. We assume the simplest non-trivial charge fluc-
tuation: a single, remote charge trap with two states
(occupied and empty). To determine the dephasing rate,
the first step is to compute the effect of the change in
the state of the charge trap on the singlet-triplet energy
splitting. We work to first order in perturbation theory,
where we may calculate the small change in energy by us-
ing the unperturbed (spatial) wavefunctions. Using the
formalism of Sec. II, it is straightforward to show that
the first-order estimate of the variation in energy split-

ting AV (1) is

AV(r) = (T|V(7)|T) = (S| V() |S)
~ {1V () [1) = (O] V(7)]|0), (34)

where |0) is the ground state, |1) is the first excited state,
and 7 is time. Here, we assume that the energy fluctua-
tions are much smaller than the singlet-triplet splitting,
and hence also the confinement energy. At any instant
in time, our perturbing charge trap might be occupied or
empty. If the charge trap at the position r is occupied,
and hence perturbing the singlet-triplet energy splitting,
we have

av - [ o ¢ )~ @)’

dre v —r/| ’

where e is the elementary charge and ¢y is the (low-
frequency) dielectric constant of our material. We as-
sume that the trap is distant and calculate AV in a multi-
pole expansion.®® For S- and P-like orbitals in a perfectly
harmonic dot, the lowest-order, non-vanishing term is of
quadrupole order:

e?L? (1 + 3cos(26))

AVgp =~
5P 327r3epep

; (36)

where L is the lateral electron confinement length and
(r,0,¢) is the location of the noise source in polar-
spherical coordinates. Alternatively, for two valley states
with identical envelope functions, we find that AV
is exponentially suppressed by a factor of e~k to
quadrupole order, where d is the z-envelope width and
ko is the location of the valley minimum. To evaluate
Eq. (36), we must estimate the typical distance r be-
tween the charge trap and the qubit. To do this, we
consider a slightly different system comprised of a dou-
ble dot charge qubit in GaAs, for which the energy split-
ting has been measured experimentally and found to be
AV x 1.6 peV.' Although this system differs from a
two-electron dot, the statistics of the charge fluctuators
should be similar. Evaluating Eq. (35) for the double-dot
geometry, we find that the leading order term is a dipole
contribution:
epp cos ¢ sin 0

AVpp ~ —————————— 37
DD 47T’]"2€()6b ) ( )

where py is the dipole moment ex( associated with
the dot separation zy. Averaging over 6 and ¢ with
xo ~ 300 nm (the distance between the double dots con-
sidered in the experiment), we solve Eq. (37) to find
r &~ 2.9 pym. Inserting this into Eq. (36), we obtain
AVsp ~ 2x1073 peV for L = 40 nm in Si. Note that this
value for AVgp is likely an overestimate: if the dephas-
ing is due to multiple charge traps (instead of the single
trap we have assumed), AVgp will be decreased. This is
because matching to AV ¢*P while increasing the number
of traps increases the average r. Since AVsp ~ 1/r3 and
AVegp ~ 1 /1%, AVgp decreases. Therefore, our estimate



of the S — T dephasing rate for an ideal orbital first ex-
cited state is an overestimate, and may decrease due to
multiple charge traps.

Now that we know the magnitude of the energy fluctu-
ations, we can calculate the dephasing time T5. The off-
diagonal elements of the density matrix decay as e~ 2¢(7),
so the time T is defined by A¢(Tz) = 1.5! Following
Ref. 23, the time-dependent dephasing is given by

80(r) = gz | wS(@) (ﬁjjf)

where wy is a low-frequency cutoff that is the inverse mea-
surement time. Up to this point, we have only considered
the coherent evolution of the phase due to charge fluc-
tuations. However, true decoherence occurs due to the
statistical nature of the fluctuators. This effect is cap-
tured in the spectral density S(w) of the charge noise,
through the definition

o0

(38)

S(w) = % /_ T dre T (AV(DAV(0)).  (39)

As noted in Ref. 23, by examining the form of Egs. (38)
and (39) we can deduce that Ty for 1/f noise should
scale as 1/AV. Thus, we can calibrate our Ty to the
experimental measurement via

AVEIP
AV

Ty ~ ‘ TSP, (40)

where AV and Ty, " are the experimental charge qubit
measurements for the energy splitting fluctuation and
the dephasing time. For the double-dot charge qubit ex-
periment referenced above, Ty "7 ~ 1 ns, which leads to
T5P ~ 0.8 ps for our two electron dot with an orbital-
like first excited state. Thus, the dephasing rate for or-
bital excitations due to charge noise in Si is TSR 9 &
1.3 MHz, which is on the same order as the phonon-
induced dephasing in Si, and far slower than the dom-
inant dephasing mechanism in GaAs. We plot this de-
phasing rate as a function of L alongside the phonon
dephasing mechanisms in Fig. 1.

This long dephasing time is due to the fact that for
a perfectly harmonic confinement potential, the dipole
term of AVgp vanishes. However, in realistic systems,
potential anharmonicity and interface roughness result
in a non-vanishing dipole moment that can be more im-
portant than the quadrupole term in Eq. (36). If our
confinement potential is severely anharmonic, we expect
that we would have a dipole contribution similar to Eq.
(37), but with a moment of pg < eL. Further, a dis-
ordered interface might also introduce a dipole moment.
As an example, simulations of the typical devices used in
Refs. 52 and 53 find py/e = 1.8 nm.

Fig. 3 shows the dephasing rate due to charge noise as a
function of dipole moment pg, obtained by using Eqgs. (37)
and (40). The figure also shows the dominant dephasing
rates from phonons calculated in Sec. IIT and listed in
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FIG. 3: (Color online) Singlet-triplet dephasing rate I'sr

due to charge noise and electron-phonon coupling as a func-
tion of effective dipole moment po. In this plot, a constant
quadrupole contribution of 1.3 MHz (Eq. (36)) is added to
the dipole contribution, which is the estimated dephasing rate
from charge noise for a dot with a purely harmonic confine-
ment potential, for which po/2 is zero. Here, we have set the
lateral electron confinement to be L = 40 nm, the vertical con-
finement to be d = 3 nm, and have assumed an orbital excited
state. The charge noise curve for Si is estimated using a di-
electric constant eg P = 11.7¢pqe. In a perfectly harmonic dot,
po =~ 0, but anharmonicity and disorder can introduce a dipole
moment of pg < eL. In GaAs we expect phonon-mediated de-
phasing to be most important, but in Si quantum dots charge
noise can easily dominate. The circle marker indicates the
estimated dephasing due to charge noise at po/e = 1.8 nm,
an estimated dipole moment for realistic devices.??%2

Table I, which are essentially independent of dipole mo-
ment because there is substantial electron-phonon cou-
pling even for perfectly harmonic confinement poten-
tials. Within our approximations, we see that phonon-
mediated dephasing is the most important mechanism in
GaAs, but in Si charge noise can easily dominate.

V. DISCUSSION

In this paper, we addressed dephasing due to electron-
phonon coupling and charge noise for two-electron states
in a single quantum dot in both GaAs and Si. For the
electron-phonon coupling, we found that in GaAs the
main contribution to dephasing is due to polar coupling
to optical phonons, and that the dephasing rate was of
order gigahertz. In Si, phonon-mediated dephasing rates
are much lower than in GaAs because there is no po-
lar coupling to phonons, Intervalley processes are more
important than intravalley processes, since phonons that



couple valleys in silicon are extremely short-lived. The
intervalley coupling to phonons leads a dephasing rate
for silicon of order megahertz.

We found that charge noise for an orbital first excited
state in a perfectly harmonic quantum dot with no dis-
order is strongly suppressed because the singlet-triplet
energy splitting fluctuations produced by a remote per-
turbing potential in this case are of quadrupole order,
while for a double-dot charge qubit they are of dipole or-
der. As has been noted previously,>* pure valley states
in Si are even more favorable, as they are largely immune
to charge noise, in that both the dipole and quadrupole

21,2

terms are suppressed by a factor of e~ *o. However, the
introduction of either anharmonicity (for orbital excita-
tions) or disorder (for valley excitations) leads to non-
vanishing dipole moments up to the order of the lateral
wavefunction extent. For either type of excited state in
Si, this can become the dominant dephasing mechanism.
Our estimated dephasing rate due to charge noise, based
on calculations in typical dots, is of order 10 MHz. This
rate is fast enough to dominate the dephasing in silicon,
but likely not in GaAs.

Our calculations suggest that two-electron, singlet-dot
systems in Si have substantially better dephasing prop-
erties than those in GaAs. This is because the polar cou-
pling for optical phonons, which mediates fast dephasing
in GaAs, is absent in Si. Within Si, to reduce the dephas-
ing in this system, the critical figure to optimize is the
effective dipole moment of the charge density difference
between the first excited state and the ground state. As
indicated in Fig. 3, we estimate that unless this dipole
moment is reduced below pg/e ~ 1 nm, charge noise is ex-

pected to be the dominant dephasing mechanism. Below
that threshold, the electron-phonon coupling (for valley
excitations) and quadrupole-order charge noise (for or-
bital excitations) are expected to be the dominant de-
phasing mechanisms.

Finally, we note that throughout this paper we fo-
cussed on conduction electron charge carriers, rather
than holes. Since there have been recent advances in
quantum dot structures that use holes,'%® a detailed
study of two-hole dephasing would be useful, but is be-
yond the scope of the current work. Recent studies of hole
relaxation in the context of low-temperature quantum
dots®® do not rely on the exact character of the spatial
wavefunction, and so are not directly applicable to de-
coherence. We expect that the techniques we developed
here can be readily extended to studies of holes. The
major challenges in such a study would be determining
the accurate hole spatial wavefunctions and deformation
potentials, which would be affected around the valence
band maximum by heavy hole-light hole mixing.®”
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