

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Anomalous work function anisotropy in ternary acetylides

Joseph Z. Terdik, Károly Németh, Katherine C. Harkay, Jeffrey H. Terry, Jr., Linda Spentzouris, Daniel Velázquez, Richard Rosenberg, and George Srajer Phys. Rev. B **86**, 035142 — Published 24 July 2012 DOI: 10.1103/PhysRevB.86.035142

Anomalous Workfunction Anisotropy in Ternary Acetylides

Joseph Z. Terdik¹, Károly Németh^{1,*}, Katherine C. Harkay¹, Jeffrey H. Terry, Jr.^{1,2},

Linda Spentzouris^{1,2}, Daniel Velázquez^{1,2}, Richard Rosenberg¹ and George Srajer¹

¹Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA and

²Illinois Institute of Technology, Chicago, IL 60616 USA

(Dated: July 5, 2012)

Anomalous anisotropy of workfunction values in ternary alkali metal transition metal acetylides is reported. Workfunction values of some characteristic surfaces in these emerging semiconducting materials may differ by more than $\approx 2 \text{ eV}$ as predicted by Density Functional Theory calculations. This large anisotropy is a consequence of the relative orientation of rod-like $[MC_2]_{\infty}$ negatively charged polymeric subunits and the surfaces, with M being a transition metal or metalloid element and C₂ refers to the acetylide ion C₂²⁻, with the rods embedded into an alkali cation matrix. It is shown that the conversion of the seasoned Cs₂Te photo-emissive material to ternary acetylide Cs₂TeC₂ results in substantial reduction of its $\approx 3 \text{ eV}$ workfunction down to 1.71-2.44 eV on the Cs₂TeC₂(010) surface while its high quantum yield is preserved. Similar low workfunction values are predicted for other ternary acetylides as well, allowing for a broad range of applications from improved electron- and light-sources to solar cells, field emission displays, detectors and scanners.

PACS numbers:

I. INTRODUCTION

For many photo-physical applications photoemissive materials are sought after that can turn a high fraction of the incident photons into emitted electrons, i.e. materials that have a high quantum-yield. Often, the quantumyield of these materials depends heavily on the wavelength of incident photons. For many applications, ranging from electron-guns for synchrotrons and free-electron lasers to night vision devices, high quantum-yield photoemission using visible or infrared irradiation is desirable. In electron-guns of synchrotrons and free-electron lasers, emission in the visible range is advantageous for the improved control of the shape of the emitted electron bunch that is critical for time-resolved applications. In night-vision devices a very low flux of infrared photons has to be turned into emitted electrons with a high yield in order to obtain an image as sharp as possible. Therefore there is a quest for new and improved materials with optimized quantum-yield and low-workfunction¹.

 Cs_2Te has been known since the 1950-s for its high quantum-yield² using ultraviolet illumination with photon-energies above $\approx 3.0 \text{ eV}$ and has been used for many decades as a primary high-yield photocathode. Besides not being photoemissive in the visible region, its other main drawback is that its surface gets oxidized in practical vacuum whereby its quantum efficiency substantially reduces³. Despite this disadvantage, Cs_2Te still has 20-30 times longer operational lifetime than competing multi-alkali antimonide photocathodes, such as K_2CsSb and $(Cs)Na_3KSb$, especially when operated in radio-frequency accelerating cavities³.

In the process of attempting to design modifications of Cs_2Te with lowered workfunction and preserved high quantum-yield we have considered the effects of small gas molecules on Cs_2Te surfaces. Such effects have been studied by di Bona *et al.*³, using small gas molecules occurring in vacuum, such as O_2 , N_2 , CO_2 , CO and CH_4 . It occurred to us that the effect of another small gas molecule, acetylene (C_2H_2) has not been considered yet, despite the potentially interesting reactions between C_2H_2 and Cs_2Te . C_2H_2 is widely used for welding (not in accelerators though) and it might occur in accelerator-vacuums as well, in trace amounts. It is an acidic compound and prefers to decompose to acetylide anion C_2^{2-1} and to $2H^+$ in the presence of a base. Based on the acidic character of C_2H_2 , one might investigate the working hypothesis that the reaction of

$$Cs_2Te(cr) + C_2H_2(g) \rightarrow Cs_2TeC_2(cr) + H_2(g)$$
 (1)

would produce a ternary acetylide Cs_2TeC_2 whereby the oxidation number of Te would change from -2 to 0 and that of H from +1 to 0, with (cr) denoting crystal and (g)

FIG. 1: A side-view of the 3x3x2 supercell of the hexagonal unit cell of Cs₂TeC₂. Bronze spheres denote Te, grey ones C, dark-purple ones Cs. Notice the $[TeC_2]_{\infty}$ rods.

FIG. 2: A top-down view of a $3x_3x_2$ supercell of the hexagonal unit cell of Cs_2TeC_2 . Color codes are identical with those in Fig. 1. The $[TeC_2]_{\infty}$ rod-like substructures are running perpendicularly to the plane viewed. The red line indicates the energetically preferred cleavage-plane for the (010) surface running between two layers of Cs atoms, parallel with the rods, while the green line refers to the preferred cleavageplane for the (110) surface that involves $[TeC_2]_{\infty}$ rods directly exposed on the surface. Note that the (010) and (100) planes are identical.

gas phase. Interestingly, the class of ternary (i.e. threecomponent) acetylides indeed exists, involving already synthesized members with the general formula of A_2MC_2 with $A \in [Na, K, Rb, Cs]$ and $M \in [Pd, Pt]$, and the oxidation number of the metal M in them is zero^{4,5}. All existing compounds of the A_2MC_2 formula have a hexagonal unit cell with rod-like $[MC_2]_{\infty}$ substructures running parallel with the main crystallographic axis, and very similar distribution of alkali atoms around the $[MC_2]_{\infty}$ rods, just as indicated in Figs. 1 and 2. All known A_2MC_2 materials are colored semiconductors with 2.1-2.8 eV direct band-gaps⁵. The other class of ternary acetylides with synthesized members contains only a single alkali atom and has the formula of AMC_2^6 with the $[MC_2]_{\infty}$ rods adopting 3 different kinds of rod-packings⁷.

II. METHODOLOGY

Adopting the structure of the unit cell of Na₂PdC₂ and substituting Na with Cs and Pd with Te we have carried out a full crystal structure (lattice parameters and atomic fractional coordinates) optimization using Density Functional Theory (DFT), without any symmetry and point group constraints on the translational unit cell. We have used the PWSCF-code⁸, plane-wave representation of wave-functions with 80 Rydbergs wavefunctioncutoff, the PBE exchange-correlation functional⁹ in conjunction with norm-conserving pseudopotentials for Cs, Na and Te and ultrasoft ones for the other elements as available in the PWSCF distribution. The k-space grids were at least $6 \times 6 \times 6$ large for optimizations, the residual forces on fractional coordinates were less than 4×10^{-4} Ry/au, residual pressure on the unit cell less than 1 kbar. For validation of the DFT-based methodology, we have calculated known structural parameters and workfunctions of compounds with similar composition, achieving good agreement between computed and experimental values as indicated in Tables I, II and III. Note that in some cases, like Na_2PdC_2 and Cs_2PdC_2 the difference between calculated and experimental a and b lattice parameters (rod distances) was about 3-3.5%, significantly larger than that for the c lattice parameter (<1%), which we have accepted on the basis that the inter-rod interactions are more difficult to accurately predict, similarly to general intermolecular interactions. The workfunction calculations were based on slabs of at least 30 Å width separated by vacuum layers up to 120 Å following the methodology of Ref. 10. For additional validation of the use of the PBE functional here, we have compared the direct bandgaps of Na₂PdC₂ and Cs₂PdC₂ to experimental data. Experimental direct bandgaps of Na₂PdC₂, K_2PdC_2 and Rb_2PdC_2 are at 2.09, 2.55 and 2.77 eV, that of Cs_2PdC_2 is estimated to be slightly greater than that of $Rb_2PdC_2^{5}$. Our PBE calculations predict the lowest energy direct transitions between 1.2-1.8 eV for Na₂PdC₂ (near the H point) and 1.7-2.6 eV for Cs_2PdC_2 (near the H and K points), as shown in Fig. 3. The overall characteristics of these bands is similar to those calculated previously for ternary acetylides, e.g. in Refs. 5, 7 and 12. Band gaps of bulk Cs_2Te , Cs_2TeC_2 and Na_2TeC_2 have been predicted to be between 1.8-2.0 eV, using the PBE functional (Fig. 4).

We have also calculated the optical absorption spectra of some ternary acetylides and Cs_2Te (Figs. 5 and 6) in the Random Phase Approximation (RPA) using the YAMBO-code¹¹. All optical absorption calculations have been performed with a resolution of $\Delta k < 0.1$ Å⁻¹, and a Gaussian broadening of 0.03 Ry. Note that for maximum absorption the polarization of the light was parallel with rods in the ternary acetylides and parallel with the crystallographic c-axis in Cs_2Te (see Fig. 7). Due to the lack of norm-conserving pseudopotential for Pd, optical absorption spectra of Na₂PdC₂ and Cs₂PdC₂ could not be calculated. In order to associate these gaps with transition probabilities, a crude approximation of these spectra using only planewaves with G=0 wave-vectors was attempted. It indicates absorption maxima at 1.8 and 2.6 eV for Na₂PdC₂ and Cs₂PdC₂, respectively (Fig. 5). Unexpectedly, $PBE0^{13}$ calculations at the same geometries result in about 1.0 eV larger gaps than the experimental ones.

III. RESULTS AND DISCUSSION

The optimization reveals that Cs_2TeC_2 has a very similar structure to other compounds of the A_2MC_2 class. Our DFT calculations predict that the electronic energy change in Eq. 1 is $\Delta E = +1.1$ eV per Cs_2TeC_2 unit,

TABLE I: Validation of the a, b and c lattice parameters on several test systems using the PBE density functional, as described in the discussion. Orthorhombic and hexagonal Cs_2C_2 are denoted as o- Cs_2C_2 and h- Cs_2C_2 , respectively, with structural parameters not very accurately determined due to the coexistence of the two phases at any temperature.

Compound,	Lattice Parameters (Å)						
space-group &	EXPT			DFT			
reference	a	b	с	a	b	с	
$Cs (Im\overline{3}m)^{14}$	6.067	6.067	6.067	6.067	6.067	6.067	
Te $(P3_121)^{15}$	4.526	4.526	5.920	4.458	4.458	5.925	
$Cs_2Te (Pnma)^{16}$	9.512	5.838	11.748	9.558	5.832	11.750	
$C (Fd\overline{3}m)^{17}$	3.567	3.567	3.567	3.573	3.573	3.573	
$Na_2C_2 (I4_1/acd)^{18}$	6.778	6.778	12.740	6.941	6.941	13.027	
$o-Cs_2C_2$ (Pnma) ¹⁹	9.545	5.001	10.374	9.826	5.061	10.491	
$h-Cs_2C_2 \ (P\overline{6}2m)^{19}$	8.637	8.637	5.574	8.728	8.728	6.048	
$CsAgC_2(P4_2mmc)^6$	5.247	5.247	8.528	5.317	5.317	9.036	
$Na_2PdC_2 (P\overline{3}m1)^5$	4.464	4.464	5.266	4.632	4.632	5.284	
$Cs_2PdC_2 (P\overline{3}m1)^4$	5.624	5.624	5.298	5.804	5.804	5.265	
$Na_2 TeC_2 (P\overline{3}m1)$	-	-	-	4.767	4.767	6.102	
$Cs_2 TeC_2 (P\overline{3}m1)$	-	-	-	5.820	5.820	6.152	

TABLE II: Validation of C-C and M-C distances (M is transition-metal or metalloid element).

Compound,	d(C-C	(Å)	d(M-C	(Å)
Space-group & ref.	EXPT	DFT	EXPT	DFT
$C (Fd\overline{3}m)^{17}$	1.544	1.547	-	-
$C_2H_2 \ (gas)^{20}$	1.203	1.203	-	-
$Na_2C_2 (I41/acd)^{18}$	1.204	1.261	-	-
$o-Cs_2C_2$ (Pnma) ¹⁹	1.385	1.269	-	-
$h-Cs_2C_2 \ (P\overline{6}2m)^{19}$	0.934	1.267	-	-
$CsAgC_2 \ (P4_2mmc)^6$	1.216	1.249	2.016	2.034
$Na_2PdC_2 (P\overline{3}m1)^5$	1.262	1.271	2.019	2.006
$Cs_2PdC_2 \ (P\overline{3}m1)^4$	1.260	1.280	2.019	1.993
$Na_2 TeC_2 (P\overline{3}m1)$	-	1.259	-	2.422
$Cs_2 TeC_2 (P\overline{3}m1)$	-	1.257	-	2.452

while that in the alternative reaction of

$$Cs_2C_2(cr) + Te(cr) \rightarrow Cs_2TeC_2(cr)$$
 (2)

is $\Delta E = -0.95$ eV, indicating the stability of the Cs₂TeC₂ crystal and an alternative synthesis route. In fact the synthesis in Eq. 2 is analogous to that of already existing A₂MC₂ compounds⁵. The predicted stability of a ternary acetylide with metalloid element (Te) instead of a transition metal for M in the A₂MC₂ formula is indicative of potential extension of this class of materials with metalloids, while preserving the peculiar rod-like [MC₂]_∞ substructures. Our analysis at this point cannot exclude the existence of other structures for Cs₂TeC₂. We have attempted to start the optimization of a 5 atomic unit cell of Cs₂TeC₂ from several randomly chosen initial lattice parameters and atomic positions. In all cases the for-

TABLE III: Experimental and calculated (DFT) properties of photoemissive surfaces of validation materials: workfunctions (Φ), bandgaps at the Γ -point $E_a(\Gamma)$ and surface energies (σ).

Compound	Φ (eV)		$\mathbf{E}_g(\Gamma)(eV)$	$\sigma~({\rm eV}/{\rm \AA^2})$	
surface	EXPT	DFT	DFT	DFT	
Cs(100)	2.14^{21}	2.00	0.29	0.005	
Te(001)	4.95^{21}	5.02	0.54	0.036	
$Cs_2Te(001)$	$2.90 - 3.0^{22}$	3.08	0.77	0.015	
$Cs_2Te(010)$	$2.90 - 3.0^{22}$	2.90	1.04	0.014	
$(Cs)Na_3KSb$	1.55^{23}	-	-	-	
K_2CsSb	$1.9 - 2.1^{24,25}$	-	-	-	

TABLE IV: Calculated (DFT) properties of photoemissive surfaces of acetylide compounds: workfunctions (Φ), bandgaps at the Γ -point $E_g(\Gamma)$ and surface energies (σ). Relaxed slabs refer to the relaxation of unrelaxed ones with the central 2 layers fixed. For h-Cs₂C₂(001) and Na₂TeC₂(010), $E_g(\Gamma) \approx 0.05$ eV has been found for a single band above E_F as well.

Compound	unrelaxed			relaxed			
and	Φ	$\mathrm{E}_g(\Gamma)$	σ	Φ	$\mathrm{E}_{g}(\Gamma)$	σ	
surface	(eV)	(eV)	$(\mathrm{eV}/\mathrm{\AA}^2)$	(eV)	(eV)	$(\mathrm{eV}/\mathrm{\AA}^2)$	
$o-Cs_2C_2(010)$	2.80	1.25	0.023	-	-	-	
$h-Cs_2C_2(001)$	2.56	1.14	0.027	-	-	-	
$Na_2PdC_2(001)$	3.58	1.13	0.067	-	-	-	
$Na_2PdC_2(110)$	3.73	1.65	0.029	4.17	2.34	0.024	
$Na_2PdC_2(010)$	2.65	1.91	0.019	2.68	2.45	0.017	
$Cs_2PdC_2(001)$	2.90	1.43	0.046	-	-	-	
$Cs_2PdC_2(110)$	2.73	0.88	0.026	2.73	1.16	0.022	
$\mathrm{Cs}_2\mathrm{PdC}_2(010)$	1.33	0.78	0.015	2.03	1.74	0.013	
$Na_2 TeC_2(001)$	3.40	1.03	0.029	-	-	-	
$Na_2 TeC_2(110)$	3.80	0.91	0.025	4.67	2.04	0.009	
$Na_2 TeC_2(010)$	2.75	1.43	0.015	2.68	1.34	0.015	
$Cs_2 TeC_2(001)$	3.71	1.86	0.022	-	-	-	
$Cs_2 TeC_2(110)$	2.77	0.77	0.020	2.98	1.38	0.019	
$Cs_2 TeC_2(010)$	1.71	1.00	0.013	2.44	1.63	0.009	

mation of $[\text{TeC}_2]_{\infty}$ rods was evident after a few hundred steps. Here we have relied on the fact that A_2MC_2 compounds have been found only with hexagonal rod packing so far. Also, the structure of h-Cs₂C₂ already contains the hexagonal rod-packing of the C₂ units leaving place for intercalatable atoms, such as Te, or transition metals, between neighboring C₂-s along a rod.

One should also note that the linear chains of carbon atoms, $[C_2]_{\infty}$ with alternating C-C and C \equiv C bonds (polycarbyne) or with uniform C=C bonds (cumulenes, polyallenes), have long been a subject of theoretical and materials science interest^{26,27}. However, unlike their hydrogenated analogue, $[C_2H_2]_{\infty}$ polyacetylene, containing alternating C-C and C=C bonds, famous for high electrical conductivity on the order of that of silver when doped^{28,29}, $[C_2]_{\infty}$ could not have been synthesized un-

FIG. 3: Bandstructures of Na_2PdC_2 and Cs_2PdC_2 using the PBE⁹ exchange-correlation functional. The k-space was $14 \times 14 \times 14$ large. The Fermi energy is at 0 eV. Flat bands are characteristic for ternary acetylides.

til a decade ago, proving the existence of $[C_2]_n$ with $n \in \approx [200,300]^{30}$. Interestingly, the efficient synthesis of $[C_2]_n$ involves copper-acetylides³⁰. Furthermore, copper-acetylides can also be used as the starting material for their synthesis³¹, pointing to the intimate relationship of the rod-like $[MC_2]_{\infty}$ substructures in ternary-acetylides A_2MC_2 and AMC_2 to linear carbon chains. Copper-acetylide molecules are also studied for their self assembly into extremely thin nanowires³². It is also important to note that while transition-metal acetylides are known explosives, their alkalinated versions AMC_2 and A_2MC_2 are not explosive at all and can survive heating up to \approx 500-600 °C and grinding^{5,33}.

As it is indicated in Table IV, the workfunctions of different surfaces of Cs_2TeC_2 have largely different values. Concerning the three most important surfaces (Fig. 2), there is a ≈ 1 eV decrease as one goes from (001) through (110) to (010) in each step, with workfunctions of 3.71, 2.77 and 1.71 eV, and surface energies of 0.022, 0.020 and 0.013 eV/Å², respectively, for the unrelaxed surfaces. Relaxed surfaces have somewhat greater workfunction values, but still allowing for emission in the visible spectrum. Relaxation of the surface layers greatly influences the unoccupied bands, while the occupied ones change

FIG. 4: Bandstructures of Na₂TeC₂, Cs₂TeC₂ and Cs₂Te, using the PBE⁹ exchange-correlation functional. The k-space was $14 \times 14 \times 14$ large. The Fermi energy is at 0 eV.

significantly less, as indicated in Fig. 8. Also note that the total energy differences between relaxed and unrelaxed surfaces are small, for example they are only 0.3 eV for a whole $Cs_2TeC_2(010)$ slab, i.e. about 0.01 eV/atom in the top surface layers which allows for thermal population of a great variety of surface structures at room temperature. In $Cs_2TeC_2(010)$ and $Na_2TeC_2(010)$ surface relaxations may break the $[TeC_2]_{\infty}$ rods, while the rods stay intact in Pd (or other transition metal) based ternary acetylides. In $Cs_2PdC_2(010)$ and $Na_2PdC_2(010)$ the rods provide quasi rails along which Cs-s and Na-s

FIG. 5: Optical absorption spectra of bulk Na₂PdC₂ and Cs₂PdC₂ from the imaginary part of the macroscopic dielectric function $\varepsilon_M(\omega)$. Only the G=0 planewaves were used to calculate intensities in the RPA approximation. The polarization vector of the light is along the main crystallographic axis (along the [PdC₂]_{∞} chains).

can easily move due to thermal motion. This is also in accordance with the anomalous broadening of peaks in the x-ray powder spectra of ternary acetylides⁷. Such an anomalous anisotropy of workfunction values is highly unusual and represents a broad range of workfunction choice within a single material, allowing for emission in ultraviolet, visible and near infrared radiation. The lowest surface cleavage energy Cs_2TeC_2 surface, (010), has a similar surface energy as those of Cs_2Te surfaces; it is, however, associated with a much lower (by ≈ 1.3 eV) workfunction. The highly anisotropic properties of Cs_2TeC_2 are due to the relative orientation of the rod-like $[TeC_2]_{\infty}$ substructures and the surfaces. Surface energies reveal that cutting the rods by cleaving the M-C bonds ((001) surface) is energetically disadvantageous, and it is also disadvantageous to allow for rods to be directly exposed on the surface ((110) surface), while cleavage between Cs atoms with rods embedded under the surface is the most energetically favorable construct ((010) surface). While numerous variants of surface coverages may exist at different temperatures that expose or cover rods by Cs on the surface, here we do not go beyond a single surface unit to study the energetics of surfaces. The sticking of Cs to these surfaces may be a similarly important issue here as in the case of cesiated III/V semiconductor surfaces (e.g. GaAs)³⁴. As the rods are twice negatively charged per MC_2 unit, we expect that the sticking of Cs cations would be relatively strong.

High anisotropy can be observed in Na_2PdC_2 , Na_2TeC_2 and Cs_2PdC_2 as well, with somewhat smaller, 1.1-1.6 eV difference between the extremal surfaces. The type of the alkali atom very sensitively influences the workfunctions: substituting Na with Cs results in more than 1 eV reduction of the workfunction on the (110) and (010) surfaces independently from the type of the

FIG. 6: Optical absorption spectra of bulk Cs_2Te and Cs_2TeC_2 from the imaginary part of the macroscopic dielectric function $\varepsilon_M(\omega)$. The 4000 lowest energy planewaves were used to calculate intensities in the RPA approximation. The polarization vector of the light is along the main crystal-lographic axis (along the $[TeC_2]_{\infty}$ chains and the c-axis of Cs_2Te).

 $[MC_2]_{\infty}$ chain, even though the M-C bonding in these chains is very different. One has to note that the Pd-C distance is significantly shorter than the Te-C in these compounds, 2.01 Å vs. 2.45 Å, respectively, while Te and Pd have very similar covalent radii of ≈ 1.4 Å³⁵. The (001) surface energies also indicate a much stronger Pd-C bond than Te-C one. While there is a σ -bond in both Pd-C and Te-C links between the 2sp¹ hybrid orbital of the C atom and the 5sp¹ hybrids of Pd and Te (all oriented along the M-C-C line) the Pd-C link is further strengthened by strong back-donation of Pd 4d shell electrons to the antibonding π -orbitals of the C₂²⁻ ions, also associated with lengthening of the C-C bond⁵. Also note that Cs_2Te (and also Cs_2TeC_2) has the advantage over the formerly mentioned multi-alkali-antimonides that Cs is better bound in them allowing for longer operational lifetime¹. Another interesting comparison can be made to amorphous cesiated carbon films obtained from the co-deposition of high-energy negatively charged carbon ions and Cs on silicon substrates, as the low, $\approx 1.1 \text{ eV}$ workfunction in them might be associated with increased acetylide ion concentration. However, there is no available data of how well Cs is bound in these systems³⁶.

In order to estimate the quantum-yield of Cs_2TeC_2 relative to Cs_2Te , we have calculated their optical absorption spectra (Fig. 6) using the lowest energy 4000 planewaves at which the spectrum becomes saturated against further increase of the number of planewaves. The spectra indicate that acetylation of Cs_2Te shifts its first absorption peak in the visible region to 2.7 eV, while preserving the same absorption intensity. This comparison suggests that Cs_2TeC_2 may have similarly high quantum efficiency as that of Cs_2Te , however, even for visible and potentially also for near infrared photons. The

FIG. 7: Dependence of the optical absorption spectra of bulk Cs_2Te and Cs_2TeC_2 on the polarization of the incident light. The z-direction is along the main crystallographic axis (c-axis), which is parallel with the $[TeC_2]_{\infty}$ chains in Cs_2TeC_2 . While absorption in Cs_2TeC_2 is highly anisotropic, with ≈ 9 times higher values for the z-direction than for the x and y ones, there is no significant anisotropy of absorption in Cs_2TeC . Similar anisotropy can be seen in Na_2TeC_2 as well, and likely in all ternary acetylides, due to the electric dipoles along the $[MC_2]_{\infty}$ chains.

bandgaps at the Γ point of Cs₂TeC₂ surfaces (see Table IV) also support that photon-energies near the workfunction are sufficient to induce emission in this material. An interesting characteristics of ternary acetylides is the extensive presence of flat bands (see Figs. 3 and 4). While there are some flat band parts in Cs_2Te as well, such a feauture is much more characteristic for ternary acetylides. Flat bands greatly increase the density of states for some spectral regions thus they contribute to increased absorption of light. Interestingly, not only the workfunctions of these materials show high anisotropy, but also their optical absorption (see Fig. 7). The optical absorption is almost a magnitude greater when the light's polarization vector is parallel with the $[MC_2]_{\infty}$ rods. This property can allow for example for the generation of pulsed electron beams when these surfaces are illuminated by circularly polarized light. Several other optical applications can be envisioned based on the anisotropy of optical absorption in ternary acetylides, such as polarfilters and optical switching elements.

It is also important to call attention to the rest of the ternary acetylides as valuable photoemissive materials. For example the already synthesized $Cs_2PdC_2(010)^4$ material is predicted here to have a very low 1.33-2.03 eV workfunction even smaller than that of $Cs_2TeC_2(010)$ and a similar density of states.

While it may be difficult to lower the workfunction into the infrared spectral domain (below 1.5 eV), multiphoton absorption of infrared light may still provide a way to photo-emission in this domain as well. Strong multiphoton absorption of organic and inorganic compounds with acetylide units is well known³⁷, for example in platinum acetylides³⁸, the analogy suggests that multiphoton absorption may be strong in ternary acetylides as well. Multiphoton absorption happens via simultaneous absorption of multiple photons without the need of real intermediate states as opposed to cascaded multiple step one-photon absorptions³⁷. These latter ones are also possible in ternary acetylides as there are surface states 1-1.5 eV above the Fermi level as indicated in Fig. 8.

Emission from $A_2MC_2(001)$ surfaces (rods perpendicular to surface) may especially be suitable for generating low transverse emittance electron beams³⁹ as excited electrons are expected to be guided along the $[MC_2]_{\infty}$ rods while traveling from inside the bulk of the cathode towards the surface whereby not being scattered side-wise, analogously to needle-array cathodes of field emission⁴⁰.

IV. CONCLUSIONS

In the present work we have demonstrated unique photoemissive properties of ternary acetylides, such as low workfunctions, high workfunction and optical absorption anisotropy and high quantum yield. We have also demonstrated how the acetylation of the seasoned Cs_2 Te photocathode material leads to significantly lowered workfunction while preserving its high quantum yield.

V. ACKNOWLEDGEMENTS

The authors gratefully acknowledge A. Zholents and K. Attenkofer (APS/Argonne) for helpful discussions and thank NERSC (U.S. DOE DE-AC02-05CH11231) for the use of computational resources. J. Z. Terdik thanks A. Zholents for support. This research was supported by the U.S. DOE Office of Science, under contract No. DE-AC02-06CH11357, and also by the National Science Foundation (No. PHY-0969989).

* Nemeth@ANL.Gov

FIG. 8: Electronic bands of the slabs of the (010) and (110) surfaces of Cs_2PdC_2 and Cs_2TeC_2 along the two orthogonal reciprocal surface lattice vectors k_x (panels A, C, E and G) and k_y (panels B, D, F and H). The $[MC_2]_{\infty}$ rods are parallel with the y direction for all (010) and (110) surface slabs. Bands at both relaxed (green) and unrelaxed (red) slabs are shown. The Fermi energy is at 0.

- ¹ D. H. Dowell *et.al*, Nuclear Instruments and Methods in Physics Research A **622**, 685 (2010).
- ² E. Taft and L. Apker, J. Opt. Soc. Am. **43**, 81 (1953).
- ³ A. di Bona *et.al*, J. Appl. Phys. **80**, 3024 (1996).
- ⁴ U. Ruschewitz, Z. Anorg. Allg. Chem. **627**, 1231 (2001).
- ⁵ H. Billetter *et.al*, Z. Anorg. Allg. Chem. **636**, 1834 (2010).
- ⁶ W. Kockelmann and U. Ruschewitz, Angew. Chem. Int. ed. **38**, 3495 (1999).
- ⁷ U. Ruschewitz, Z. Anorg. Allg. Chem. **632**, 705 (2006).
- ⁸ P. Gianozzi *et.al*, J. Phys.: Condens. Matter **21**, 395502 (2009), http://www.quantum-espresso.org.
- ⁹ J. P. Perdew *et.al*, Phys. Rev. Lett. **77**, 3865 (1996).
- ¹⁰ C. J. Fall *et.al*, J. Phys.: Cond. Mat. **11**, 2689 (1999).
- ¹¹ A. Marini *et.al*, Comp. Phys. Comm. **180**, 1392 (2009), http://www.yambo-code.org.
- ¹² S. Hemmersbach *et.al*, Chem. Eur. J. **7**, 1952 (2001).
- ¹³ C. Adamo *et.al*, J. Chem. Phys. **110**, 6158 (1999).
- ¹⁴ C. S. Barrett, Acta Cryst. **9**, 671 (1956).
- ¹⁵ N. Bouad *et. al*, J. Solid State Chem. **173**, 189 (2003).
- ¹⁶ I. Schewe-Miller *et.al*, Golden Book of Phase Transitions 5, Wroclaw 1, 123 (2002).
- ¹⁷ M. E. Straumanis *et. al*, J. Am. Chem. Soc. **73**, 5643 (1951).
- ¹⁸ S. Hemmersbach *et.al*, Z. Anorg. Allg. Chem. **625**, 1440 (1999).
- ¹⁹ U. Ruschewitz *et.al*, Z. Anorg. Allg. Chem. **627**, 513 (2001).
- ²⁰ John Overend , Trans. Faraday Soc. **56**, 310 (1960).
- ²¹ H. B. Michaelson, J. Appl. Phys. **48**, 4729 (1977).

- ²² S. Lederer *et.al*, in *Proc. FEL 2007* (2007), p. 457.
- ²³ A. Sommer, *Photoemissive Materials* (John Wiley & Sons, New York, 1968).
- ²⁴ I. Bazarov *et.al*, Appl. Phys. Lett. **98**, 224101 (2011).
- ²⁵ T. Vecchione *et. al*, Appl. Phys. Lett. **99**, 034103 (2011).
- ²⁶ S. Roth and D. Carroll, One Dimensional Metals: conjugated polymers, organic crystals, carbon nanotubes (Wiley-VCH, Weinheim, 2004).
- ²⁷ F. Diederich, in *Modern Acetylene Chemistry*, edited by P. J. Stang and F. Diederich (VCH, Weinheim, 1995).
- ²⁸ C. K. Chiang *et.al*, J. Am. Chem. Soc. **100**, 1013 (1978).
- ²⁹ Nobel Prize in Chemistry, 2000, to A. J. Heeger, A. G. MacDiarmid and H. Shirakawa.
- ³⁰ F. Cataldo, Polymer International 44, 191 (1997).
- ³¹ F. Cataldo, Polymer International **48**, 15 (1999).
- ³² K. Judai *et.al*, Adv. Mater. **18**, 2842 (2006).
- ³³ R. Buschbeck *et.al*, Coordination Chemistry Reviews **255**, 241 (2011).
- ³⁴ M. Besançon *et.al*, Surface Science **236**, 23 (1990).
- ³⁵ C. Beatriz *et.al*, Dalton Trans. **21**, 2832 (2008).
- ³⁶ Y. W. Ko and S. I. Kim, J. Appl. Phys. **82**, 2631 (1997).
- ³⁷ Guang S. He *et.al*, Chem. Rev. **108**, 1245 (2008).
- ³⁸ K. Sonogashira *et.al*, J. Organomet. Chem. **145**, 101 (1978).
- ³⁹ K. Németh *et.al*, Phys. Rev. Lett. **104**, 046801 (2010).
- ⁴⁰ R. Ganter *et.al*, Phys. Rev. Lett. **100**, 064801 (2008).