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Hidden Order Transition in URu2Si2: Evidence for the Emergence of a Coherent

Anderson Lattice from Scanning Tunneling Spectroscopy
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Using a slave-boson approach, we demonstrate that the differential conductance and quasi-particle
interference pattern measured in recent scanning tunneling spectroscopy experiments [A.R. Schmidt
et al. Nature 465, 570 (2010); P. Aynajian et al., PNAS 107, 10383 (2010)] in URu2Si2 are consistent
with the emergence of a coherent Anderson lattice below the hidden order transition (HOT). Its
formation is driven by a significant increase in the quasi-particle lifetime, which could arise from
the emergence of a yet unknown order parameter at the HOT.

PACS numbers: 74.55.+v, 75.20.Hr, 71.27.+a, 72.15.Qm

I. INTRODUCTION

Heavy-fermion materials exhibit a plethora of exciting
phenomena1 which are believed to arise from the compe-
tition between Kondo screening2 and antiferromagnetic
ordering3. One of the most puzzling phenomena arises
in the heavy-fermion compound URu2Si2 which exhibits
an onset of Kondo screening around T ≈ 55K4,5, and un-
dergoes a second order phase transition at T0 = 17.5K4–6

into a state with a still unknown, hidden order parame-
ter (HOP). Currently, an intense debate focuses on the
nature of this state5,7,8. Important new insight into this
question has recently been provided by groundbreaking
scanning tunneling spectroscopy (STS) experiments9,10.
Above the hidden order transition (HOT), the differen-
tial conductance, dI/dV , exhibits a characteristic Fano
lineshape11. In contrast, below T0, a soft gap opens up in
dI/dV 9,10 and a quasi-particle interference (QPI) analy-
sis in Th-doped URu2Si2 reveals a band structure similar
to that expected in the (heavy Fermi liquid) phase of a
screened Kondo lattice9. Whether dI/dV is consistent
with the observed QPI pattern and with the emergence
of a coherent Kondo (or Anderson) lattice, is therefore
an important question whose answer will provide crucial
insight into the nature of the state below T0.

In this article, we address this question and demon-
strate that the experimentally observed dI/dV 9,10 and
QPI pattern9 below the HOT are consistent with the
emergence of a coherent Anderson lattice (CAL) and its
electronic band structure. In particular, dI/dV exhibits
characteristic signatures of the Anderson lattice band
structure10, such as an asymmetric gap, and a peak in-
side the gap which arises from the van Hove singularity of
the heavy f -electron band. In addition, the temperature
evolution of dI/dV 9,10 suggests that the formation of the
CAL below the HOT is primarily driven by a strong in-
crease in the lifetime of the heavy quasi-particles. Since
the observed second order phase transition at T0 is not
expected to result from the emergence of the CAL, we
suggest that it is the yet unknown hidden order parame-
ter that drives the increased quasiparticle coherence, thus
leading to the formation of the CAL below the HOT.

II. THEORETICAL FORMALISM

Our starting point for the description of URu2Si2 is
the slave-boson Anderson Hamiltonian12–16. In its con-
ventional form, the slave boson is employed to account for
valence fluctuations between unoccupied and singly occu-
pied f -electron sites, resulting in an f -electron occupancy
nf < 1. However, as we show below, URu2Si2 exhibits
valence fluctuations between singly and doubly occupied
f -electron sites which leads to nf > 1. In order to de-
scribe this case, we employ the particle-hole transformed
slave-boson Anderson Hamiltonian, which is given by

H =
∑

k,σ

εkc
†
k,σck,σ +

∑

k,σ

E0f
†
k,σfk,σ

+V
∑

r

(

f †
r,σb

†
rcr,σ +H.c.

)

+
∑

r,r′

Ir,r′S
K
r · SK

r′ . (1)

c†k,α(f
†
k,α) creates an electron with spin α and momentum

k in the light conduction c-band (heavy f -band), and V
is the (bare) hybridization between the c- and f -bands.
The two-dimensional (2D) conduction band dispersion
εk = 2t(cos kx + cos ky) − µ with nearest-neighbor hop-
ping t and chemical potential µ is chosen to reproduce the
2D QPI dispersion above the HOT9 (see Sec. IV). b†r, br
are slave-boson operators, introduced to account for fluc-
tuations between singly and doubly occupied f -electron
sites. Due to the particle-hole transformation discussed
above, the constraint describing these fluctuations12,13 is
given by

∑

α f †
r,αfr,α−b†rbr = 1. Moreover, Ir,r′ is the an-

tiferromagnetic interaction between magnetic moments
in the f -band, described by the S = 1/2 spin operator
SK
r at site r (the origin of Ir,r′ is discussed in Sec. IV).

In a path integral approach, one represents SK
r via the

fermionic operators f †, f14,15,17; decouples the magnetic
interaction term using a Hubbard-Stratonovich field,
χ(r, r′, τ); and enforces the constraint by means of a La-
grange multiplier (ǫf−E0). In the static (mean-field) ap-
proximation (and in the radial gauge12,13) one replaces
b†r, br by their expectation value 〈b†r〉 = r0(r)e

iφ(r) and
subsumes the phase factor eiφ into a redefinition of the
fermionic-operators f †, f . A condensation of the bosonic
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operators (i.e., r0 6= 0) represents the screening of the
magnetic moments. One also replaces the field χ(r, r′, τ )
by its static expectation value χ(r, r′) which describes the
antiferromagnetic correlations18 between magnetic mo-
ments. Minimizing the effective action, we obtain the
following set of self-consistent equations

s(r) = −
J0
π

∫ ∞

−∞

dω nF (ω) ImGfc(r, r, ω) ;

χ(r, r′) = −
Ir,r′

π

∫ ∞

−∞

dω nF (ω) ImGff (r, r
′, ω) ;

nf (r) = −

∫ ∞

−∞

dω

π
nF (ω) ImGff (r, r, ω) , (2)

where nf (r) = 1+r20(r) and J0 = V 2/(εf −E0) > 0. The
effective hybridization s(r) = V r0(r) is a measure for the
screening of the magnetic moments. For a translation-
ally invariant system, s(r) = s and χ(r, r′) = χ0 and χ1

for nearest and next-nearest-neighbor sites, respectively.
This yields a dispersion of the heavy f -band given by

χk = −2χ0(cos kx+cosky)− 4χ1 cos kx cos ky + εf . (3)

Moreover, in this mean-field approximation, the full
Green’s functions (γ, ζ = c, f)

Gγζ(r
′, r, α, τ) = −〈Tτγr′,α(τ)ζ

†
r,α(0)〉 (4)

describing the hybridization of the c- and f -electron
bands are given by

Gff (k, α, ω) =
[

(G0
ff (k, α, ω))

−1 − s2G0
cc(k, α, ω)

]−1
;

Gcc(k, α, ω) =
[

(G0
cc(k, α, ω))

−1 − s2G0
ff (k, α, ω)

]−1
;

Gcf (k, α, ω) = −G0
cc(k, α, ω)sGff (k, α, ω) , (5)

where G0
ff = (ω + iΓf − χk)

−1, G0
cc = (ω + iΓc − εk)

−1,

and Γ−1
c and Γ−1

f are the lifetimes of the c- and f -electron

states, respectively (the potential origin of Γf,c will be
discussed below). For Γc = Γf = 0+, the poles of the
above Green’s functions yield two energy bands with dis-
persion

E±
k =

εk + χk

2
±

√

(

εk − χk

2

)2

+ s2 . (6)

To compute the differential conductance, dI/dV 19–21,
measured in STS experiments9,10, we define the spinor

Ψ†
k,α = (c†k,α, f

†
k,α) and the Green’s function matrix

Ĝα(k, τ) = −〈TτΨk,α(τ)Ψ
†
k,α(0)〉. With tc and tf =

t
(0)
f r0 being the tunneling amplitudes into the c- and f -

electron bands, respectively, one has20

dI(r, ω)

dV
= −

e

~
N̂t

∑

α

2
∑

i,j=1

[

t̂ ImĜα(r, r, ω) t̂
]

ij
(7)

where t̂ =

(

tc 0
0 tf

)

, and Nt is the STS tip’s density of

states, which is taken to be constant.

Finally, in the presence of impurities, dI/dV varies spa-
tially, and the QPI spectrum, S(q, ω), is given by the
Fourier transform of dI/dV into q-space. In the Born
approximation, we obtain

S(q, ω) ≡
dI(q, ω)

dV
=

πe

~
Nt

∑

α

2
∑

i,j=1

[

t̂N̂α(q, ω)t̂
]

ij
;

N̂α(q, ω) = −
1

π
Im

∫

d2k

(2π)2
Ĝα(k, ω)Û Ĝα(k+ q, ω),(8)

where

Û =

(

Uc Ucf

Ufc Uf

)

. (9)

Here, Uc and Uf = U
(0)
f r20 are the Th-atoms’9 scatter-

ing potential for intraband scattering in the c- and f -

electron bands, respectively, while Ufc = Ucf = U
(0)
cf r0 is

the scattering potential for interband scattering between
the c- and f -electron bands. We will show below that
the experimental QPI spectrum provides insight into the
relative strength of these scattering potentials. Finally,

we note that t
(0)
f , U

(0)
f and U

(0)
cf are the tunneling ampli-

tude and scattering strengths for the physical f-electron
band, respectively12,13.

III. RESULTS BELOW THE HOT

We begin by discussing the STS results of Schmidt
et al.9 obtained on a U-terminated surface of a 1% Th-
doped sample. In Fig. 1(a) we present the experimen-
tal change in dI/dV below the HOT [T = 1.9K data
of Fig. 3(b) in Ref.9] together with a theoretical fit,
δ(dI/dV ) = dI/dV (T < T0) − dI/dV (T = T0) (with
r0 = 0 at T = T0) obtained from Eq.(7). In Figs. 1(c) and
(d), we show a contour plot of the QPI intensity |S(q, ω)|
(obtained with Uf/Uc ≈ 0.6 and Ucf = 0) and the exper-
imental QPI dispersions (black lines) of Figs. 5(c) and (d)
in Ref.9, along qy = 0 and qy = qx respectively. Figs. 1(e)
and (f) show the maxima in |S(q, ω)|, i.e., the QPI dis-
persion. The very good quantitative agreement between
the theoretical and experimental dI/dV lineshapes and
QPI dispersions suggests that the STS data reflect the
emergence of a coherent Anderson lattice below the HOT,
in agreement with the conclusions reached by Schmidt et
al.9

We next discuss the QPI and dI/dV results in more
detail. The QPI pattern is determined by scattering of
electrons both within and between the E±

k -bands. In-
traband scattering [see Fig. 1(b)] gives rise to the q1

and q2 branches in |S(q, ω)| shown in Figs. 1(c) and
(d). The main contribution to these branches arises from
2kF -scattering [Fig. 1(b)], such that their dispersion is
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FIG. 1. (color online) (a) Experimental9 and theoretical
δ(dI/dV ) below the HOT. A background was subtracted and
the data were vertically scaled. (b) Fermi surfaces of E±

k
.

Contour plot of |S(q, ω)| along (c) qy = 0 and (d) qy = qx,
together with the QPI dispersions of Ref.9. (e),(f) Maxima
of |S(q, ω)|. The theoretical parameters are t = 45 meV,
µ = 3.17t, s = 0.06t, εf = −0.08t, χ0 = −0.04t, χ1 = −0.3χ0,
tf/tc = 0.0075, Uf/Uc = 0.6, Γf,c = 0.03t, yielding r20 = 0.51,
V = 0.084t, E0 = −0.082t, J0 = 2.95t, and I = 0.42t.

approximately described by E±
q/2 as shown in Figs. 1(e)

and (f). Moreover, E±
k overlap in the energy interval

−1 meV . ω . 1.5 meV, thus allowing for interband
scattering with wave-vector q3, and a corresponding q3

branch in |S(q, ω)| [see Figs. 1(c) and (d)]. The q3

branch has been seen experimentally along qy = 0, where
the experimental and theoretical QPI results are in very
good agreement, but is absent along qy = qx. The lat-
ter discrepancy likely arises from the smaller gap along
qy = qx rendering the experimental resolution of the q1

and q3 branches difficult. As a result, the experimental
q1 branch around q ≈ 0.5π lies between the theoretical
q1 and q3 branches [see red arrow in Fig. 1(d)]. This
difficulty in resolving the two branches also explains why
the extrapolation of the q1 dispersion to q = 0 along
qy = 0 yields an energy of ω ≈ 1 meV for the upper band
edge of E−

k which is consistent with the sharp drop in
dI/dV at this energy [see arrow (1) in Fig. 1(a)], while
the extrapolation along qy = qx does not. Moreover, the
good agreement between the theoretical and experimen-
tal QPI dispersions also allows us to identify the peak
in dI/dV at ω = −2 meV [see arrow (2) in Fig. 1(a)] as

arising from the van Hove singularity of the f -electron
band.
The experimental QPI data9 also provide insight into

the microscopic nature of Th-scattering, since the QPI
dispersion, as well as the spectral weight associated with
the QPI spectrum |S(q, ω)| sensitively depend on the rel-
ative strength of the scattering potentials. To demon-
strate this, we present in Fig. 2(a) the QPI spectrum
for intraband scattering in the c-band only, i.e., for
Uf , Ucf = 0, Uc 6= 0. This spectrum is similar to that
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FIG. 2. (color online) |S(q, ω)| along qy = 0 for (a) Uf , Ucf =
0, Uc 6= 0, (b) Uc, Ucf = 0, Uf 6= 0, and (c) Uf , Uc = 0,
Ucf 6= 0. (d) E±

k
extracted from theoretical fits.

of the unhybridized c-electron band [see Fig. 4(a)] since
its dominant contribution arises from scattering between
states where the coherence factors of the c-electrons are
large. Conversely, for intraband scattering in the f -band,
i.e., for Uc, Ucf = 0, Uf 6= 0, the QPI spectrum |S(q, ω)|
shown in Fig. 2(b) is predominantly determined by scat-
tering between states with large f -electron weight. The
spectral weight in |S(q, ω)| in both cases [Figs. 2(a) and
(b)] is inconsistent with the experimentally observed QPI
weight and dispersion. The latter can only be explained
(as shown in Fig. 1) by considering intraband scatter-
ing both in the c- and f -bands with relative scattering
strength Uf/Uc ≈ 0.6. Finally, for interband scattering
between the c and f -bands, i.e., for Uf , Uc = 0, Ucf 6= 0,
the QPI spectrum significantly deviates from the exper-
imental QPI dispersion, as shown in Fig. 2(c). In par-
ticular, interband scattering leads to only two branches
in the QPI spectrum, in contrast to the three branches
observed experimentally. Moreover, the largest spectral
weight in the QPI spectrum for interband scattering oc-
curs where the experimental QPI intensity is close to a
minimum [see red arrow in Fig. 2(c)]. Note in this re-
gard that the existence of a q3 branch from interband
scattering between the E±

k -bands [see Fig. 1(b)] does not
require Ucf 6= 0. These inconsistencies thus strongly sug-
gest that Th-atoms do not lead to interband scattering
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between the c and f -bands.
We next discuss the STS results by Aynajian et al.

10,
and present in Figs. 3(a) and (b) the experimental dI/dV
data obtained on a U-terminated surface of pure URu2Si2
for T = 2K and 4K, respectively [Fig. 4(b) in Ref.10], to-
gether with the theoretical results obtained from Eq.(7).
The theoretical dI/dV curves reproduce the experiment’s
salient features: the asymmetry and magnitude of the
gap in dI/dV as well as the peak at ω ≈ −0.8 meV
[see arrows in Figs. 3(a) and (b)] which arises from the
van Hove singularity of the f -electron band. (similar
results were recently reported for YbRh2Si2

22, and the
Si-terminated surface of URu2Si2

9). Both features are
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FIG. 3. (color online) Theoretical fits to the dI/dV data
of Ref.10 at (a) T = 2K and (b) T = 4K. (c) Evolution of
dI/dV with Γf . The theoretical parameters are J = 3.69t,
I = 0.89t, χ1 = −0.36χ0, tf/tc = 0.0175, and Γc = 0.02t. At
T = 2K, s = 0.32t εf = −0.20t, χ0 = −0.09t, V = 0.418t,
E0 = −0.25t. (d) Dependence of r0 and |χ0| on Γf . The green
line is a fit to r0 = 0.765t(Γ0

f − Γf )
0.5 with Γ0

f = 0.21315t.

characteristic signatures of the Anderson lattice band-
structure, and thus suggest the existence of a coherent
Anderson lattice below the HOT.
To gain insight into the microscopic origin of the CAL,

we note that the changes in dI/dV between T = 2K
[Fig. 3(a)] and T = 4K [Fig. 3(b)] can be solely attributed
to an increase in the damping of the f -electron states
from Γf = 0.013t at T = 2K to Γf = 0.024t at T = 4K,
and the concomitant reduction in the magnitude of r0, χ0

[see Fig. 3(d)], and εf obtained from the self-consistent
solution of Eq.(2) (a more detailed discussion of this pro-
cedure is given below). Increasing Γf even further yields
the evolution of dI/dV shown in Fig. 3(c) which possesses
the same characteristic signatures as those observed by
Aynajian et al.10 with increasing temperature: the gap in
dI/dV is filled in, its magnitude remains approximately
constant (until close to the HOT), and the center of the
gap shifts to larger energies. We therefore conclude that
the formation of a coherent Anderson lattice below the
HOT is likely driven by a significant reduction of Γf

with decreasing temperature. In Fig. 3(d) we present
the corresponding evolution of r0 and χ0 with Γf [ob-
tained from Eq.(2)] that enters the calculation of dI/dV
shown in Fig. 3(c). While r0 decreases only by approx-
imately 10% between Γf = 0.013t and 0.052t, it is the
interplay between this decrease in r0 and the increase in
Γf that leads to the substantial evolution of the dI/dV
curves in Fig. 3(c). With increasing Γf , r0 decreases
monotonically and vanishes at Γ0

f = 0.21315t, varying as

r0 ≈ 0.765t(Γ0
f − Γf )

1/2 for Γf . Γ0
f [see dashed green

line in Fig. 3(d)].

In Fig. 2(d), we present the bandstructure, E±
k , result-

ing from our fits for 1% Th-doped9 (Figs. 1) and pure
URu2Si2

10 (Figs. 3) samples. In the Th-doped sample,
the hybridization is smaller while Γf,c are larger than
in the undoped compound. These results are consis-
tent with a suppression of the HOT (and thus s) and an
increased decoherence by Th-doping (however, the mi-
croscopic origin for the experimentally observed strong
suppression of the hybridization by 1% Th-doping is
currently unclear). This, together with the similar ex-
tracted f -electron densities of nf = 1.59 in the pure and
nf = 1.51 in the Th-doped samples, supports the conclu-
sions that both groups probe the same heavy and light
bands, and that URu2Si2 represents a coherent Anderson
lattice system below the HOT.

We next discuss the parameters extracted from our
analysis of the experimental data, as well as the self-
consistent solution of Eq.(2) in more detail. We find
that the theoretical fits shown in Figs. 1 and 3(a) for
1% Th-doped9 and pure URu2Si2

10, and the parameters
(i.e., s, εf , χ0,1, tf/tc, Uf/Uc, Γf,c) extracted from these
fits are unique since each theoretical parameter exerts a
qualitatively different effect on the dI/dV and QPI spec-
tra, as discussed in Ref.20 and shown above for Uf/Uc

[we note here that the c-band dispersion, εk, is uniquely
determined by the QPI spectrum above the HOT, see
Fig. 4(a)]. When one considers the evolution of dI/dV
with increasing Γf , as we did in Fig. 3, the question im-
mediately arises of which parameters remain unaffected
by the changing Γf . In addition to the magnetic inter-
action I, one might assume that the bare hybridization,
V , which is computed via V = s/r0 and r0 =

√

nf − 1,
where nf is obtained from Eq.(2), as well as E0 will re-
main unchanged. However, both V and E0 are com-
puted using nf , whose uncertainty could be substantial
since it is predominantly determined by regions of the
BZ where no experimental QPI data are available to test
the accuracy of our theoretical fits. In particular, due to
the large mass of the f -dispersion, χk, small changes in
band parameters (or further magnetic interactions) could
significantly alter nf (and hence V and E0), for exam-
ple, through the existence of additional Fermi surface
pockets8. Moreover, the physical mechanism changing
Γf (with increasing temperature) could also affect E0

due to the its proximity to the Fermi energy. In order to
avoid these uncertainties in the self-consistent solution of
Eq.(2), we therefore assumed that J0 (and I) remain un-
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FIG. 4. (color online) Above the HOT: (a) |S(q, ω)| for qx =
qy together with the experimental QPI dispersion of Ref.9,
and (b) dI/dV , both for the same parameters as in Fig. 1 but
s = 0. (c) Theoretical fit to the 19K dI/dV data [Fig.5(c) in
Ref.9] with s = 1.0t, χ0 = −0.045t, χ1 = 0, εf = −0.032t,
Γc = 0.77t, Γf = 0.13t, and (d) the resulting |S(q, ω)| along
qy = 0.

changed with increasing Γf , resulting in the good agree-
ment of our theoretical dI/dV curves [Figs. 3(b) and (c)]
with the experimental data.
The above results also provide insight into the origin

of the magnetic interaction, Ir,r′ , which can arise from
direct exchange23,24 or from an RKKY interaction3,16,25.
While our analysis has shown that Ir,r′ between nearest-
neighbor sites is antiferromagnetic, we find that the
RKKY-interaction between nearest neighbor sites (which
we computed using the extracted bandstructure) is fer-
romagnetic. This result suggests that the microscopic
origin of the nearest-neighbor Ir,r′ in URu2Si2 lies in di-
rect exchange, and not in an RKKY interaction.
Finally, our good theoretical fits of the experimental

STS results in terms of a coherent Anderson lattice sug-
gest that the STS data exhibit no signature (within the
accuracy of the theoretical fit) of a hidden order parame-
ter (though it was recently argued that the HOPmight be
“hidden” in the hybridization26). While the microscopic
origin of a finite Γf,c is presently unclear and might lie
in the presence of disorder or the coupling to collective
modes, the drastic decrease in Γf below the HOT could
be an indirect signature of the emergence of the hidden
order parameter, if the latter were to suppress those fluc-
tuation channels that are the physical origin of a non-zero
Γf .

IV. RESULTS ABOVE THE HOT

We next discuss the dI/dV Fano-lineshape observed
above the HOT9,10 and its relation to the conduction

band observed in QPI9. The QPI intensity, |S(q, ω)|, for
T > T0 where r0 = 0, shown in Fig. 4(a) reproduces well
the experimental QPI dispersion (black line) of Fig. 5(b)
in Ref.9. The dI/dV lineshape resulting from this light
band does not exhibit the characteristic Fano form (the
sharp drop in dI/dV at ω ≈ 40meV signifies the upper
band edge of εk), implying that the origin of the latter lies
in electronic bands not yet seen in QPI. This conclusion
is also supported by a theoretical fit of the experimental
dI/dV data of Ref.9 and Ref.10 above the HOT, shown
in Fig. 4(c). The resulting bands, E±

k , shown in Fig. 2(d)
(black lines), are not only significantly different from the
ones seen in QPI below the HOT, but also exhibit much
larger quasi-particle dampings, Γf,c, thus representing an
incoherent Anderson lattice. As a result, |S(q, ω)|, shown
in Fig. 4(d), exhibits very little q-structure (for fixed ω),
thus explaining the difficulty in detecting these bands
in QPI. We therefore conclude that an explanation of
the STS data above and below the HOT likely requires
multiple sets of c- and f -electron bands.

V. CONCLUSIONS

In summary, we have shown that recent STS results9,10

are consistent with the presence of a coherent Anderson
lattice in URu2Si2 below the HOT, but show no direct
signature of the hidden order parameter. We argue that
the emergence of the CAL is driven by a drastic increase
in the quasi-particle coherence, which could be an indi-
rect signature of the hidden order parameter. Clearly,
further studies are required to investigate this possibility.
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