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We generalize the noncommutative relations obeyed by the guiding centers in the two-dimensional
quantum Hall effect to those obeyed by the projected position operators in three-dimensional (3D)
topological band insulators. The noncommutativity in 3D space is tied to the integral over the 3D
Brillouin zone of a Chern-Simons invariant in momentum-space. We provide an example of a model
on the cubic lattice for which the chiral symmetry guarantees a macroscopic number of zero-energy
modes that form a perfectly flat band. This lattice model realizes a chiral 3D noncommutative
geometry. Finally, we find conditions on the density-density structure factors that lead to a gapped
3D fractional chiral topological insulator within Feynman’s single-mode approximation.

I. INTRODUCTION

The integer quantum Hall effect (IQHE)! is the first
known example of a fermionic phase of matter charac-
terized by a topological index that is directly connected
to a physical observable. The index in this case is the
sum of the (first) Chern numbers obtained for each of
the fully filled Landau bands, and the associated physi-
cal observable is the Hall conductance.2# The fractional
quantum Hall effect (FQHE) ° results from the effects
of electron-electron interactions when the Landau lev-
els are partially filled with electrons, for certain ratio-
nal filling fractions.® More examples of topological states
of matter that are comprised of noninteracting fermions
have been discovered recently,” 16 and have been classi-
fied according to discrete symmetries they respect or not,
and the dimensionality of space in which the particles
propagate.'” ¥ Such classification is sometimes referred
to as the “periodic table” of topological insulators.'®
Among these states are Z, topological ones associated
with the presence of time-reversal symmetry (TRS) in
two-dimensional (2D) as well as three-dimensional (3D)
systems. It is natural to then question what the “frac-
tional” version of these phases should be, and how they
could be described. In particular, it is interesting to ask
what are the possible fractional topological phases of in-
teracting fermionic systems in three spatial dimensions.

One approach to capture universal physics arising from
topological interacting electron systems in (2+41)2027
and (34+1)%73% dimensions of space and time is via the
parton construction. A fractional phase of electrons is
obtained by constructing integer filled bands of “par-
tons”, which are then “glued” together by very strong
gauge-mediated interactions so as to assemble together
the physical electron. This approach is a generalization of
theories that capture the universal physics of the FQHE,
and yields, for instance, wavefunctions describing states
that support fractional magneto-electric effects 2839 in
the case of the Z, topological insulators. The parton
construction is one way to obtain an effective topologi-

cal quantum field theory (TQFT) to describe fractional
topological insulators.

However, TQFTs do not capture the dynamics of the
systems beyond their topological properties. As empha-
sized by Haldane,?' TQFTs are incomplete theories of the
FQHE, for while they characterize the quantum numbers
of the elementary excitations (topological defects), such
as their charges and statistics, they do not contain any
information about their energies. The information about
the fundamental length scale in the FQHE, the magnetic
length, is lost in its TQFT treatment. Recently Haldane
has proposed in Refs. 31 and 32 a geometric description
of the FQHE based on the algebra obeyed by the density
operators projected to the lowest Landau level that was
originally introduced by Girvin, MacDonald and Platz-
man (GMP) in Ref. 33.

When projected to the lowest Landau level, the den-
sity operators do not commute. However, the algebra
closes in that the commutation of two density operators
is proportional to a third one. Using this algebra, GMP
were able to employ an approach that parallels that of
Feynman and Bijl in their study of excitations in *He.?*
Their approach allows to place a variational estimate on
the excitation gap, if the static structure factor is known.
The algebraic approach to the FQHE pioneered by GMP
has also been useful to understand the hydrodynamic de-
scription of the edge states in the IQHE and FQHE.3537
More recently, Parameswaran, Roy, and Sondhi in Ref. 38
have initiated a study of the algebra obeyed by the den-
sity operators in two-dimensional Chern band insulators
(see also Refs. 39 and 40). Our work in 3D is motivated
by this successful approach in 2D.

The main objective of this work is to identify the non-
commutative geometry that can emerge from 3D topo-
logical insulators, its relation to topological invariants,
and its relevance to possible interaction-driven topolog-
ical fractional phases in fermionic 3D systems. Armed
with this noncommutative geometry, one can forge ahead
in trying to construct a dynamical theory of 3D frac-
tional topological insulators that could, perhaps, parallel
the solid understanding of the FQHE in 2D. In particu-



lar, the approach might suggest which types of interac-
tions can give rise to incompressible gapped phases and
support the counterparts to the magneto-roton collective
excitation in the FQHE.33

There are important symmetry considerations that
need to be carefully taken into account when searching
for interacting topological insulators in 3D. The FQHE
descends from the IQHE when Landau or Chern bands
are partially filled. In turn, the 2D IQHE is a stable class
of states characterized by a Z index (symmetry class A in
the terminology of Ref. 17), which has no symmetry left
out to be broken. If the logic is that we are also to start
from a noninteracting topological insulator in 3D when
constructing the interacting fractional counterpart, we
need to look at systems which are topologically nontrivial
in 3D space. One possibility is to start with Z, topologi-
cal insulators. This has been the choice in most works so
far. Here, instead, we shall start from systems that have
chiral symmetry, but lack TRS (symmetry class AIII in
the terminology of Ref. 17). The rational for this choice
is twofold. First, from experience working on strongly in-
teracting 2D Z, topological insulators, we have observed
that TRS is easily broken in favor of magnetized states
due to the Stoner instability, which is enhanced in bands
with nonzero topological invariant.*! *3 Second, because
3D chiral systems are characterized by a Z-valued topo-
logical invariant, they might share similarities with the
FQHE. Indeed, we shall show that the noncommutative
geometry for this 3D model does depend on this Z-valued
topological invariant.

The approach of GMP is ideally suited to the situation
where density operators are projected into a dispersion-
less band (for example the lowest Landau level in the
case of the FQHE). Here, we shall give a concrete lattice
model with chiral symmetry that contains an exactly flat
topological band, on which we construct the projected
density operators. The resulting operator product ex-
pansions will depend on the nonzero integral over the 3D
Brillouin zone of a Chern-Simons action in momentum-
space. For this lattice model, the average Berry curvature
over the entire Brillouin zone is zero. Hence, the type
of 3D fractional topological insulator that we discuss is
qualitatively different from the FQHE, where the average
Berry curvature over the Brillouin zone is nonzero. The
nature of the fractional states we discuss are intrinsically
3D, and not layered 2D (i.e., weak topological insulators).

The main results of this paper are the following.

In Sec. II, we relate algebraic and topological proper-
ties of noninteracting fermions assuming a translation-
invariant insulating ground state. Although we are
mostly interested in either 2D or 3D space, our method
applies to any dimension d of space. We show in Sec. IT A
that the position operators for noninteracting fermions,
if projected onto the occupied bands that make up
the insulating Fermi sea, obey a noncommutative ge-
ometry that is tied to the single-particle band topol-
ogy. More precisely, for any 3D translation-invariant and
non-interacting fermionic Hamiltonian with an insulating

Fermi sea as ground state, Eq. (2.54) relates the ground
state expectation value of the 3-bracket for the projected
position operators to Chern-Simons invariants in 1D and
3D momentum space. If we impose chiral symmetry,
Eq. (2.55) dictates that it is only the Chern-Simons in-
variant in 3D momentum space that controls this ground
state expectation value. Imposing chiral symmetry is
thus a mean by which intrinsic 3D physics marries non-
commutative geometry with band topology. We show in
Sec. ITB with the help of Eq. (2.65) how to relate the non-
commutative geometry obeyed by the position operator
to that obeyed by the translation operator in momentum
space by means of an operator product expansion, when-
ever chiral symmetry holds. The results of Sec. IT A are
applied to the case of a 3D Dirac Hamiltonian in Sec. I C.
This 3D Dirac Hamiltonian can be thought of as playing
the role of the Landau Hamiltonian in 2D space. So far,
the position operators under consideration are always un-
bounded operators. Hence, Egs. (2.55) and (2.65) are not
applicable to tight-binding (lattice) models. Section IID
treats the operator product expansion for the Fourier
modes in momentum space of the fermion density op-
erator when projected onto a single band. As opposed to
the unbounded position operators from Sec. IT A, there is
no direct relation between the 3-bracket of the projected
density operators and band topology. Instead, the inter-
play between algebra and band topology is captured by
Eq. (2.88) for any 3D lattice model with chiral symmetry.

A minimal microscopic 3D noninteracting lattice
Hamiltonian that realizes the conditions necessary to
marry the noncommutative geometry to the band topol-
ogy of Sec. II is presented in Sec. III. A noninteracting
fermionic 3-band (of which one is flat) Hamiltonian is de-
fined in Sec. ITTA. The band topology is characterized
by three distinct topological numbers defined in Sec. IIT B
by Egs. (3.7), (3.10), and (3.12), respectively. They are
related by Eq. (3.14). Bulk band topology implies the ex-
istence of boundary states that disperse across the bulk

band gap in open geometries and to which we devote
Sec. TII C.

The role of density-density interactions for screened
Coulomb interactions is discussed in Sec. IV for tight-
binding models on d-dimensional lattices within the
single-mode approximation (SMA) under the assumption
that there exists at least one flat band in the noninter-
acting limit. We follow GMP and construct a family
of variational states labeled by momentum through the
application of the Fourier modes in momentum space of
the projected (on the flat band) fermion density operator
on the exact interacting many-body ground state. The
corresponding variational energy dispersion then deliv-
ers, within this approximation, the condition(s) for or
against the existence of a gap or the existence of collec-
tive modes, as was achieved assuming a Laughlin state
for the exact ground state in the FQHE by GMP. If
we denote the variational excitation energy by the frac-
tion A(k) = f(k)/s(k), where both the denominator
and numerator are expectation values with a variational



state such that the denominator turns out to be the
static structure factor of the exact interacting many-body
ground state, we show with the help of Eq. (4.10) the
conditions under which f(k) ~ k? for 2D and 3D lattice
models. A variational gap then requires that the static
structure factor s(k) of the exact many-body ground
state scales like s(k) ~ k? within the SMA. The condi-
tion s(k) ~ k? for a SMA gap can be tested numerically
given any Ansatz for the many-body ground state.

II. NONCOMMUTATIVE GEOMETRY

We begin by recalling some elementary facts about the
quantum motion of a spinless electron confined to move
in the plane spanned by the orthonormal unit vectors
e; and e, perpendicular to an applied uniform magnetic
field B = B e;, whereby e; = e, Ae,.

Its quantum dynamics is governed by the single-
particle (Landau) Hamiltonian

B=VAA(r), (2.1)
(P,, P,) and position RT =

(Rl,Rz) operators obey the canonical commutation re-
lation

where the momentum PT =

[RWPV} —ihs,,, (2.2)
with p, v =1,2.

Hence, neither do the components of the covariant
derivative in position space

-~ 1m

II :=

[ﬁ R =P+ CAR)  (230)

nor do the components of the conserved guiding center

— ~

=R- %e?, AT (2.3b)
commute, for
{ﬁl, ﬁQ} 1222 (2.4a)
and
{)?1,)?2} =+l (2.4b)

with {5 = /he/(eB) the magnetic length.
An orthonormal basis of energy eigenstates of the Lan-

dau Hamiltonian (2.1) is made of the kets

—_@a")"(5)"0).

[n,m) := ;
nlm!

(2.5a)

with
at = (H il ) b= ( X)
a': i : +1
\fﬁ 1 2 \fé 2
(2.5b)
and where n = 0,1,2,--- labels the Landau levels with
energy €,, = fw, (n+1/2) and m =0,1,2,--- ,[(®/Py) —

1] labels the orbital angular momentum. Here, ® = AB
is the magnetic flux threading the area A of the system,
@, = he/e is the flux quantum, and w, = eB/mgc is the
cyclotron frequency.

Defining the projector on the n-th Landau level

= Z |n7m><n7m|v

one finds that the guiding center defined in Eq. (2.3b)
is the position operator projected on any single Landau

level
b+ bt
ib — ibf

S [/ b+bf ial —ia\| 5 (2.7)
QP [(1b1b*> (m—!-a)} P

. R7P,,

(2.6)

—

X =

> a\cs\ Cla

since P, aP, = 0 and P, al P, = 0, while P,bP, = b
and ﬁnZT 73n = bl Thus, the position operators pro-
jected to any given Landau level satisfy the noncommu-
tative geometry (2.4b).

This noncommutative geometry is at the heart of both
the IQHE and the FQHE. For example, it is intimately
related to the quantized Hall conductivity . The Kubo
formula for the contribution of the n-th Landau level

(n=0,1,2,---) to the Hall conductivity is
2
w,_ €hl nm|H73 Jy|n,m) — (145 2)
(At 7P IPY ke ,
(2.8)
where A is the area of the Hall droplet. This can be

rewritten using Eq. (2.3a) as

ofl = % Z Z {(mm@lﬁn,f{z\n,m) - (1« 2)]

n’'#n m

= =3 [ ml Ry P Bylnm) — (145 2)]

(2.9)

where we used that A = 27 ). ¢%. The role of the
noncommutative position-operator algebra is apparent in
the penultimate line.



To quadratic order in ¢, the algebra of the projected
position operators (2.3b) is maintained if a coordinate
transformation r, — f,(r), p = 1,2, that varies on
length scales larger than ¢, is area preserving. Indeed,

we can then expand

(11X, ()] = +i 8 {1, fo}e (X) + O (¢)
(2.10a)
where the classical Poisson bracket is defined as

v (0f1 0[5
The condition for this coordinate transformation to lo-

cally preserve area is that its Jacobian equals unity, or
equivalently that {f;, fo}p (r) = 1. In this case, it fol-

lows that | f,(X), f,(X)] = +16 + 0(¢}).

From the projected coordinate algebra, one can obtain
a (projected) density algebra, by defining the projected
density

{f1. fa}p (r) == (2.10b)

p(r) =P, a(r) P, (2.11a)
where the unprojected density operator is
o(r) =5 (r - ﬁ) . (2.11b)

One can also construct the guiding center opera-

tors (2.3b) from the projected density operators through

X, = /d% 7, P, o(r)P,, pw=1,2. (2.12)

In momentum space, the projected normal ordered
density operators

plq) =BT/ Py el R Py

oz (2.13)

=e

in the lowest Landau level n = 0 satisfy the commutation
relations 33

N N e N
[P(q1), p(gy)] = —2i sin (f (91N go) - €3 ) gy + @»)
(2.14a)
or, in the limit of small momenta g; and g,
[0(a1), p(a2)] = =105 (g1 A @2) - €35(qy + G2), (2.14b)
or, equivalently, to lowest order in the q’s,
0P (1), 0450 (q2) | = —ilh €, play +ap).  (2.14c)

This algebra, the GMP algebra,** 48 plays two crucial
roles. First, within the SMA approximation,33 it dictates
under what conditions interactions open a spectral gap
between the many-body interacting ground state and its
excitations upon lowering the chemical potential within

the first Landau level. Second, it also dictates the uni-
versal properties of the low-energy and long-distance dy-
namics at the edge in an open geometry.3>37

The goal of the work presented in the remainder of
this section is to generalize the noncommutative geome-
try encoded by Eqs (2.4b) and (2.14c) to noninteracting
many-body fermionic Hamiltonians in 3D space. Before
carrying out this program, let us motivate what it is to
come by first presenting what would constitute a natural
extension of the algebra in the QHE to 3D problems.

First, instead of the commutator, consider the case
where the 3-bracket of the 3D projected position opera-
tors equals a C-number

[)?1,)?27)?3} —if, (2.152)

where, following Nambu,*® we have defined the 3-bracket

The characteristic length scale £ of the 3D noninteract-
ing many-body Hamiltonian, not to be confused with the
magnetic length £ of the 2D Landau Hamiltonian, is the
signature of a spectral gap separating the ground state
from the excited states. Similarly to the 2D case, for
which area preserving coordinate transformations leave
the commutation relations unchanged, we would like vol-
ume preserving transformations not to change the 3-
bracket. Under generic transformations r, — f,(r),
w=1,2 3, that vary on length scales larger than ¢,

(7130, 530, £(X)] =16 {f1. Fo. fs e (X) + O(E°),

(2.16a)

where the classical Nambu bracket is defined as 4°

of, 0fy 0
(oS ()i e (SR ER Y (). o

The condition for this coordinate transformation to lo-
cally preserve volume is that its Jacobian equals unity,
or equivalently that {f;, f2,f3}N (r) = 1. In this case, it

follows that [fl( ), Fo (X)), £5(X )} —il% +0().

Second, we claim (and show in this paper) that the 3D
counterpart to the operator product expansion (2.14) of
the projected densities is, to lowest order in the q’s,

(0,07 (21), 0,57 (42), 0,07 (45)] ~ €n £ Plas + a2+ a3).
(2.17)

The algebra defined by Egs. (2.15) and (2.17), if it
can be realized by a 3D fermionic noninteracting many-
body Hamiltonian, might then deliver two results. First,
within the SMA approximation, it might dictate under
what conditions interactions open a spectral gap between
the many-body interacting ground state and its exci-
tations upon lowering the chemical potential below the



single-particle gap. Second, it might also dictate the uni-
versal properties of the low-energy and long-distance dy-
namics at the boundary in an open geometry.

The key idea to realize the algebra defined by
Egs. (2.15) and (2.17) is to replace the effect of the mag-
netic field in the Landau Hamiltonian by that of the pro-
jection of suitable operators on a suitable subspace of
the fermionic Fock space. The construction of this suit-
able subspace presumes the existence of fermionic Bloch
bands as occurs in condensed matter physics and assumes
that a subset of these bands are fully occupied, while the
complementary set are empty and separated from the
filled subset by an energy gap.

Now, carrying out this program for some Bloch bands
will not yield immaculately the 3-brackets (2.15) and
(2.17). It will yield these relations approximately in the
long-wavelength limit. The situation here is similar to
the case of the quantized Hall effect in flat Chern bands
of 2D models.???3 As discussed by Parameswaran, Roy,
and Sondhi in Ref. 38 (see also Refs. 39 and 40), the alge-
bra (2.14b) follows if the fluctuations in the Berry curva-
ture over the Brillouin zone are neglected, or equivalently
if the local curvature is approximated by its average over
the entire Brillouin zone. Without this approximation,
however, the noncommutative relations obeyed by the
projected position operator will not be as simple as in
Eq. (2.4b) and may instead be represented as

[)?1,)?2} =i (2.18)
where - - - stands for operators that appear as a result of
the inhomogeneities in the Berry curvature. The central
question is how to distinguish universal from nonuniver-
sal contributions to the right-hand side of Eq. (2.18). To
answer this question, we propose to consider the ground

state expectation value <[)?1,)?2}>, that encodes the

quantized Hall conductivity, as seen in Eq. (2.9). We
show in Sec. IT A that
1 PS 2mi
(%, X D — “on®,
N, <[ Doz p

p

(2.19)

Here, Ch) is the first Chern number of the topologi-
cal band that sustains the IQHE in the lattice, and will
be defined in Eq. (2.53), while N, is the total particle
number and p is the average particle density. This sug-
gests that the universal physical properties are captured
by the C-number contribution to the right-hand side of
Eq. (2.18).
As with the commutator (2.18), the 3-bracket (2.15)
will also acquire extra terms in 3D space
[)?1,)?2,)?3} —iB ... (2.20)
We are thus lead to consider its normal ordered expec-
tation value instead, which, as we show in Sec. IT A, is
given by

3 ([ &) ) = e,

(2.21)

5

Here, the symbol CS®) stands for the 3D Chern-Simons
invariant defined in Eq. (2.51b). If the discrete chiral
symmetry or time-reversal symmetry holds, cS® is a
quantized topological invariant that takes half-integer
values. It is related to the dimensionless coupling

0 = 27 (CS® mod 1) (2.22a)
that enters the effective action
0 2

£t = =E B (2.22b)

obtained from integrating out noninteracting fermions of
a 3D topological insulator in the background of external
electric E and magnetic B fields within linear response
theory. This electro-magnetic coupling was derived by
Xi, Hughes, and Zhang in Ref. 14 by dimensional re-
duction from a topological insulator in 4D displaying an
integer quantum Hall effect to a 3D Z, topological insu-
lator (see also Ref. 54 for a generalization that accounts
for moderate interactions). For a 3D Z, topological in-
sulator, time-reversal symmetry holds. In turn, time-
reversal symmetry restricts € to the two values § = 0
and 8 = 7 that distinguish “ordinary” from topological
3D insulators, respectively.'* Several derivations of the
magneto-electric response, of which the 6 term (2.22b)
is an example, have been proposed without time-reversal
symmetry.55’59

Equation (2.21) relates a nonvanishing CS® to the
noncommutative algebra obeyed by the components of
the projected position operator through the noninteract-
ing groundstate expectation value of their 3-bracket. Be-
cause the position operator and its projection are un-
bounded operators and because Wannier states may not
be exponentially localized if the Bloch states have a
topological character,596! a regularization procedure is
needed to compute Eq. (2.21). We shall choose a regular-
ization that preserves gauge invariance under pure gauge
transformation of the Bloch states, but that breaks a dis-
crete translation symmetry. In doing so, we shall make a
connection with Ref. 57, where a representation of the 6
term is given in terms of expectation values of the posi-
tion operators in the Wannier basis.

We start by deriving the conditions under which
Eq. (2.21) holds in Sec. ITA for any Hamiltonian that is
endowed with translation invariance, a spectral gap, and
describes the motion of noninteracting fermions in flat
Euclidean space R3. We draw a connection between the
3-bracket and the (classical) Nambu bracket in Sec. II B.
We then specialize in Sec. IIC to the case of massive
noninteracting Dirac Hamiltonians for which some an-
alytical results can be obtained in the long-wavelength
limit. Finally, Sec. IID is devoted to the operator prod-
uct expansion of single-particle density operators in 3D
lattice models and the conditions under which Eq. (2.17)
holds.



N bands

FIG. 1: (Color online) Assumed spectral gap in the single-
particle energy spectrum. Here, u. denotes the chemical po-
tential and the insulating noninteracting many-body ground
state |®) is obtained by filling all the states in the N bands
below the spectral gap.

A. Noncommutative geometry for the projected
position operators

We shall consider noninteracting fermions whose dy-
namics are governed by the translation invariant Bloch
Hamiltonian

/ Ak Z )Xo (k). (2.23a)

Ag

We are reserving the latin index a = 1,--- , N for the
band label. The momentum k = (k*) belongs to the
Brillouin zone

boi= {0 e R T <k < T u=1d)
(2.23b)
with 7/a playing the role of the upper momentum cutoff.
Each band a = 1,--- , N is characterized by the single-
particle energy dispersion ¢,(k), a real-valued function
over the Brillouin zone. The creation and annihilation

operators obey the fermionic algebra

{xa(k),xaf(k’)} = {xl(k),xl,(k’)} —0

(2.23¢)
{XaR). X (B } = 8,000 = ),
for all pairs of bands and for all pairs of momenta in
the Brillouin zone. Finally, for any band « = 1,--- , N,
for any momentum k from the Brillouin zone, and for
any Cartesian unit vector e* from R?, we impose twisted
boundary conditions across the Brillouin zone through
Xo(k + (27/a) ") = P10y (k). (2.23d)
These twisted boundary conditions are parametrized by
the real numbers 0 < 0* < 1 with u=1,- o, d.

We shall also assume that (i) there are N lower bands
out of the IV bands that are separated by an energy gap
from the N — N remaining upper bands and (ii) the chem-
ical potential lies in this spectral gap (see Fig. 1). We

denote with

P, = /ddkz Xa

A*

(2.24)

the projection operator on the single-particle states
spanned by these gapped lower bands. We are reserv-
ing the latin index with a tilde sign a = 1,--- , N for the
lower band labels.

In analogy to the guiding center coordinates (2.12)
from the IQHE, we would like to define projected po-
sition operators. However, projected position operators
are associated to gauge fields as we now explain.%?

On the one hand, we may define the Wannier creation
operator through the Fourier transform

Wi = / Ak R 31 (k), (2.25a)
a;R - (27T/C1)d/2 a )
Bz
or, equivalently, the inverse Fourier transform
(2.25b)

1 . —~
of . 2 : +ik-R ”rT
Xa(k) - d/2 € a; R’
(27T/Cl) / ReA,

for any band index a = 1,--- , N and for any lattice point

R = (R") € A whereby
=0 modl, p=1,---.,d

(2.25¢)
The length scale a can thus be interpreted as a lattice
spacing. Consequently, creation and annihilation Wan-
nier operators obey the fermionic algebra

_Iwt ot —
w} = {Whe Wha} =0,
R/} = 50,,0/ 5R,R’7

for all pairs of bands and for all pairs of lattice sites.
Moreover, the projection operator (2.24) remains diago-
nal in the Wannier representation (2.25),

N
Z Z /WFI;R /W\d;R

1
Ag = {(R”) ert |

(W ..
. - (2.26)
{Wa;R’ Wt;r’;

(2.27)
ReA,, a=1
Hence, the Wannier position operator defined by
A~ N —~
= > Y W/ grRW, (2.28a)

REAR a=1

is projected onto the lower bands by restricting the band
index to the lower ones,

—

XR:

)

-R

=y ZW RW, g

ReA,, a=1

"U)
=T

(2.28D)



Hamiltonian (2.23a) in the Wannier basis is represented
by

N
H= Z Z W g Hor r War (2.29a)
R,R'€ a=1
The single-particle matrix elements,
H = / A’k etk (R=RY) ¢ (k) (2.29D)
a;R—R' * (27T/a)d a .

BZ

may decay slower than exponentially with the separation
|R — R'| on the lattice A for some of the bands, i.e.,
locality in position space is not manifest in the Wannier
basis.60:61

On the other hand, for any Hamiltonian describing the
electronic band structure of crystalline phases of mat-
ter, there must exist a basis in which the Hamiltonian
is local in position space, for electrons all originate from
atomic orbitals. We can enforce locality of the Hamilto-
nian (2.23a) as follows. We shall assume that, for any
momentum k from the Brillouin zone, there exists a uni-
tary transformation from the band creation operators to
the so-called orbital creation operators, i.e.,

N
Uh(k) =" ul (k) R} (k) (2.30a)
a=1
where we have reserved the greek index a =1,--- , N for

the orbital label. For any k from the Brillouin zone, the
N x N matrix elements between the band a =1,--- | N
and orbital &« = 1,---, N labels obey (i) the perlodlc
boundary conditions

ug) (k) = u?) (ke + (2m/a) ),

(e

(2.30D)

for any g = 1,--- ,d, in order for ¢, (k) to share with
X, (k) the same twisted boundary condition (2.23d) and
(ii) the orthonormality conditions

N
Zuga)*(k) U’((xa/)(k) :5a,a" CL,CL/ = 17 aNy

(2.30c)

in order for the pair ¢} (k) and @a, (K') to share the same
fermionic algebra (2.23c) as the pair X1 (k) and X, (k')
does. Finally, we assume that the representation

DS

a,asr—r! ’lz;o/;v'/ (231&)
r,r'eN, a,a’'=1
in terms of the Fourier transform
~ d%k RPN
o= ———e * 7yl (k 2.31b
wa,’r‘ / (27r/a)d/2 € wa( )7 ( )

BZ

or, equivalently, the inverse Fourier transform

Vi (k) = (27r/a (2 /a)i/2 Z AT (2.31c)

for any orbital index o = 1,---, N and for any lattice
point 7 = (r#) € A,, has the single-particle matrix ele-
ments

» .7 / 'k
a,asr—r! T (27T/Cl)d
Abz (2.31d)

N
<> ul® (k) e, (k) ull)" (k),
a=1

that decay exponentially with increasing distance |r — 7’|
for any pair of orbitals. Thus, locality on the lattice

. ’
e+1k-(r77' )

rH
?:9“ mod 1, p=1,--- ,d}

(2.31e)
is manifest in the orbital basis. The lattices A, and Ap
share the same unit cell, however the two lattices can be
shifted relative to each other in their embedding space
R? by any vector Z# 1€, €t with =1 < et < 1 from
their unit cell.

The projection operator (2.24) is not diagonal with
respect to the orbital index while the projection opera-
tor (2.27) is neither diagonal with respect to the orbital
index nor with respect to the lattice sites from A,.. Hence,
the orbital position operator defined by

N
A:Z Z{#\L;r

A, = {(r“) cR?

T Vi (2.32a)
reA, a=1
turns after projection into (see Appendix A)
X,,. = ]’\‘[ ';'\ =~
N _ (2.32b)

Il
sl
o

a
s
&
=
X
Q\

X

where we have introduced the single-particle kernel

dk
X sl ;=
a,a’;R,R / (27T/Cl)d
BZ

X [5&7&/ R/ + iA&&/ (k):l .

+ik-(R—R/)

(2.32¢)

This kernel depends on the U(N ) gauge field A(k), an
antihermitean N x N matrix whose components

N B 8u&a/)
ar (k) = ul® k)( o )(k), (2.32d)

are labeled by the lower band indices a,a’ =1, - -, N and
obey periodic boundary conditions across the Brillouin
zone.




The gauge field (2.32d) does not need to be a pure
gauge as it originates from projecting the pure gauge field

N o 9u(a’)
k) := E k - k 2.33
by restricting the band indices a,a’ = 1,---, N to the

lower band indices a,a’ = 1 ,N. Furthermore, the
decomposition (2.30a) is not unique. Indeed, for any pair
of orbital and band labels a,a = 1,--- , N, the simulta-
neous transformations

N
ul) (k) =Y ul (k) G (K), (2.34a)
a=1
on the one hand, and
N
Xa(k) =) Goa(k) X, (k), (2.34D)
a=1

on the other hand, leaves IZa (k) unchanged. The N x N
matrix G(k) with the matrix elements G, (k) is unitary
and obeys periodic boundary conditions across the Bril-
louin zone. The sans-serif font for the indexa=1,--- | N
conveys that the vector u( (k) with the N components

ul® (k) labeled by the orbitals a = 1,--- , N need not be
anymore an eigenstate of the single-particle Bloch Hamil-
tonian.

Observe that for any triplet a,a,a=1,--- , N, for any
momentum k from the Brillouin zone, and any Carte-
sian unit vector e from R, had we imposed the twisted
boundary conditions

Goo(k+ (21/a)e!) = 719" @ (k) (2.35)
parametrized by the real numbers 0 < ¢* < 1 with p =

,d, it would then follow that

ud (k+ (2r/a)e") = e 12T 42 (k) (2.36)

obeys twisted boundary conditions instead of periodic
ones, while

Yalk + (2m/a) ) = HET Oy () (2.37)
obeys new twisted boundary conditions. As a corollary,
the gauge field A,,, obtained from Eq. (2.33) by substi-
tuting the band indices for the sans-serif ones would not
be a pure gauge anymore as a result of this large gauge
transformation. An example of a large gauge transfor-
mation is

Gg, =eH P (2.38a)

for some R, € A where P is the operator defined by
the algebra

[R,P]=iQ (2.38b)

with @ the fermion number operator. It acts on the
single-particle states |x*(k)) := X/ (k) |0), where |0) is
the state annihilated by any band annihilation opera-
tor, by multiplication with the phase et'* %o Thus,
the action of the large gauge transformation (2.38) on
Ix®(k)) is to change the boundary condition obeyed by
|x%(k)) from twisted to periodic. In turn, the large gauge
transformation (2.38) acts on the single-particle states
|Wg) = WTR|0> by shifting R to R — Ry, i.e., as a
global translation of the lattice Ap

Let the insulating nonlnteractlng many-body ground
state |®) be obtained by filling all the single-particle
states from the IV bands below the spectral gap depicted
in Fig. 1. The ground state |®) is an SU(N) singlet un-
der the U(N ) gauge transformation defined by restricting
the band index in Eq. (2.34b) to the subset of occupied
band indices. Consequently, the ground state expecta-
tion value of any polynomial /]i of the components of the
projected position operator X, is, if it exists, invariant
under the simultaneous U(N ) gauge transformation de-
fined by restricting the band index in Eq. (2.34) to the
subset of occupied band indices, i.e.,

Fk) = SR GTR),  X(k) = Gk R(R), (2.39)
on the one hand, and

A, (k) = G(k) A, (k) Gl(k) — (0,G) (k) GT(k), (2.39b)
on the other hand. Here, G(k) is any unitary N x N
matrix for any k € Aj,, including one that changes
the boundary conditions across the Brillouin zone, and
matrix multiplication is implied in Eq. (2.39) with the
operator-valued column-vectors X(k) and row-vectors

X'(k) that have the components ¥;(k) and k),

a
a=1,---,N, respectively. Existence of (@\P( )| D)
amounts to constructing a gauge-invariant regularization
of <<I>|P( )| ®). As we now prove, although not all poly-
nomials P are compatible with a gauge-invariant regular-
ization of (®|P(X,)|®), we do find polynomials P that
admit such a gauge-invariant regularization.

To see this, we are going to momentarily dispense with
complications arising from many-body terms and work
solely in the single-particle Hilbert space. We define the
pair of single-particle states

Wirl0),  IX*(k) = i (k) 0),
witha =1,--- N, R € Ag, k € Aj,, and the pair of
single—particle states

) = b 10), [ (K)) = vl (k) [0),

with a = 1 ,N and r» € A,. The single-particle
counterparts to the projected position operators (2.28b)
and (2.32b) are defined to be

= > > IWh)R(WE|

ReA, a=1

[Wg) = (2.40a)

(2.40D)

(2.41a)



and, with the help of the single-particle kernel defined in
Eq. (2.32¢),

a,a’;R,R’ <WI%/|7 (241b)

X\r = Z Z (Wh) X

R,R'€eAj a,a'=

respectively. Evidently, the trace over the (unprOJected)

single-particle Hilbert space of either b'e R or X is ill-
defined because of the ill-conditioned sum over the lattice
Ap.

The situation is much better with the commutator be-
tween X# and XY for any p,v = 1,--- ,d owing to the

identity
Tr vv dk a @b b
[fe%] = - [ G IEEDFE R
(2.42a)
R R d
LTr [Xf,Xﬁ} - _1_ / dk .
N, pJ (27/a)

BZ

provided we multiply the functional trace Tr by the in-
verse of the total number of particles IV, in the insulating
ground state |®) to obtain an intensive quantity. Then,
the ratio of the number of particles N, to the single-
particle Bloch wavefunction normalization constant is
nothing but the average particle density p. The sym-
bol tr denotes the trace over the lower N bands. Equa-
tion (2.43) is well-defined and invariant under both pure
and large gauge transformations of the form (2.39b).
For any integer n = 2,3, - -+ , we define the n-bracket of
the n symbols B;, B,, - - -, B,, equipped with the product

J

Observe that any odd-bracket can be rewritten as

1

[317327 . 7B2m+1] — (2) Ei]iQ"‘iQWL‘Fl |:Bi17Bi21| X

while any even-bracket can be rewritten as

1 m Gyl
[317325 e aBQm+2] = By €1z Tami2 [BilvBi2:| X

2

form=0,1,2,---. For any integer m =0,1,2,---

N Tr [X,lf 7 7)(M2m-¢-1 Xﬂ2m+2:|

Wlth i17... 722m+2 = Ml’...

trF,, (k) =

s Momyo- Equation (2.46) is well-defined and invariant under both pure and large gauge

where the summation convention over the repeated band

labels @,b=1,--- ,]\7 is implied and

F, (k) :=

%

(0, 4,) (k) = (9, 4,,) (k) + [A4,, A,] (F).

(2.42b)
We refer the reader to Appendix A for t/h\e proof of
Eq. (2.42). Evidently, the components of X, are non-
commutative if the non-Abelian gauge field A (k) has a
nonvanishing field strength F,,(k).%® We can now safely
take the trace of the commutator (2.42) over the single-
particle Hilbert space,

L[ % oA, —0,4) %)
ﬁ (27T/a)d r I v v M ’ (2.43)
Agz
X to be their fully antisymmetrized product
[317 Bz, M ,Bn] = 61112”'271374‘1 X .B,L‘2 X - X Bin (2.44)

where the summation convention over repeated indices is
implied and the symbol €’1?2" "% implies antisymmetriza-
tion. For convenience, we also introduce the terminology
of the 1-bracket of the symbol B to be the symbol B
itself.

(2.45a)

X |:B7;2m—1’Bi2'm,i| X Bi2m+1,

X [34 (2.45b)

B.
Lom41" " Yamt2

such that 2m + 2 < d, it then follows that

1 suy - Stiam <1)m“1
P ’ 2 ﬁA

(k)

e amt1lamy2 ty (F. . - F. .
11?2 Lom+12m+2

(2.46)

transformations of the form (2.39b). The right-hand side of Eq. (2.46) is proportional to the (m+1)-th Chern number.

For any integer n such that 2 < n < d, the single-

(

particle trace over any n-bracket of the components )A(gl,



e )?;" vanishes owing to the fact that (i) X\R is diag-
onal in the Wannier basis and (ii) performing the anti-
symmetrization €; ; _.; Rt Rz ... Rin = () before taking
the sum over the lattice Aj.

In contrast to these brackets, neither is the Single—
particle trace over the 1-bracket of the component X*

nor that of the 1-bracket of the component X & with
w=1,--- dwell-defined. More generally, for any integer
m =0,1,2,--- such that 2m 4+ 1 < d, the single—parﬁicle
trace over any (2m + 1)-bracket of the components X,

. )A(ff #m+1 s ill-defined because there always remain
ill-conditioned sums over the lattice A,. We are going to
construct explicitly a suitable regularization of the single-
particle trace over any (2m + 1)-bracket of the compo-
nents X’fl, e )/(\'fm“ for m = 0 and m = 1 that can
be nonvanishing and is invariant under any pure gauge
transformation of the form (2.39b).
To this end, we need the important identity

— = Ak
XT‘iXR:‘/

eyt WD 1ATEIOE R (247)

*
BZ

which is proved in Appendix A. We can now safely take
the trace of Eq. (2.47) over the single-particle Hilbert
space as we did in Eq. (2.43). We find

d
/ (dkd tr A(k).

>ra) (2.48)

1 —_
I (XT - XR) -

p

| =
>

BZ

Equation (2.48) is invariant under pure (but not large)
gauge transformations of the form (2.39b). The loss of

J
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the invariance under the large gauge transformations of
the form (2.39Db) is to be attributed to the fact that the
regularization (2.48) breaks translation invariance in that
there are gauge nonequivalent ways of defining eigen-
states of the projected position operator at short dis-
tances. In other words, it is not possible to construct a
wave packet that can resolve distances smaller than the
lattice spacing a. This fuzziness survives the limit a — 0
as the breakdown of gauge symmetry under large gauge
transformations of the form (2.39b).

The regularization (2.48) is not unique. For exam-
ple, we could have chosen a regularization of the single-
particle trace over any (2m + 1)-bracket of the compo-
nents )?ffl, . XE2mt that preserves this translation
invariance through the heat kernel method.®* The heat
kernel regularization yields zero for all odd-brackets, a
manifestly gauge invariant result! However, we reject this
regularization because enforcing invariance under large
gauge transformations of the form (2.39b) is not required
by general symmetry arguments.

Yet another example of a regularization of the sinAgle—
particle trace over any n-bracket of the components XA,
e )/(\'f” is to do the replacement )?fl — )?,’fl — )?1’%1,
ceey )/(\'f” — )/(\'f" — )?;”. With this substitution, the
single-particle trace is well-defined, for it does not con-
tain anymore ill-conditioned sums over the lattice Ap.
However, whenever the single-particle trace over this n-
bracket is nonvanishing, it breaks the invariance under
pure SU(N) gauge transformations of the form (2.39b)
for any n > 2. For this reason, we reject this regulariza-
tion.

We are now in position to state the main result of Sec. IIA. When d > 3 and for any choice of the triplet
i, oy fi3 = 1,--+  d, we define the regularized 3-bracket of the components X', X;*, and X/ of the projected

position operator (2.32b) to be?5:6¢

o
P Xr“l,Xfﬁ,XﬁS}

reg

= [ R (Ree = Rpp )| [Re (Re - R ) R0 4 (R - K )L R R0

(G s (R ). (5 )

(2.49)

We have introduced the multiplicative factor 2 on the left-hand side in order to preserve the number of 3-brackets
under regularization, namely one prior to regularization. Indeed, since we add 3-brackets that include one substitution
X, — X, — Xy and remove one 3-bracket that include 3 substitutions X, — X, — X on the right-hand side, we
are left with 3 — 1 = 2 3-brackets on the right-hand side. It is shown in Appendix A that we can safely take the
single-particle trace over the regularized 3-bracket (2.49) after accounting for the same normalization as for the 1-
and 2-brackets,
: d
Ly [X#l,)?#w?#s 31 /dikde tr (F A, — gAi A, A, ) (k) (2.50)
Np reg 4 17 J (27T/Cl) 1t2 3 3 1 2 3
BZ

where iy,14,15 = fiq, flo, 1. As was the case with Eq. (2.48) and for the same reason, Eq. (2.50) is invariant under

pure (but not large) gauge transformations of the form (2.39b).
[

The generalization to the case of any integer m such that 2m—+1 < d consists in defining the regularized (2m+



by replac-

1)-bracket [)?fﬂ)?ﬁ, e ,)/(\'f"‘m,)?fm“}
reg

ing the (2m + 1)-bracket [)?fl,)?f% B ,)?ffm,)?ﬁzm“}
with the sum of all (2m + 1)-brackets obtained by do-
ing all the possible substitution )/ff — Xi‘l — )?I‘%
(2041) times with [ = 0,1, - - ,m and adding all resulting
(2m + 1)-brackets weighted with the sign (—)!. We then
define a normal ordering by which all X/ are placed to
the left of all X — X’gl as if they were commuting num-
bers. Finally, we divide the resulting linear combination
of (2m + 1)-brackets by the integer equal to the absolute
value of the alternating sum of the binomials coefficients

2m +1 2m+1 . .
( 1 — 3 =+---. The single-particle trace
over the regularized (2m+1)-bracket after accounting for
the same normalization as for the even-brackets and the
1- and 3-brackets is intensive and proportional to the
Chern-Simons invariant obtained from integrating over
the d-dimensional Brillouin zone with d > 2m + 1 the
Chern-Simons (2m + 1) form.

It is time to draw a precise connection between the
single-particle traces over the (regularized) brackets of

A~

the components of the position operator X, and topo-
logical invariants.

We define the d Chern-Simons invariants built from
Chern-Simons 1 forms in d-dimensional momentum space

for any choice of u=1,--- ,d as
d?
1) .

We also define the d(d—1)(d—2)/6 Chern-Simons invari-
ants built from Chern-Simons 3 forms in d-dimensional
momentum space for any choice of pu, u, A =1,---,d as

6IJK ddk )
s = 1 /Wtr <AIFJ-K -~ 3A,AJAK>,
(2.51b)
where I, J, K = p,v,p. The integral on the right-hand
side of Eq. (2.51a) and Eq. (2.51b) is quantized to half-
integer values if the single-particle Hamiltonian obeys the
chiral symmetry and the domain of integration is that of
a d-dimensional torus T with the volume (27)%, i.e.,
a = 1.' The 1D and 3D Chern-Simons invariants in d-
dimensional momentum space carry the engineering di-
mensions of length raised to the powers (1—d) and (3—d),
respectively. They are thus dimensionless if and only if
d =1 and d = 3, respectively.

The Chern-Simons invariants (2.51a) and (2.51b) are
only well-defined modulo integer values under the U(N)
gauge transformations (2.39b) since the latter can change
the former by their winding numbers, namely the num-
bers

p=1,---,d,  (2.52a)

[ d%
1/ 2nyi G'9,G,

11

and

iEIJK ddk
6 /(QW)dq tr [(GT aIG) (GT 8JG) (GT 6KG)]7

(2.52b)
with I, J, K = p,v,p and p,v,p=1,--- ,d, respectively.

In contrast, the d(d—1)/2 first Chern numbers defined
in d-dimensional momentum space as

v = 1,-- ada
(2.53)

dk
1) ._;
Chl“/ .—I/Wtr FF””

can only take integer values if the domain of integra-
tion is that of a d-dimensional torus T¢ with the volume
(27)% in momentum space,®” irrespective of whether or
not the single-particle Hamiltonian obeys the chiral sym-
metry. However, when chiral symmetry holds, the 1D
Chern-Simons invariants (2.51a) are quantized.'® There-
fore, derivatives of these quantities vanish, which in turn
implies that all first Chern numbers (2.53) vanish. Fur-
thermore, the first Chern numbers (2.53) are invariant
under the U(N) gauge transformations (2.39b). The
first Chern numbers defined in d-dimensional momentum
space carry the engineering dimensions of (2 — d).

In closing, we reexpress our main result using second
quantization and for the case of d = 3 dimensions. We
shall use the standard notation : (---) : for normal or-
dering under which it is understood that creation opera-
tors are to be moved to the left of annihilation operators
within the symbol (---) as if they were Grassman num-
bers. After identifying the single-particle states defined
in Eq. (2.40a) with the single-particle holes resulting from
annihilating a single-particle state from the insulating
ground state |®), we find that

|o) -

_ (27;)21 [(27203 Z\;pe,“,p CSE}) Chl(,lp) +308® | .

1

— (| [)?1,)?2,)?3]
Np< ‘ r r r

reg

(2.54)

Again, it should be noted that the right-hand side of
Eq. (2.54) is entirely determined by its quantized topo-
logical numbers if the single-particle Hamiltonian obeys
the chiral symmetry, and if the equality is understood
modulo contributions from large U(N) gauge transfor-
mations (2.39b) in which case

1 1 oo o
¥ (o) [RLR25Y

p

(2.55)

reg

p

owing to Ch,(,lp) =0 forany v,p=1,--- ,d.



B. Regularized 3-bracket and the Nambu bracket

On the one hand, we may define for any momentum q
from the Brillouin zone the projected operator

Tr(q) := et Xr (2.56)
with X r defined in Eq. (2.41a) that acts on the single-
particle Hilbert space defined in Eq. (2.40a). This oper-
ator is a projected translation operator in the Brillouin
zone,

N
Tr(q) IX*(k)) =D _ 6" |x*(k + q)) (2.57)
a=1
for any a = 1,--- | N. Its algebra under composition
closes,
Tr(q1) Tr(a2) = Tr(qy + q2) (2.58)

for any pair of momenta from the Brillouin zone.

On the other hand, we may also want to define for
any momentum q from the Brillouin zone the projected
operator

~

T,(q) =70 %

T

(2.59)

with X\T defined in Eq. (2.41b) that acts on the single-
particle Hilbert space defined in Eq. (2.40Db).

Be aware that ﬁ, (q) differs from the projection

(2.60a)

on the N lower bands of the momentum-resolved density

J

ng
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operator o(q) defined through the Fourier expansion

~ . / q¢ e+iq-r/\( ):/ ddq g (r—7)
o e A= | (or/ay
Agz B

BZ

(2.60b)
of the unprojected density operator
N
or =D ) (uy) (2.60c)
a=1

defined for any site r of lattice A,.

The taskAof computing the regularized n-bracket of the
operators T,.(q;), -+ , T, (q,) is formidable for arbitrary
momenta ¢qy,- - ,q, from the Brillouin zone. However,
an expansion in the momenta up to order n is feasible
in the limit of small momenta. We undertake such an
expansion for the 3-bracket with the help of the (classical)
Nambu bracket.

To simplify notation, we work with d = 3. Let f, (x)
with ¢ = 1,2,3 denote three functions with the Taylor
expansions

3
fi(w):fi(0)+Z(8Hfi)(0)xﬂ+...

p=1

(2.61)

at the origin of x € R3. For any pair of functions f;
and f5, or for any triplet of functions f;, fy, and f5
their classical Poisson and Nambu brackets were defined
in Egs. (2.10b) and (2.16b), respectively. For any pairs
pov =1,2,3 and f;, f;, with ¢,j = 1,2,3, we shall also
need the variant
{fi,fj}gy (0) := Z €1y (alfi) (ajfj) (0) (2.62)

I,J=p,v

of the Poisson bracket, respectively. From the operator
identity (A76) follows that the single-particle trace over

— — —

the regularized 3-bracket of f;(X), fo(X), and f5(X)
admits the Taylor expansion

T (LX) LX) fo(X)] = f {0 B O [RE XY+ {1 B Sl )T [KE X2 K] 4o

reg

(2.63)

(A summation convention is implied over the repeated indices u, v = 1,2,3 and 4, j, k = 1,2, 3 on the right-hand side.)
This expansion preserves the invariance under the pure gauge transformations of the form (2.39b). Moreover, in the

chiral class,

Tr [fl(‘/X\r)7f2(‘/X\r)af3(‘/X\r):|reg = {f17f2af3}N (0) Tr [)?:7)?37)?73} +oe

and

)

T |T, (@), T, (@),

T(qs)}reg: +i(g NGy gsTr [X},Xf,xg} L

(2.64)

reg

(2.65)

reg



Equation (2.64) admits the following interpretation.
The functions f;, fy, and f; may represent a coordi-
nate transformation in 3D space. If this transformation
preserves volume, its Jacobian, i.e., the Nambu bracket,
equals 1. If chiral symmetry holds, the trace over the reg-
ularized 3-bracket of the projected position operator X,
is to lowest order in the Taylor expansion invariant un-
der volume preserving diffeomorphisms, while quantum
corrections appear at higher order.

Had we restricted ourselfs to d = 2, the transforma-
tion property of the 2-bracket (commutator) under the
smooth coordinate transformation

x = (2!, 2%) € R?,

(@',2%) > (@), (@),

(2.66)
is
(11X £(X)] = 10, fobe (0) [R1,R2] 4+
(2.67)
Except for the quantum corrections contained in - - -, the

2-bracket of the projected position operator X, is thus
invariant under area-preserving diffeomorphisms. The
difference between the 2-bracket and the regularized 3-
bracket is, according to Eq. (A76), that for the latter it
is necessary to invoke chiral symmetry and taking the
single-particle trace in order to guarantee invariance un-
der volume-preserving diffeomorphisms.

The algebra obeyed by the set of diffeomorphisms of
the Euclidean plane that leave the Poisson bracket in-
variant realizes the so-called classical w_, algebra. Thus,
Eq. (2.67) draws the connection to a quantum version of
the w,, algebra. For the quantum Hall effect the rele-
vant quantum version is the W algebra (see Refs. 45,
46, 47, and 48) obeyed by the projected density operators
in a Landau level.?35737 A manifestation of the connec-
tion between the w., and W__ algebras is found in the
nondissipative Hall viscosity, which can be viewed as the
response function of the quantum fluid to an infinites-
imal area-preserving deformation.®® In turn, an incom-
pressible 2D classical fluid may be described in terms of
a one-form gauge field, as appears in the Chern-Simons
theory relevant to the quantum Hall effect (QHE).69 71

In 3D and for Bloch Hamiltonians belonging to the
chiral symmetry class, the invariance under volume-
preserving diffeomorphisms of 3D Euclidean space dis-
played in Eq. (2.64) to lowest order in the Taylor ex-
pansion draws a similiar connection to a quantum al-
gebra that generalizes the classical algebra obeyed by
volume-preserving diffeomorphisms. In the description
of ideal 3D classical fluids a two-form gauge field natu-
rally arises as a consequence of volume preserving diffeo-
morphisms.” Such a two-form gauge field also appears
in the 3D BF theory that is believed to be relevant to 3D
topological insulators.”
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C. Massive Dirac fermions

In Sec. IT A, we have related the ground state expec-
tation values of the commutator and of the /r\egularized
3-bracket of the projected position operators X, to quan-
tized topological numbers, namely the Chern numbers
and Chern-Simons invariants. By contrast, we have re-
called in Eq. (2.4b) that a Landau level has the special
property that the commutator of projected position op-
erators itself is nothing but an imaginary number

X" X" =~F,,

__ 2
fleWEB

(2.68)

where p, v = 1,2. In other words, the Berry curvature is
constant in a Landau level.

Here, we are going to show that the same is true for
massive Dirac electrons in 2D, if the limit of small mo-
menta k — 0 is considered. We then extend the discus-
sion to massive Dirac electrons in 3D, where we consider
the 3-bracket of projected position operators in the same
limit of small momenta.

In 2D Euclidean flat space, a single flavor of Dirac
fermions with mass m and in the fundamental represen-
tation of the Lorentz group is governed by the single-
particle Hamiltonian in momentum space

Hop (k) := kyoq + kyoy + mos. (2.69)

As usual, we use o, for the 2 x 2 unit matrix, while oy,
0,5, and o4 are the three Pauli matrices.

This Hamiltonian supports two bands with the Bloch
states |x*(k)), the nondegenerate energy eigenvalues

e® (k) = £/ k2 +m2, (2.70)
and the Berry curvatures
+ _ m
FiH (k) =ie 7 (2.71)

1324 2 [5(:‘3)(19)}3
for p,v = 1,2. Upon projection to the lower band

£(=)(k), we can combine Eq. (2.42a) with Eq. (2.71) to
deduce that

(x~(R)|[X2, XX~ (k) = — FS;) (k)
=ie,, 3 sgnm + O(k?)
(2.72a)

for p,v = 1,2. The Dirac counterpart to the magnetic
length in the QHE is here

by = b

D= T
As announced, the algebra (2.72) reproduces the alge-
bra (2.68) in the limit k — 0. The first Chern number of
the lower band is given by

i _
ch® ::%/kotrFfQ)
B2 (2.73)

sgnm

2

(2.72D)




In 3D Euclidean flat space, a single flavor of Dirac
fermions with mass m and in the fundamental represen-
tation of the Lorentz group is governed by the single-
particle Hamiltonian in momentum space

3
Hap (K Zkua#

p=1

—imfBys, (2.74a)

where we have defined the Hermitian 4 x 4 matrices

0 o o, O 0 o

= Iz = (%0 = 0
v (o ¥) o (B ) v B)
(2.74b)
Observe that this Hamiltonian has the chiral symmetry

vs Hap (k) v5 = —Hap(k)

for all k € R3. The spectrum of Hamiltonian (2.74a)
consists of two doubly degenerate bands with the Bloch

(2.75)

states |[x*%(k)), the energy eigenvalues
e® (k) = £VEk2 +m?2, (2.76)
and the non-Abelian Berry field strengths
F{ (k) = +il] e,,, 7 + O(|k|) (2.77)
for pu,v = 1,2,3, where v7 = (—0y,0,,03). Upon

projection to the lower band £(7)(k), we can combine
Eq. (2.42a) with Eq. (2.77) to deduce that

or (T R)IXE, X (R)) = 0+ O(kl) - (2.78)

for u,v = 1,2,3, as expected for a system with chiral
symmetry. In contrast, Eq. (2.50) delivers

tr ()X}, X2 R ealx " (R)) ) =13 V20,

+ O(|k]).
(2.79)

The definition (2.72b) of ¢ has carried over.

D. Operator product expansions for the projected
single-particle density operators

Until now, we have considered the noncommutative re-
lations obeyed by the projected position operator assum-
ing translation invariance in Euclidean flat spaces. This
noncommutative geometry encodes topological proper-
ties of the noninteracting many-body ground state in
view of the expectation values (2.43), (2.48), and (2.50).
Moreover, according to Eq. (2.32), it is also predicated
on some underlying noncommutative relations obeyed by
the second-quantized fermion density operator projected
onto the occupied bands of the insulating ground state.

On the other hand, GMP were able to derive for the
2D QHE the closed algebra obeyed by the single-particle
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electronic density projected onto the lowest Landau level.
Can we do the same for the single-particle fermionic den-
sity projected onto one band, say, of a 3D topological
band insulator?

To answer this question, we resort to a tight-binding
model defined on a lattice A with a Brillouin zone BZ,
and on which we impose periodic boundary conditions.
We assume, without loss of generality, that the lattice is
three dimensional. In this spirit, we turn our attention to
the single-particle electronic density defined on a given
site r of a lattice A as

N
Ar = Z |’I’,Oz><’l",0£|,
a=1

where o = 1,--- , N labels degrees of freedom on every
lattice site, e.g., spin or orbitals. These operators obey
the closed algebra

(2.80a)

or, O, = (2.80D)

57'1 77‘2 §7‘1
owing to the orthonormality of the single-particle states

(ry,aq|ry, a9y =6 (2.80c¢)

T1:T2 5a1,a2
for any pair of sites r; and r, from the lattice A and for
any pair of orbitals ay,a, = 1,--- N. As a consequence,
these operators commute pairwise.

The Fourier transform of p,. in terms of the orthonor-
mal Bloch states |k, @) labeled by the momentum k from

the BZ and orbital index o« = 1,--- , N reads
N
0.= Y, > lka)k+gq.al (2.81a)
keBZ a=1

for any g € BZ. These operators obey the closed algebra

@\ql Z)\qz = §q1+q23 (281b)

owing to the orthonormality of the single-particle states

<q15 Qy ‘q27 a2> = 5q1,q2 6a1,(x2 (281(3)
for any pair of momentum gq; and g, from the BZ and for
any pair of orbitals ay,a, = 1,--- N. As a consequence,
these operators commute pairwise.

Consider now a basis transformation in the o degrees
of freedom for every k € BZ that is parametrized by
the N x N complex-valued numbers ugc) with a,b =

, N, ie.,

o

The ket |u,,b) labeled by k € BZ for any given b =

, N should be thought of as Bloch state of the b-
th band of a single-particle Hamiltonian. This Hamilto-
nian shares the translational symmetry of A and periodic
boundary conditions are imposed. For any g € BZ, we

uphlk.a),  b=1,- N. (2.82)



define the density operator projected on a single (nonde-
generate) band b by

Z Z ka*ugcb-?-qa

keBZ a=1

O]

The projected operators ﬁq with g € BZ are invariant
under the simultaneous local U(1) gauge transformations
defined by

(2.83)

ugzl — ei“”cug?l (2.84a)
on the one hand, and

‘ug))> — ei¥r (2.84b)

o)
on the other hand, foralla =1,--- , N, k € BZ, and any
real-valued function ¢,. They do not obey anymore the
algebra (2.81b). In the long-wavelength limit ¢;,q, < 1

(the lattice spacing of A is set to unity), their commuta-
tion relation is 3840

qé’ Z uv,k ‘ ><u§cblq +a,

keBZ

[ﬁql : ﬁqJ (2.85a)

to leading order in an expansion in powers of the compo-
nents of q; and g5, where

FLV7k = a/l,Al/,k: - ayAp,,k (285b)

/

and

(b)*
uk_zu uka

for u,v = 1,2, 3 are the Abelian Berry curvature and the
Abelian Berry connection, respectively, and 9, is under-
stood as the derivative with respect to the momentum

(2.85¢)

J
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component k*. The operator product expansion (2.85a)
closes only if F, . is independent of k, in which case

(¢ Ngp) - Ch ﬁq1+q2 (2.86a)

PN i
|:pq1apq2:| = _%

to leading order in an expansion in powers of the compo-
nents of q; and g5, where

27 elvA
A
Ch" = I35 5 g ka (2.86b)

kcBZ

with A = 1,2,3 are the components of the vector Ch
made of the three first Chern numbers characterizing any
nondegenerate band in 3D space.” (A summation con-
vention is implied for the repeated indices u,v =1,2,3.)
In the thermodynamic limit by which the linear size L
over which the periodic boundary conditions are imposed
is taken to infinity or, equivalently, the lattice spacing is
taken to zero, each first Chern number is quantized.

The IQHE is an example in 2D for which the condition
of constant Berry curvature F,, i is met. In this context,
the closed operator product expanslon (2.86a) was found
by GMP (in fact, the operator product expansion for the
projected density operators closes to all orders in q in this
case, and thus delivers a closed algebra for the projected
density operators).33 With the help of this algebra, GMP
argue, within a single-mode approximation, that FQH
states are incompressible.

Recently, it was shown that lattice models with flat
bands and nonzero Chern number also support incom-
pressible FQH ground states,’®®3 even though their
Berry curvature is not constant over the BZ. This re-
sult suggests to approximate the commutator (2.85a) by

the closed algebra (2.86a), that is, to replace F, ; with

its average value over the BZ.3%39

We will now consider the 3-bracket of three projected density operators, and expand it to third order in the momenta

il
~ ~ -~ k v v,
{pqlquzv/’qs} =5 2 {qf‘qj e T 46097 G Fyu A e

keBZ

+C]fq;/CI}\ [ <Z U b)* 0 a)\ ) - (au + 2Ay) a)\

where the summation convention over the repeated in-
dices 7,7,k =1,2,3 and u,v, A = 1,2, 3 is implied. Equa-
tion (2.87) is invariant under the local gauge transforma-
tion (2.84), up to contributions of fourth order in g. The
term of second order in g comes multiplied by the Berry
curvature, i.e., the density associated with the topologi-
cal invariants Ch* for A = 1,2, 3 defined in Eq. (2.86b).

(2.87)

(b) (%)
AM }‘uk ><uk’+q1+qz+‘13 )

(

As for the second term on the right-hand side, we recog-
nize the integrand of the Abelian Chern-Simons form.
The term that dominates the 3-bracket of projected
density operators at long wavelength is t/}ius not equal
to the 3-bracket of the position operator X,. According
to Eq. (2.50), the latter was determined by the Chern-
Simons 3 form and not by the Chern number density.



This stands in contrast to the long wavelength limit of
the 2-bracket (commutator) of projected density opera-
tors which coincides with the 2-bracket of position op-
erators. However, the connection between the projected
density and position operators is recovered on the level of
the 3-brackets, if one considers the derivative of the den-
sity operator with respect to momentum instead. This
choice is motivated by the fact that the Fourier compo-
nents of the density operator in momentum space are
the generators of translations in momentum space [recall
Eq. (2.60)]. Indeed, it follows from Eq. (2.87) that

|:aq‘1" b\ql ’ aqéf b\qz ) aq; Z)\q3:|

afy = =
€ VA (b) (b)
5 Z AL ok )“k > <uk+q1+q2+q3

kEBZ
(2.88a)

holds to lowest order in the momenta g, g, and g, and is
thus determined by the Chern-Simons 3-form (the Chern-
Simons density in 3D). We define its average over the BZ
to be

7T2 A
— § uv
0= L3 € FMV,kAA,k7
keBZ

(2.88b)

which is only invariant under the local gauge transforma-
tions (2.84a) that leave the boundary conditions in the
BZ unchanged. If the Chern-Simons density is nearly
constant and thus independent of k in the entire BZ, we
may approximate Eq. (2.88a) by

al

€aBy 272 Pq,+a,+a,> (2'88C)

8qf pq1 ) 8q§ pq2 ) aqg qu:I ~
where a is the lattice spacing.

Insulators for which the invariants Ch* with A = 1,2, 3
are nonvanishing can be viewed as a 3D extension of an
IQHE or a layered system of 2D Chern insulators. In this
case, Ch™ with A = 1,2, 3 parametrizes the quantized off-
diagonal part of the conductivity tensor.” The physics of
such insulators is not intrinsically 3D and they are thus
not our primary interest here.

Even if the Berry curvature vanishes on average in the
BZ so that Ch = 0, 6 can be nonzero and may take any
real value in general. The value of # has measurable
consequences as it contributes to the magneto-electric
coupling in a 3D band insulator.’” For 3D band insula-
tors with either spin-orbit coupling that are time-reversal
symmetric (symmetry class AIT) or with chiral symme-
try (symmetry class AIII), 6 is restricted to integer mul-
tiples of m and represents a topological invariant.'® The
3-bracket (2.88a) shows that for 3D tight-binding Hamil-
tonians within the symmetry classes AIl or AIII, the 3-
bracket of the momentum derivatives of projected density
operators is dominated by the value of their topological
invariant 6, just as the 2-bracket (commutator) of the
momentum derivatives of projected density operators is
dominated by the value of the Chern number in 2D tight-
binding models within the symmetry class A. We will
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illustrate this statement with the help of a microscopic
lattice model belonging to the symmetry class AIII in the
Sec. III.

III. NONINTERACTING THREE-BAND
TIGHT-BINDING MODEL

The goal of this section is to define a “simple” single-
particle Bloch Hamiltonian that supports a dispersion-
less isolated band with nontrivial topological character,
such that the 3-bracket of the momentum derivatives of
the projected electronic density operators, Eq. (2.88a),
is nonvanishing and the system displays intrinsically 3D
physics, i.e., Ch* =0 for A = 1,2,3 and § = 7. Our
model belongs to symmetry class AIIl and has three
bands, which is the minimum number required to realize
the desired 6-term.®” One of the three bands is necessar-
ily dispersionless as a consequence of chiral symmetry.
Therefore, it can be taken as the basis for the construc-
tion of fractional topological states in 3D.

A. Definition

We consider spinless electrons hopping between the
sites T = (rq,74,73) of a 3D cubic lattice A and on-
site orbitals, whereby each site r can accommodate three
orbital degrees of freedom that we label with the Greek
index o = 1,2, 3. To accommodate the hybridization be-
tween any of the three orbitals, we need to choose a basis
for all 3 x 3 Hermitian matrices. We denote the unit
3 x 3 matrix by A\, which, together with the eight trace-
less Gell-Mann Hermitian matrices A, withn =1,-- 8,
form the desired basis of all 3 x 3 Hermitian matrices.
The second quantized tight-binding Hamiltonian is then
defined by

3
~ 1 PURD ~
o5 35 [ sy = ),

reA j=1 (3.1)
+ MY el MG,
relA

where we have introduced the 3-component operator ¢i. =
(51;1,51;2,6\1;3) with €., creating a spinless fermion at
site r in the orbital @« = 1,2,3 and obeying periodic
boundary conditions under the translation » — r + Le;
for any of the three orthonormal unit vectors e;, ey, and
e, that span the cubic lattice A. This single-particle
Hamiltonian depends on the real-valued parameter M.
Translation invariance allows to diagonalize Hamilto-
nian (3.1) upon performing a Fourier transformation on
the creation and annihilation fermionic operators. If we
denote with BZ the Brillouin zone of the 3D cubic lattice
and with k any Bloch momentum from the BZ that is
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FIG. 2: Energy spectrum of the lattice model defined in
Eq. (3.2) for different values of the parameter M. Pan-
els b) and d) show the gap-closing topological transitions.
Note the dispersionless band at zero energy in each spectrum.
The spectrum is plotted along the straight path connecting
the following points in the BZ: ' = (0,0,0), X = (0,,0),
M = (7, 7,0), and R = (m, 7, 7).

compatible with the periodic boundary conditions, then

5 4 ~
H = Z Cr Hk Cr
keBZ

(3.2a)
with the momentum-resolved single-particle 3 x 3 matrix

4
M= > Agyjdp; (3.2b)

j=1

that depends on the 4-component real-valued row vector
T _
dy = (dk,lvdk,dek,BadkA)

3
3.2¢c
= (sinkl,sinkz,sink?,,M Zcoskz) ) (3.2¢)

i=1

With the help of the explicit representation of the eight
Gell-Mann matrices from Appendix B, one verifies that

CHiC ' =-H,,  VkeBZ, (3.3a)
if and only if the 3 x 3 matrix C is given by
C :=diag(1,1,-1). (3.3b)

The fact that H, anticommutes with C implies that any

pair of eigenstates ugj) and ugc_) of H;, with nonvanishing

eigenvalues is associated with the opposite single-particle
eigenenergies 55:_) = 752_), respectively. Since H,, is a
3 x 3 Hermitian matrix for any momentum k from the

BZ, it then follows that at least one eigenstate ug)) must
have the vanishing eigenvalue
5560) =0, (3.4a)

17

irrespective of the Bloch momentum k in the BZ. For any
Bloch momentum k in the BZ, the values taken by the
nonvanishing eigenvalues

e = —ei ) = ldi] (3.4b)
follow immediately from the fact that the four Gell-Mann
matrices Ay, A5, Ag, and A,, anticommute pairwise while
any one of these 4 Gell-Mann matrices squares to either
diag(1,0,1) or diag(0,1,1). The minimum value reached
by the magnitude |d,| over the BZ thus determines the
energy gap between the dispersionless band of zero modes
and the pair of bands related by the chiral transforma-
tion C. This energy gap depends parametrically on M
and is nonvanishing if and only if |[M| # 1,3. In turn,
the corresponding Bloch states are derived as follows.
One observes that the 2-component complex-valued row
vector

ah = ldi ™ (dryy + 10, dis + idi4) (3.5a)
of unit length (q,Tc g, = 1) enters H,, according to
0 0 k.1
Hy =ldg| | O 0 o
Uy k2 0 (3.5b)
0 q
=|d 2x2 k) .
aul (2 %
One then verifies that
+q +qp,.
ul®) = 1 + - ul = [ - . (3.5¢)
N k2 | > kT k1 .
+1 0

are orthonormal Bloch states of #, for any Bloch mo-
mentum k from the BZ. For any value of the parame-
ter M entering the single-particle Hamiltonian H , Egs.
(3.5¢) and (3.4) define globally over the entire BZ the
desired Bloch states with their dispersions. For generic
values of M, i.e., whenever |d| is nonvanishing over the
entire BZ, there are two dispersive bands whose Bloch

(+)

states u;, ~ = C uEJ) are related by the chiral transfor-

’(co) =C u,(co) of zero

mation and one dispersionless band u
modes.

Hamiltonian (3.2) breaks time-reversal symmetry, for
the first three components of d,, are odd while the fourth
component is even under k — —k for any value of M.
This leaves no room for a particle-hole symmetry by
which Hamiltonian (3.2) would anticommute with an an-
tiunitary operator. Adding to Hamiltonian (3.2) any lin-
ear combination of the remaining Gell-Mann matrices A,
Ay, Ag, Ag, and the unit 3 x 3 matrix A\, breaks the chi-
ral symmetry. Such perturbations change the symmetry
class of Hamiltonian (3.2) from AIII to A. Although a
chemical potential (a nonvanishing constant term pro-
portional to the unit matrix A;) does break the chiral
symmetry, it does so by moving rigidly the entire en-
ergy spectrum up or down in energy while leaving the



Bloch states unchanged. The topological attributes of
the three Bloch bands are thus untouched by the addi-
tion of a chemical potential.

B. Topological invariants

We shall take the thermodynamic limit L — oo with
L the linear extend over which periodic boundary condi-
tions are imposed. In this limit sums over momenta in
the BZ are replaced by integrals over the BZ while the
index k becomes the argument of functions. From now
on, we shall identify the BZ with T3. We can then dis-
tinguish two related topological invariants associated to
the family of single particle 3 x 3 matrices H(k) labeled
by the momentum k from a BZ with the topology of the
3-torus T owing to the periodic boundary conditions.

The first topological attribute characterizes the bundle
of Hamiltonians H (k) over the BZ T3. For any momen-
tum k € T3, there is a one-to-one correspondence be-
tween the 3 x 3 Hermitian matrices H (k) and the vector
d(k) € R*. For any momentum k € T2, the magnitude
|d(k)| measures the momentum-resolved energy separa-
tion between the zero mode u(%) (k) and the lower and up-
per modes u(~) (k) and u(*)(k), respectively. The eigen-
states u(®) (k), u(=)(k), and u*) (k) are independent of
the magnitude of |d(k)|, i.e., they only depend on the co-
ordinate defined by the unit 3-vector d(k)/|d(k)| on the
3-sphere S3 . It follows that the topological attributes
of the three Bloch bands of Hamiltonian (3.2) are de-
termined by the homotopy group Z of the map defined
by

keT?—dk)/|dk)| € S® (3.6)
between the BZ T3 and the 3-sphere S®. For each pa-
rameter M # +1, 43 entering in Hamiltonian (3.2), the
integer value taken by the topological invariant

V(M) = —

ij v 1
=53 /d%eﬂ’“ A ——d; 0,d; 0,d), 0\d,,

i

T3

(3.7a)
determines which homotopy class the map (3.6) belongs
to. Here, we are using the short-hand notation 0,d; =
8dj /dk*, with u, v, A labeling the three coordinates of the
momentum k and i, j, k,[ labeling the four components
of the vector field d, and the convention for summation
over repeated indices. Explicit computation of v as a
function of M delivers

+2, |M]| <1,
v(M)=4¢-1, 1<|M]|<3, (3.7b)
0, 3<|M|.

Whenever |M| = 1,3, the gap over the BZ closes at
the discrete points (the lattice spacing is unity)

k! =x(l,m,n), I,m,n=0,1. (3.8)
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These eight momenta change by a reciprocal wave vec-
tor under the operation of time reversal, under which
k — —k. In this sense, they are time-reversal invariant.
The touching of the upper and lower dispersions at the
momenta (3.8) occurs at zero energy and delivers a Dirac
dispersion in their close vicinity when |M| = 1,3. Hence,
we call the momenta (3.8) Dirac points when |M| =1, 3.
For small deviations away from |M| = 1,3, a spectral
gap opens up at the momenta (3.8) that can be asso-
ciated with a Dirac mass. Remarkably, the number of
Dirac points that change the sign of their mass across a
transition tuned by changing M through any one of the
values |[M| = 1, 3 is equal to the change in the topological
invariants (3.7). To see this, observe that the momentum
resolved Dirac masses are given by

Koooid — M -3,
dkom?4 = dk01034 = dk100?4 =M= 1, (3 9)
dk110?4 = dk101?4 = dk011§4 =M+1,
dy, ., =DM+3.

1110

With the help of these 8 integers, we define the integer

> (1™t Hsignd, L. (3.10)

nl?

vp(M) := %

m,n,l=0,1

The factor (—1)™+"*+! assures that the mass sign is taken
relative to the chirality of the kinetic piece of the Dirac
operator. One verifies that (see also Appendix D)

vp(M) =v(M) (3.11)
for any |M| # 1, 3.

The second topological attribute characterizes the bun-
dle of Bloch states u(® (k) over the BZ T° for any of the
three bands a = —,0,+. Whenever |M| # 1,3, it is
nothing but the triplet of Berry phases™

0@ (M) := 741 / S AD 9, AV, (3.12a)
7
T3

where we have introduced the Abelian Berry connection

a at 9 @
AEL ) (k) == (u( )T%u( )) (k) (3.12b)

for any of the three bands a = —,0,+. With the help of
Eq. (3.5¢), one deduces that

v
T3

0O (M) = 4i / ke (¢'0,q0,4" 95q) (k) (3.13a)

and



when | M| # 1,3. Explicit evaluations of the Berry phase
of any of the three bands then yields

™

0 (M) =0 (M) = %0(0)(M) = V(M) (314)
when |M| # 1,3 (see Appendix C).

With this computation of the topological invariant 6,
we have also established that the projected electronic
density in any of the bands of 3-orbital model obeys the
noncommutative 3-bracket defined in Eq. (2.88a) that is
dominated by the value of . Upon partial filling, the flat
middle band thus provides a manifold of many-body non-
interacting ground states with macroscopic ground state
degeneracy, similar to the case of a partially filled Lan-
dau level. Henceforth, one may expect interesting many-
body ground states to appear once electron-electron in-
teractions are added to the model. In that regard, we
observe that any many-body Hamiltonian that includes
an interaction build out of density operators projected
to the middle band is invariant under the chiral trans-
formation (3.3a), since the projected density operators
themselves are invariant under the chiral transforma-
tion (3.3a).

C. Surface states

We shall here provide an interpretation of the topo-
logical invariant (3.10) as a manifestation of the surface
states associated with a spatially dependent mass param-
eter M in the Hamiltonian (3.2). This observation ap-
plies when considering the surface states that connect
bands separated by a bulk gap. Such surface states, con-
necting the upper and lower band, appear only when
the periodic boundary conditions are replaced by open
boundary conditions that implement a slab geometry
with the surface normal parallel to the 75 direction.

In order to study the surface modes, we consider the
low energy description of the Hamiltonian (3.2) by lin-
earizing it around each of the 8 nodal points in the Bril-
louin zone k== w(l,m,n), with [,m,n = 0,1. The
Hamiltonian (3.2) in the linearized approximation fac-
torizes according to

H = (3.15)

® Hlmn'

l,m,n=0,1

For example, the expansion H around k(,, produces

0 0 k_
HOOO - O O k’j - iMOOO 5 (316)
k, k3+iMyy 0
where fci = 12:1 + 11%2, l%j = —i0, , for j = 1,2,3 and

Mygg = M — 3. For a uniform mass M, the spectrum
breaks into three low energy bands with eigenvalues 0

and £1/k2 + | Myg|?.
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We now regard Mgy, as a domain wall configuration
along the r;-direction, which we choose to parametrize
as

Mgo(rs) = Mg [O(r3) — O(—73)], (3.17)
where © is the Heaviside function. The choice of a sharp
domain wall in (3.17) facilitates the analytic treatment of
the eigenmode equations and does not affect the general-
ity of the following discussion. Due to the translational
invariance on the e;-e, plane, we seek solutions of

Hooo wooo,n =&k l/’ooo,m (3.18)
with g0 (P, 73) = eikp Po00,k(73), Whereby p =
(ry,79) and k& = (ky,k,) are, respectively, the coordi-

nates and momenta projected on the e -e, plane. The
components of the spinor wavefunction

-
¢000,n(7"3) = (fh:(r?))?gn(r?))’hn(rii)) (3.19)
satisfy
k_
ulra) = hig(ra), (3.200)
17 . .
9n(r3) = — [ =10, — iMoo (r3)| he(r5).  (3.20D)
and
[_872-3 + Mgoo(r3) — 2M0005(7“3)} hy(rs) (3.200)
= (ei = K2) Dy (13)-
At r3 # 0, the solution of Eq. (3.20c) yields
Ry (r3) = hge ~Imsl/2, (3.21)

where hy is a normalization constant and A~! =

\/Mgoo + k2 —e2 > 0, while the delta function discon-

tinuity at r5 = 0 imposes the condition A=t = M.
Therefore, the domain wall configuration (3.17) bounds
surface states with dispersion

€4, = ElK| (3.22)
provided Mgy, > 0. Evaluating the solution (3.21)
in (3.20a) and (3.20b) yields the spinor wavefunction,
which, up to a normalization constant N, reads

Yo00,4,1(P:73) = N Qg0 4 1 € e Moo (3.23a)
000 4.0 = 2*1/2 (:l:@*la'e,(], 1)T, ﬁ = e:tlan'
=+ -
(3.23b)

The discussion of the boundary states of the low energy
Hamiltonians with n = 0, H,,,,,, is very similar to that of



Hooo- In this case, the existence of gapless surface states
with dispersion as in Eq. (3.22) for sharp domain wall
configurations

Mipo(2) = Mlmo [0(rs) — 0(=73)]

requires M ,,, > 0. The explicit form of the eigenspinors
(omitting the 5 dependent part) is

(3.24)

QDOOn,i,R = 2_1/2 (:l:e_iaka 07 1 T

—

—1/2
P1on, £,k — 27V

)

Fetiok 0, 1)
-

)

( :
Plin,t.x — 271/2 ($e_iak7 0,1) ,

Potng =272 (ketion 0,17 (3.25)
where n = 0. For the boundary states of the low en-
ergy Hamiltonians with n = 1, H,,,;, the extra minus
sign coming from the Taylor expansion around ks = =
implies that the gapless surface states exist for domain
wall configurations

My (rs) = Mlml [0(rs) — 0(—73)],

provided M,,,; < 0. The eigenspinors in this case are
given by Eq. (3.25) with n = 1.

In order to account for all the possible surface modes
in a finite size configuration, we now take, for the sake
of concreteness, our system to be a slab, infinite in the
e,-e, plane and confined in the rs-direction by ry® <
7y < rRottom with 0P — pbottom agsumed to be much
larger than any other length scale so as to regard the
two surfaces as completely decoupled from each other.
Moreover, let us adopt the convention that the vacuum
is characterized by a positive value of the gap parameter
(M, > 0), which then changes to negative values for
P < 1y < rPotem  For this particular configuration,
the discussion above implies the presence of gapless sur-
face states associated with M, (H,,,,) at the surface
7y = 5P (ry = rRo%Om) for M,, o < 0 (M,,,, <0).

In order to make a connection with the topological
invariant (3.10) we now compute the winding number of
the eigenspinors as

(3.26)

1
Vimo = +; \%dh" ’ (<pzr7n07i,nvn splmO,:I:,n) ’ (3273)

1
Vim1 = i %dh‘, (gpjml,:t,nvn @lml,i,n)) > (327b)

where the explicit overall sign difference between (3.27a)
and (3.27b) reflects the opposite orientation of the out-
ward normal vectors +e5 and —e; at the surfaces vy =
P and ry = rEotom respectively. Direct computation
using Eq. (3.25) gives

(3.28a)
(3.28b)

Yooo = V110 = V101 = You1 = —1,

V100 = Yo10 = Yoo1 = V111 = +1.
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The total winding number of the surface states is en-
coded in the quantity

U= Z Vs (3.29)
Mlmn<0
which acquires the following values:
+2, |M|<1,
r=<-1, 1<|M]|<3, (3.30)
0, 3<[M|.

Comparison between Eq. (3.30) and Eq. (3.7b) thus es-
tablishes a direct relationship between the topological in-
dex (3.10) and the total winding number of the surface
states . Similar analysis of the finite size system spec-
trum for domain wall configurations of the gap parameter
along either the x or the y directions reveals the nonex-
istence of surface states.

IV. INTERACTIONS WITHIN THE
SINGLE-MODE APPROXIMATION

We begin by reviewing the single-mode approximation
(SMA) to the FQHE from Ref. 33.

In the IQHE, the external magnetic field organizes
the single-particle spectrum into degenerate Landau lev-
els, whereby two consecutive Landau levels are sepa-
rated by the energy gap hw.. The cyclotron frequency
w. = h/(m.l%) is proportional to the magnitude B of
the uniform magnetic field.

We consider the limit of very strong magnetic fields rel-
ative to the characteristic energy scale V' of the electron-
electron interactions, i.e., iw, > V. Moreover, we con-
sider a filling fraction v = ®/®, < 1 (P the magnetic
flux and @, the flux quantum) such that the exact many-
body ground state |¥) does not break spontaneously any
symmetry. The translation invariant interacting Hamil-
tonian H describing a nonvanishing density of spinless
fermions moving in a plane perpendicular to an external
magnetic field of uniform magnitude B and interacting
pairwise with a (screened) Coulomb interaction is then
well approximated, as far as low energy properties go, by
its projection fILLL onto the vector space spanned by the
lowest Landau single-particle levels.

Upon imposing periodic boundary conditions in an
area of linear size L, ﬁLLL is given by

Hypp = Z Vg 0P_q 0P q; (4.1a)
q
where
Vg = Vg =V_q (4.1b)

is the Fourier transform of the screened Coulomb inter-
action, while

0Pq = Pgq — { Vg |y | ¥o) (4.1¢c)



is the Fourier component of the fermion density operator
after projection into the LLL measured relative to its
expectation value in the exact many-body ground state
).

Inspired by the early work of Feynman and Bijl in their
study of excitations in ‘He,>* GMP in Ref. 33 consider
the variational state

|¢k> = 551.: “1’0%

whose energy expectation value A,, measured relative
to the exact ground state energy E, sets a variational
upper bound on the low excitation spectrum of the LLL-
projected Hamiltonian (4.1).

Assuming the inversion symmetry

(4.2)

A+k = A*k’ (4.33)

a direct calculation using Eqs. (4.1) and (4.2) leads to

Ay = f: (4.3b)
where
o= 2 (30| [ [Fne550]]| 00 @30
and
sk = (Po 0Pk, 00 11| Vo) - (4.3d)

One recognizes on the right-hand side of Eq. (4.3d) the
static structure factor. The insight of GMP in Ref. 33
was to realize that the density operators projected onto
the lowest Landau level close the exact algebra

PO .. (1 ~
st =210 (0B €03 ) s (1)

(5 is the magnetic length). In turn, the algebra (4.4)
implies that

fu ~ ||

in the small |k| limit. Hence, in the FQHE, a necessary
(but not sufficient) condition for the existence of a finite
gap in the thermodynamic limit is to have

(4.5)

0~ [Kf* (46)
also hold in the small |k| limit. In fact, Eq. (4.6) was
shown in Ref. 33 to be satisfied when |¥) is chosen to be
any Laughlin state with filling fraction v = 1/m, where
m is an odd integer.

In the spirit of GMP, our starting point is a single-
particle Hamiltonian defined on a d-dimensional Bravais
lattice and sharing its point group symmetry. We also
assume that there exists at least one band that is inde-
pendent of the lattice momentum, i.e., a flat band, and,
furthermore, that is separated from the other bands by
a single-particle gap A. We constructed a 3D example
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thereof in Sec. III. We then imagine switching on adia-
batically a pairwise interaction that preserves the Bravais
lattice point-group symmetry, say a (screened) Coulomb
interaction. We shall denote with V' the corresponding
characteristic interaction energy scale. In the regime for
which A > V, Hamiltonian (4.1) can be reinterpreted as
the interacting Hamiltonian projected onto this flat band,
provided we identify v, with the Fourier transform at the
lattice momentum q of the pairwise fermion interaction,
dpg with the Fourier transform at lattice momentum q
of the projected operator describing density fluctuation
measured relative to the fermion density with lattice mo-
mentum g of the exact many-body ground state |¥),
whereby we assume that |¥,) does not break sponta-
neously any point-group symmetry of the lattice.
The projected density operator on a flat band reads

ﬁk = Z UL : up+k SC\I) >/<\p+k
P

o @7)
=D My X Ui
P

where u,, € C¥ is vector-valued (its components range
over the number IV of orbitals per site of the Bravais lat-
tice), while x,, and )?L are the annihilation and creation
operators, respectively, of single-particle fermionic eigen-
states on the isolated flat band with lattice momentum
k. Hence, they satisfy the canonical fermionic anticom-
mutation relations

(Rt} = {Fxl} =0, {Rtl} =buw (19

for any pair k and k' of lattice momenta. In carrying
out the program laid out in Eq. (4.3) for a general lattice
Hamiltonian with a flat band, one notices two immediate
obstacles.

The first one arises from the fact that the commutator
of two (projected) density operators does not satisfy the
algebra (4.4) found by GMP for the FQHE in a uniform
magnetic field. However, it was noticed in Ref. 38 that, in
the limit of small lattice momenta k and k', the commu-
tation relation between two projected density operators
reads

(9000, 5] = [ [ e k) Bp) +---]
x X' (p)X(p + Kk + k')

(4.9a)

in the thermodynamic limit L — co, whereby the short-
hand notation

_ d‘p
/=] @y (460)
is used,
B(p) = -1 (VAA)(p) (4.9¢)



is the (real-valued) Berry field strength of the flat band,
and

A(p) = (uT

is the (imaginary-valued) Berry connection of the flat
band, while --- in Eq. (4.9a) accounts for higher order
terms in powers of k and k’. Consequently, it was pro-
posed in Ref. 38 that the numerical observation of the
FQHE without an external magnetic field in 2D Chern
insulators in Refs. 50-53 can be understood on the ac-
count that, because in a 2D Chern band insulator the
integral of the Berry curvature on the Brillouin zone
equals the (nonzero) Chern number, replacing B(p) in
Eq. (4.9) by its average, implies the GMP algebra (4.4)
in the long-wavelength limit. However, we would like to
stress that, contrary to the 2D Chern band insulators for
which one can associate the notion of an average Berry
curvature due to the nonzero Chern number, for the 3D
lattice models studied in Secs. IT and III, the integral of
the Berry curvature vanishes so that replacing B(p) by

- Vu)(p) (4.9d)

J

n\

p’

+

where [ = [d%q/(2r/L)¢ and the summation conven-

a
tion is implied over the repeated index pu = 1,---

,d. In
Eq. (4.10a),
(p) = X'(p) X(p) (4.10b)
while
B(p) := B(p) — B (4.10¢)

denotes the deviations of the Berry curvature B(p) away
from the uniform background value B. This uniform
background value is defined in such a way that, when
d =3,

B (p)

2 1 d>p
:in/(zw)?)'6

T3

1 3
Ch>‘::2ﬂ'><f/ &'p

(4.11)

with A = 1,2,3 is compatible with a generalization of
the 2D Chern number to layered (quasi-2D) materials.
The result (4.10a) should be contrasted with the calcu-
lation in Ref. 33, for which the order k? term in f(k)

[ [v@35®na- 0,8 @r (507 e e+ 0) - X6+ a3 i)
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its average is meaningless. Even for 2D Chern band in-
sulators, the Berry curvature is generically nonuniform;
a fact that should be reflected in the exact many-body
wavefunction.

The second obstacle to applying the SMA to an inter-
acting lattice model is the fact that no good candidate
wavefunction is presently known with which one can com-
pute the static structure factor s, and compare its small
k dependence with that of f,, as was done by GMP in
Ref. 33. Nevertheless, information about the behavior
of f;, for small k and the requirement of a finite gap in
the thermodynamic limit, i.e., A, — Ay # 0 for k — 0,
puts a constraint on the static structure factor for small
k and, correspondingly, on the correlations of the exact
many-body wavefunction.

In Appendix E we discuss in detail the evaluation of
the function f, defined in Eq. (4.3c) to lowest order in
k. Our main result is that, due to the non-closure of the
density algebra for any d-dimensional lattice model, the
leading contribution to f(k) reads

[e@|kna-58m)] [ kna) s8] (e i)

(4.10a)

vanishes identically as a consequence of the algebra (4.4).
The formula (4.10a) thus establishes a direct relationship,
within the SMA | between the deviations of the Berry field
strength away from a uniform configuration and the order
k? contribution to f(k)

f(k) ~ |K|*. (4.12)

Such a relation is relevant either for 2D fractional Chern
band insulators for which, despite a nonzero Chern num-
ber, B(p) can be nonuniform throughout the Brillouin
zone or for the general classes of 3D lattice models stud-
ied in Secs. IT and IIT for which the integral of B(p) van-
ishes. The result (4.10a) also indicates that a prerequisite
for the existence of a nonvanishing but finite many-body
gap to excitations above the many-body ground state
is that the static structure factor s(k) has also to van-
ish as k? to allow for the possibility of a nonzero ratio
A(k) = f(k)/s(k) and therefore a nonvanishing SMA
gap in Eq. (4.3b).

V. SUMMARY

The noncommutativity of coordinates and density op-
erators in a featureless liquid-like electronic state can be



a local probe of its topological character. In this paper,
we have studied how this fact, which is well-established
for quantum Hall fluids in 2D, carries over to 3D topo-
logical states of itinerant electrons. In the limit of long
wavelength, we found that both the noncommutative re-
lations obeyed by projected position and density opera-
tors are characterized by the topological invariant of a 3D
band structure with chiral symmetry. We established a
relation between the noncommutative relation of the pro-
jected position operators and the classical Nambu bracket
of volume-preserving diffeomorphisms of 3D fluids, that
might bridge the description of classical ideal fluids and
that of topological incompressible states in 3D.

One experimental manifestation of band topology are
boundary states. Their existence is, in turn, tied to the
topological electromagnetic response of the system. On
the basis of our results that relate the expectation val-
ues of position operators with band topology, we con-
clude that the noncommutative geometry is observable
via response functions. First, the expectation value of
the regularized projected position operator itself is the
polarization, that is a zeroth-order response, in the sense

J
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that it exists without external perturbing fields. The
expectation value of the commutator and the 3-bracket
of projected position operators describe linear response
via the Hall conductivity and the magneto-electric po-
larizability, respectively. The latter yields the polariza-
tion created by application of a magnetic field and has
a contribution from the 3D Chern-Simons invariant, or
equivalently the #-term.5”:59
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Appendix A: Gauge-invariant regularization of brackets of projected position operators

1. Definition of the single-particle Hilbert space

Define the three lattices

57 ::{(k“)ERd Et=—nt, nt=1, -,J\f”}, (Ala)
A, :—{(r“)GRd rt =ant, nt=1,.-- ,N“}, (A1b)
and
Ap = {(R“)ERd RM = an”, n“1,~~~,N”}, (Alc)
each of which shares the same cardinality
d
N= N (A2)
p=1
The lattices A, and Ap share the same unit cell of linear extend a but they might be shifted by the vector
d
d::ZeMe“, 0<e, <1, et . e’ = o, wv=1---.d, (A3)
pn=1

from the unit cell relative to each other.

The single-particle Hilbert space is defined through a basis of orthonormal states. We introduce two such bases.

There is the orbital basis

1= |g) (Pr| = i) (il

W2y = 6% 6,y (WRIUR) = 0% Sy (W2[UR) = 60

e-‘rlk"”

IV , (A4)
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with the summation convention implied over repeated indices and for any pairs a,o’ = 1,--- ;N or r,7’ € A, or
kK €Ay,

There is the band basis

’ / ’ / ’ / 1 T,
1= |Wg) (WEl=Ixi) (Xkl,  (WRIWR) =0 dpr  (XkIXk) =07 Oppes  (WhIXR) = 00" —= ePFE,
VN
(A5)

with the summation convention implied over repeated indices and for any pairs a,a’ =1,--- ,N or R,R' € A or

kK € A},
The orbital and band basis in momentum space are related by the momentum resolved IV x N unitary matrix Uy,
with the matrix elements

(Vklxk) = ug",  aa=1,--- N (A6a)
Hence, for any k € A}, these matrix elements obey the orthonormality conditions
uge U%’a* _ 504,0/’ a,/ =1,--- N, (A6b)
for row multiplication or
up u%a, = 59 a,a’ =1,---,N, (A6c)

for column multiplication.
The orbital basis in position space and the band basis in momentum space are related by the Fourier component

1 -
<¢$|X%> = Wuga e+1kr7 a,a = 1a 7N7 (A7)

for any r € A, and any k € A},.
The orbital and band basis in position space are related by the convolution

1 .
Wg) = N e R Ixg)
= o e (o) (021 )
v (A8)
= (b)) )

for any R € Ap with the summation convention over repeated indices on the right-hand side.

2. Projected lattice position operator

A lattice position operator generates infinitesimal translations in momentum space. There is an ambiguity when
defining a lattice position operator. We can either choose to define the position operator on the lattice A, or on the
lattice Ap. In the former case, we define

N
Fi= 0 > e Ty (A9)

reA, a=1
= [gr) 7 (V7]

with the summation convention over the repeated indices « = 1,--- , N and r € A, implied on the second line. In the
latter case, we define

N
R:= Y > |Wa)R(Wg|

ReAp a=1

=|Wg) R(Wg|

(A10)
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with the summation convention over the repeated indices @ = 1,--- , N and R € Ay implied on the second line.
We define the projection operator on the first N occupied bands by

by= D > Ixi) (il (A11)

keAy, a=1

Xik) (XR|

with the summation convention over the repeated indicesa =1, - -, N and k € A}, implied on the second line. In the
sequel, it will always be understood that latin indices such as @ run over the first N occupied bands. The projection
operator on the first N occupied bands is represented by

~ 1 ik-(R—R' a a
by =7 2 ¢ HUEEIWR) (R
keAy, (A12)
= W) (Wg|
in the Wannier basis (with the summation convention over the repeated indices @ = 1, - ,]\7 and R € Ay on the

second line). The projection operator on the first N occupied bands is represented by

Py =ui®ug ) (Wi | (A13)
in the momentum space orbital basis (with the summation convention over the repeated indices a = 1,--- ,]v ,
a,a/ =1,--- N, and k € A%,). It is not diagonal in the orbital indices because of the truncation to the occupied
band. _
The lattice position operator projected on the first IV occupied bands can be either defined by
or by
3. Lattice discretization of the single-particle trace over the 1-bracket of the projected position operator

We are first going to show that

N
Tr()?,ffR):Z Y r— 3 RJ. (A16)
We are then going to show that

Tr (5(\ - X\R) =i ) tra, (A17a)
keAL,

where, in the thermodynamic limit ' — oo and assuming smoothness of the k dependence of the matrix ele-
ments (A6a), A, is the N x N antisymmetric matrix with the components

AP =0 b G h=1,---N. (A17Db)

The summation convention over repeated indices is implied. Comments: (i) Equation (A17) follows from the identity
(the proof of which is postponed to Sec. A 5)

X, = Xp+ X0 1A (L. (A18)

(ii) Equation (A17) holds for any choice of the boundary conditions. (iii) Equation (A16) is mathematically mean-
ingless in the thermodynamic limit N' — oo, for it involves the subtraction of two ill-conditioned sums.
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Proof. First, we make two observations. On the one hand, from the definition (A14)

Tr X, = (W&| X, |Wa)

Eqs. (Al4) and (A12) = <W1&2| T |W1&3>

1 . - 1 syt ’ /< ’

e = [ g | ¢ e ) g )
1 . ~ 1 Syt ’ /=~ ’ (Alg)

Eq. (A9) = |:N €+1k‘(R_r) Uza* <1/1$|:| r |:./\/' 671k ~(R7'l’ ) u%/a ‘d}g’ >:|

’ ’ 1 ik-R ax 1 —ik’-R , ada
</¢)$‘w:/ ) = éa)a 67’,7'/ = Z { €+1 U(kya r Al e ' uk/ M
= N N

The implied summation over R produces the factor N Jk! k- We are left with the implied summations over the orbital

a=1,---, N, over the occupied bands a =1, - - - ,]V, and over the momenta k € A},

- (A20)
Egs. (A6b) and (A6c) = Z Z r.
On the other hand, the definition (A15) immediately implies that

Tr Xp :<WILL{|XR|WI(12>
(Wg| R|Wg)

Eqs. (A15) and (A12)

(A21)

Subtracting Eq. (A21) from Eq. (A20) delivers Eq. (A16).
Second, to prove Eq. (A17), we start from Eqs. (A14) and (A11) to establish that

coco = (O (r @)

)

)

J(ries

) <r i ug&> (A22)
)

VN

6+1k-7‘

_ (<xi\¢?> K_iak\/ﬁ) u%&}

e—1k~r - e+ik~r - e+ik~r 5
() o () (comee)]
= (Xl (1) Bg (VR IxR) + Lug® Opug”.

To prove Eq. (A17), it suffices to recognize that

Tuf @ Opul® = Z itr A (A23)
keAL,
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and that, after insertion of the Fourier expansion within the band basis (A5),
. ) B e~ ik-R . . etik-R .
ORI 001D = | WRIE) ) (00, (s W)

o—ik-R/ — etik-R S
_ <N<WR/%>> (R — <wT|WR>)

. / (A24)
ok (R'—R . .
= | X | WRIR(jep)wr)IWR)
kAL,
= (Wg|R W)
=Tr X\R.
O
4. Lattice discretization of the 2-bracket of the projected position operator
We are going to establish that the 2-bracket of the projected positions operator (A14) is
E[LVX;‘LX’II"/ :| ~> ( F;Ll/ k) <X}I)c|
N etik(R-R) ; (A25a)
= Wi (=S Pk | Wh|
where
FMV LA ali Ai{)’/ - 81’ Ai?ﬂ + [Akm’ Ak;l/] " ’ a, B =1 7]\7, ke A;;za (A25b)

in the thermodynamic limit N/ — oo and assuming smoothness of the k dependence of the matrix elements (A6a).
The summation convention over repeated indices is implied. In contrast, the 2-bracket of the projected positions
operator (A15) vanishes

€ Xt XY, = 0. (A26)
Comments: (i) No regularization is needed here. (ii) Equation (A25) holds for any choice of the boundary conditions.

Proof. We begin with the proof of Eq. (A25) which we establish by computing the matrix elements of )?ﬁ )?ff in the
band basis (A5) in the Wannier representation (as opposed to the momentum representation). For any triplet of pairs

a,’ =1,--- N, R R € Ay, and p,v = 1,--- ,d, we evaluate the matrix element of )?# )A(,’f in the Wannier basis
given by
(Wa|Xe 2 \Wi) = (Wal (B 7By ) (p~f”z3~) W)
R R R N N N N R (A27)
=§0% x §¢ x (W |r“ 7Y |WR,>
With the help of Egs. (A4) and (A5),
Wil By IWED = Wal (lemwsl) @ (g l) » (g 1w 1) Wi
Ba (a9) = (WEIS) x (WSIXG) x (XBI9S) x (42 [Wh)
=~ . T i s B ’ r=1 1./ ’ ’ A28
Egs. (A7)+(A8) = J\%Tﬂ r’v (u:a* e+'k’(R7T>> X (ugb e+]p""> X (ug bx gmipT ) X (uz/a e ik (R )) ( )

1 ~ . O i, P . 1T i) 1=t gt om0 a
_ uQar e R e ¢ (ueP P (y2 B gmimr) o (yoral i R SR )
N3 Ok P P ok’
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We would like to perform the implicit sums over r» € A, and 7’ € A,.. To this end we use twice the product rule for
differentiation,

F09)f'(0'g") = [0(fg) — (0F)g) 10 (f'g") — (&' )]
=03(f9)0'(f'g") —0(fg)(@ g — (8f)gd' (f'g") + (8f)g(@'f')g' (A29)
=00 (fgf'g") —0lfg(0'f")g'] = (0f)gf'g'] + (0f)g(d f)g'

for any pair of functions f and g of one variable and for any pair of functions f’ and ¢’ of another independent
variable. We find

(ng?f )?: |W1‘§/) i ii o [(u:a* e+ik.R) « (uaé e+i(p—k)47-) % (ug’z‘;* e—i(p—k/)vrl) % u:/’a' e—ik’-R')]

N3 %y akwaa* ik-R ab +i(p—k o'bx _—i(p—k')-r! r (2@ ik R
P s (g Y s (a5 ) [ (s )]}

/\/’3 aku {(

1 9 ) s ) _ )
- e ([0 (27 (510 ) )

1 ax +ik- ab _+i(p—k)- a’bx _—i(p—k')-r’ o’a’ —ik’-R'
+F[6H<uza etik R ] X(upbe+(p k)r)x(upb e i k)r)x[[‘):,(uk/ e ik R)}

(A30)

We perform the implicit sum over » € A, on lines 1 and 2. We perform the implicit sum over ' € A,. on line 3. We
perform the implicit sum over the pair r,7’ € A, on line 4. The implicit sum over r» € A, yields the multiplicative
factor N9y, ,, while the implicit sum over » € A, yields the multiplicative factor Aoy, ,,. Thus,

(Wa| Aﬁ )?: |Wf§l,> S .A%@iﬂ 81?”’ [<e+ik-R5aB> % (ug'é* efi(kfk')-r’> % (ug/’a' efik’-R’):|
9 ik-R sab o'bx —i(k—K')r o'd ik R

e N )| B

_/\?W{[a" (ug® et R)] x ( ab +i(k' —k)- 'r') % (6ba o ik ~R)}

1 e R
+N{|:a# (uga* +1kR }X{[ ab*a ( a'a —1k‘-R>:|}.
Performing the implicit sum over the projected band index b= 1. ,J\NZ on lines 1, 2, and 3 gives
P N ~/ 1 6 8 /= : . / P TR ~ Y
(WHIKE XY Wi = + 5 g g [ €7 x e 0R0m syt =k R
1 a ’ ’ ’
o’ax +ik- R —i(k—Fk") 6/ ul ‘a —1k: ‘R’
s g o e )
A{ aa o ) , . (A32)
_ /\? S { [8Mu%a* e_|.1k:-R] % e—l(k—k )~7‘ —1k: ‘R’ }

+%{[8u i e+ ) ) { g™, ( za/ s

For further simplification, we apply the identity

OO [f (k) h(k, k') g(K')] = + O [f (k) h(k, k) Oy g (K")]
+ Oy Lg(K) h(k, k) O, f (k)]

k
(A33)
+ f(k) g(k') 0,0 h(k, k)
= h(k, k) [0}.f (K)] [0 9(K")]
for the smooth function f, g, and h to the first three lines of Eq. (A32). We find
Q| vH vV a’ 1 0 0 —i(k—K')-r aax ik- aa’ —ik’-R’
(WEIXH XY |WE) = +J\? S B © (k—K') ] x uQ@x gtk R o 0d” —ik'-R
1 —i(k—k')r adx +ik- ad' —ik’-R’
“ A2 ( ) [6# (ug® et R)] X {8; (uk, e R)} (A34)

+ % [aﬂ (ug&* e+ik~R)} ugb % |:u(’z'l~7* ay <ug/d' e—ik~R')] )
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We perform the derivatives on lines 2 and 3 first, which we then follow up with the implicit sum over 7,

alou ov &’ ]_ 8 (9 —i(k—Ek')- aax ik- ad’ —ik’-R’
<WR|X#XT |WR/>: +m %8]{;”/6 (k k)’l':| Xuk 6+kRXuk/ e k'R

1 : ’ ~ ~ ~/ ~/
= 7 R (iR 4 0,ui™ ] x| <Ry + O | (A35)

1 . ’ ~ ~ 7 17 I~ 1t
+ik-(R—R’) [; aax aax] , ab o’ bx spla'a a'a
+ N [1Ruuk + 0, up, Jug? x ug: —iR,up * +0,ug * | .

By making use of the orthonormality (A6b) and (A6c) and the definition (A17b) for the gauge connection, we can
expand the product of the bracketed terms on line 2 and 3 according to

S ~/ 1 a 8 (LY. ~ 1. =1
(WrIXEXY Wg) =+ — e ik—k)r X ugd* gHR-R 00 o—ik R

N2 | Okr Ok
ik (R—R) . . . .
e [RH R, 6% £ R, A% +1R), A% + (9,uf™) (a,,uga )} (A36)
ik-(R-R') i = -, -,
+ i (1R — Afl ) < (—iRL0™ + AL ).

Terms that have been underlined on line 2 cancel with line 3, leaving us with

a %% a’ 1 9 9 —i(k—FK')r aax ik- ad’ —ik’-R’

(WRIXE X! WR) = + 53 [akuak/ue (k=KD } X ug® eI gt em IR
. y (A37)

ek (R=R) adx ad’ ab  gba’
— T |:(8uuk ) (Q,uk ) + AH;k Al/;k:| .
Here we would have to stop if we do not want to anti-symmetrize the indices y = 1,--- ,d and v = 1,---; doing so,
however, yields
a|\ou v a elk-(R-R) ba' ab  gba’
€y <WR|X7{ Xr ‘WR’> = - T [GMVGMVauAu;k + Ap;k Au;k}
) / (A38)
etik-(R—R) -
- — T Fﬁ“ﬁk'

We continue with the proof of Eq. (A26), which we establish by computing the matrix elements of )?ff )?j.’ in the
projected band basis (A5) in the Wannier representation (as opposed to the momentum representation). For any

triplet of pair a,a’ =1,--- N, R,R' € Ay, and pu,v = 1,--- ,d, we evaluate the matrix element of )?1‘% )?}’éc in the
Wannier basis given by

(Wh\ X5 X5 (Wh) =0%% 5 6°% x (Wi (B 7B ) (pe R py) (W)
= 0% x 58 X (Wh| R* po R W)
= §ui x 590 (WE| RH (\Wg’,xwg,’,o R |\WE) (A39)
Ba a0y =0%% x 097 x RFRY (Wa|Wik )\ (Wi Wi

__ fa,a a’,a o pr sa,a’
=0"" x4 X R RY 6" dp g

Antisymmetrization yields Eq. (A26)
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5. Lattice discretization of the 1- and 3-bracket of the projected position operator

We are going to show that, in the thermodynamic limit A/ — oo and assuming smoothness of the k dependence of
the matrix elements (A6a),

- N R &
X, = |xk) T”“k ug’ | (X |

B e—i(k—K')-R S, ,
=) | B0 H1AR e | (X

kR, » ’ (A40a)
=) |~ (6m" R +1 A5 )| (W
_[etikr-RY B
= Wa) | —— (5“1“ R +1AZ“) (W]
while
Su Tr TA av )L etik(R-R) ab 5a pr o« Abd &
un XE XY XD = |WR) § 5 e o (DB (877 By +148%) | o (WR. (A40b)

The summation convention over repeated indices is implied. Comments: (i) A regularization is needed to dispose of
the explicit R dependence in the position representation of the covariant derivative. (ii) Equation (A40) holds for any
choice of the boundary conditions. The equality between the first and second right-hand side of Eq. (A40a) implies
that we can do the identification

e—i(k—k/)"r’ 5 _, e—i(k—k/)“r' 5 _, e—i(k—k/)~R .,
_lak/ Z T ’U/%a* Ugfl + Z T Uga* ug/a lak/ <—— T R(Saa (A41)

rei, TEA,

which will become handy to go back to a formulation in the continuum for both position and momentum that does
not assume the vanishing of boundary terms. (iii) Had we chosen to represent the 3-bracket in the Bloch basis, we
could have either written

VU YU YV a 1 v ab eii(kik/).r abx  ad’ a’
€ XK X, Xr/\ = |Xk) (2 A (*)Fug;k TT’\ Ukb ug’ | (X | (Ad2a)
had we opted not to use the product rule for differentiation or
Su DU TN av |1 o ab e ik=k)-R Ga’ | . qaa’ &
€ X1 X7 X = Xk) B} (=) Fpg N Ry 0% +1 AR Oprer || (Xl (A42b)

had we opted to use the product rule for differentiation. However, the representation on the first line of Eq. (A40a) as
well as Eq. (A42a) are meaningless in the thermodynamic limit /Y — oo. They fail to separate a finite and physically
meaningful contribution to the trace of n-brackets.

Proof. Needed is

PPN , 1 ~ o~ = ’
(Wal (un X2 X2 R2) IWh) =5 €uun (Wi ([K2.82] 22) IWE) (A43)
for any pair a,a’ =1,---, N and any pair R, R' € Ap. With the Fourier expansion within the band basis (A5) and
the matrix elements (A25), there follows
(Wal (X, X2 ] 2 Wa) = Wal (W) (—Fie ) 0&1) 22w )
=30 6 (WaING) x (—Fie ) % OGIZX IWE)
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for any pair a,a’ =1,--- , N and for any pair R, R' € A,. With the Fourier expansion within the band basis (A5),
; _ otikR
Wglxe) =64 ——. A45
Equations (A40a), (A44), and (A45) imply Eq. (A40).

The proof of Eq. (A40a) is done along the same lines as in Sec. A 3. We choose the pair a,a’ = 1,---, N and the
pair k € A},, R € Ap. With the help of Egs. (A14) and (A11)

BZ»

(B X, [WE) =057 x 670 x (x&| 7 |WE). (A46)

=)

In turn, for any pair a,a’ =1,---,
017 R = Ol (le)wel) 7 IWa)
e = (rOdlen)) (welwg))

—ik-r —ik’-(R—7)
e ! . e & A4
Eq. (A7) and Eq. (A8) = (’I’ uga*> < u%/a ( 7)

VN N

. e—iker . emikr . e~ ik’ (R—7) i
|:+1 3k(Wuk ) + W (—l 3kuk ):| T Uk/ .

To proceed, we reexpress the first term on the right-hand side as a product of two overlaps to be differentiated with
respect to momentum, while we perform the implicit sum over 7 € A, on the second term on the right-hand side.
This implicit sum over 7 € A, produces the multiplicative factor N' x O k- Thus,

. . ~ ., e—ik-R ) .
Xa| 7 WEY = [+ia (Xa POV WE )+7 i 9, ugar uaa} A48)
Xkl 7 Wg) ke | (XRU7) (07 (W) W(kk)k (
The implicit sums over 7 € A, and v =1,--- , N in the first term on the right-hand side delivers the resolution of the

identity, while we can use the orthonormality (A6b) and (A6c) to move the momentum gradient in the second term
on the right-hand side. This manipulation gives

PR ~7 . ~ ~/ eiik.R Gk . ~/
01 W) = [+106(CEIWED) + < i (10w”)] . (A19)
Equations (A7) and (A17b) deliver
B _, eflk:-R o, eflkz-R .,
Ll |Wg) = |+i0 (> 0P+ —1 a“] : A50
0l WR) = [+, (< AR (A50)
We conclude with
i ., e—ikR o .
Ol # ) = (RW +1Aza). (A51)

The proof of Eq. (A42) starts from suitably modifying Eq. (A44) according to

Ol [, X2 B2 ) = Okl [ (=it ) 0] 2 i)

A52
_ 6@,5 6@',(1’ _F&E b X)\ a’ ( )
- X X nvik X <Xk| T |Xk’>
where we can either choose the representation
o, e—i(k—K')r } .
k| X i) = —— g r ™ uy! (A53)
if we opt not to use the product rule for differentiation or
s , e—i(k:—k:’)'R ., .,
XN = | S RO 1 AF 5 (A54)

if we opt to use the product rule for differentiation as we did in Egs. (A22) and (A24).
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6. Gauge invariant regularization of the trace of the 1 and 3 brackets

Equation (A40) is the main result that we need to draw a connection between the expectation value of the 3-bracket
in the noninteracting filled Fermi sea and the U(N) Chern-Simons action in 3-dimensional space.

We have shown in Sec. IT A the “symbolic” gauge invariance of the expectation value of the 1-, 2-, and 3-bracket of
the projected many-body position operator in the Fermi sea filling up N Bloch bands. The qualifier “symbolic” must
be used since this symmetry presumes the existence of the expectation value. There is no ambiguity for the 2-bracket.
The 1- and 3-brackets are however ill defined. They need to be regularized, i.e., made finite.

It is well known in quantum field theory that regularizations can break a classical symmetry. Regularizations
know about quantum mechanics, for they involve expectation values of operators made of additive pieces that do not
commute. In a path integral formalism, quantum mechanics is traded for coherent states at the price of a measure
that requires a regularization. Here, we need to trace over an operator that can be decomposed into two additive
operators that do not commute. The resulting quantum fluctuations require a regulation of ill-conditioned sums.

However, in the process of regularization the symbolic gauge invariance can disappear. The question thus becomes
the following. Is it possible to regulate the 1- and 3-bracket in a gauge invariant way whereby the gauge invariance
only applies to pure gauge transformation since large gauge transformations change the boundary conditions and thus
the very nature of the Hilbert space over which the trace is to be performed?

Our answer is positive and relies on the observation that we already made in Eq. (A18) and follows from Eq. (A40)
namely that

X —-X,=iA (A55a)
where we have introduced the operator
A= [x@) AR (X (A55D)

through its spectral decomposition.
One verifies by direct computation with the help of Egs. (A40) and (A55) that

FJA) = () [0 X2 X7 (2 - X2)| W8
1 i

§ LU ab b
€ Fpu;k A)\;k
keAy,

(A56)
= - =X

N

\}

breaks SU (Kf ) pure gauge symmetry. This regularization is thus not the one we seek. (Summation convention over
repeated indices is implied.)

However, we immediately see that there is an ambiguity when choosing the space index for which we will do the
replacement 3(\# — 5(\76‘ - X . There are three possible choices that would have all lead to the same right-hand
side (A56), namely

FY A =

finite

(Whl [eun X (X7 = K3) X2 | (W3) (A5T)
H

(Summation convention over repeated indices is implied.)
Proof. We can first insert and then remove the resolution of the identity as
(Wal [Xr (Ry = X5) X2 W) = (WalXe (X2 - Xk) (Wa) (Wi X} W)
= (Wh | X} W) (WaIRE (XY - Xk) (Wh) (A58)

= (Wi X2 %p (R - R3) (Wi
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for the second line of Eq. (A57) and
(Wal [(X - Xf) Xy X2 | wa) = (il (¢ - X5) Wa)(Wa (X2 X Wa)
= (Wh | K2 XM WaRNWa| (R - K1) Wh) (A59)
= (Wa K2 XY (Re - Rp) Wa)

for the third line of Eq. (A57). The space labels p,v, A = 1,--- ,d have been reordered in cyclic fashion so that
contraction with e#** delivers Eq. (A57). O

The subtraction that we performed in Eq. (A56) does regulate the expectation value of the 3-bracket but not in a
gauge invariant way. Instead of Eq. (A56), we use the more symmetric definition

Fynge imvasiant Al = N<WR| lepon X XY (X2 = X3)] W)
N Wil [eun X2 (X2 = R3) 22| wa) o)
N (W [eu ( X”) X X*} IWa)
UL [eu ( X“) ()?: —5(,3) ()?: _;?g)} Wa).
One verifies by direct computation with the help of Eqgs. (A40) and (A55) that
Fg(zzlge invariant[ 1 PY; Z A tr (F;w;k: A)\;k: 3Au k Al/;k: A,\;k> (A61)

keAgZ

is proportional to the integral over the Brillouin zone of the Chern-Simons 3 form.

The operator over which the trace is taken on the right-hand side of Eq. (A60) can be rewritten in a way that brings
0 A
over the manifold of su(N) gauge fields. Indeed, we are allowed to reorder the 3 x 6 = 18 operators over which the
trace is taken on the first three lines of the right-hand side of Eq. (A60) as follows,

it to a linear combination of 3-brackets, thereby justifying the upper index (3) for the functional Fg(m)ch invariant

e [RER) (RE - XE) + X1 (R) - %) X5+ (R - %) X/ )] =

A N N R R R R L (A62)
(X R (R - X)) ] + [Re (R = Rp) &2 + [(Re - =) . %0 22
where I, J, K = pu,v, A. One also verifies that

[(Rr=%p) (R =R0) (X - 2) | = erune (R -XR) (X7 - X4) (XX - %K) (A63)

where I, J, K = u,v, \. We may then define the regularized 3-bracket to be the linear combination

o~ A 1(ra ~ /4 ~ PN ~ ~ ~ ~ o~
(X%, 2] = 2{ (R R (2= %))+ (R (R = X5) R + [(Re - =) =0, 22
reg

(A64)

(e ) (%) (22 ) ).

Here, we have multiplied the curly braces by the normalization 1/2 as we demand that the regularization preserves the
number of 3-brackets to be regularized. To regularize a single 3-bracket, we added three 3-brackets and subtracted one
3-bracket. the number 3 — 1 = 2 is thus the integer by which we choose to divide the curly bracket on the right-hand
side of Eq. (A64). Because the regularized 3-bracket is a linear superposition of 3-brackets, it remains odd under the
exchange of any pair of its consecutive arguments,
[X;T(H)7Xg(v)7)?g()\) = <_)Sgn(o) {Xﬁa)?r7)?ﬁ\} (A65)

reg reg
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with o denoting any permutation of 3 objects and sgn(o) = 0,1 with 0 if the permutation is even and 1 if the
permutation is odd. The regularized 3-bracket also vanishes whenever two of its arguments are equal,

[)?ﬁ, XY, X}] =0 (AG6)

reg

if u =vorv=M\oru= A Finally, the regularized 3-bracket is invariant under pure gauge transformations of the
form (2.39b) since

P PSP 31 2
[XffaXr,X;\} =713 N Z e tr <FIJ;k Apip — gAI;k Ak AK;k) (AGT7)

ree kEA},

where I, J, K = u,v, A

7. Regularized 3-bracket and the Nambu bracket

We are going to prove Eq. (2.63) to which we refer the reader for the notation and definitions.

To perform a Taylor expansion on Tr [fl (X\T), fa (X\T), f (X\r)] , we need to start with a Taylor expansion on
reg

(XD BX) fo(X)] =+ [, (). Jy(X, — X))
+ [1(X) R(X, = Xn) £5(X,)] .
+ [1(X = Xp) LX) 12X
— 11X, = Xp), (X, = Xp), f5(X, - Xp)
To this end, we recall that
[, B,C] = A[B,C] + B[C, A + C|A, B]. (A69)
Thus,
R £ F(K)]| =+ 1K) [£2(X0), f5(X, ~ Xp)| + eyelic permutations of 1,23
+ 1(X) [£2(X, = Xg), f2(X,)] + cyelic permutations of 1,2,3
(X - Xp) [ £(X,), f5(X,)| + eyclic permutations of 1,2,3
(X - Xp) [ £ (X, — Xp). f5(X, — Xp)| — cyclic permutations of 1,2,3.
(A70)
We are now ready to insert the Taylor expansions
fi(@) = £,(0) + Z (9, £,) (@) a# + - (AT1)
=

for i = 1,2, 3 after substituting & with the corresponding projected position operator. Because f; (0) with i = 1,2,3
are C numbers, the commutators in Eq. (A70) must necessarily be of second order in the projected position operators
if they are to be nonvanishing. This means that the insertion of Eq. (A71) into Eq. (A70) can be organized into the
expansion

—~ — —~ 12 — — —~ 1
(WE)HE)LE)] |+ [AELLE) LX)+ (ar20)

reg

1K) B £(X,)]

reg



35

where
(2) ~ o~ ~
(WX LX) B(X)] =+ (11 (9,12) (8, fo) + eyelic permutations of 12:8] (0) | X, K¢ — X
+ [f2 (8, f3) (9, f1) + cyclic permutations of 1,2,3] (0) {)?,f‘ - )?1‘%,)?7’{]
+ [f3 (0, f) (9, fy) + cyclic permutations of 1,2,3] (0) {A#, Aﬁ}
- A (8, f2) (8, f3) + cyclic permutations of 1,2,3] (0) [Aﬁ - )?}’3,)?;’ - )?}’3]
(A72D)
while
) o oy oa1®
R (X (X)) = (0,1) @, 12) (00 5) (0) [X2. XKD (AT2¢)

The summation convention over the repeated indices p, v, A = 1,2, 3 is understood. If we take advantage of the fact
that

[)?}@,X;{} -0, pr=123, (A73)

we find the remarkable simplification

(2) PN
R F2(X0) F(X)| = +2[1y (9, £2) (9, fy) + eyelic permutations of 1.2.3] (0) | X, Xy |

(A74)
*e”kf {fjvfk}lw [X" X”}
Another simplification due to the full antisymmetry of the 3-bracket delivers
) ¥l ¥2 %3
(WX (). 5K = {h Fa foh (0) [RE LR (AT5)

We thus arrive at the operator identity

(WX LK) L(X)] = f{f B3R ©0) [RE Ky 4 {0 fo fdn (0) [RLR2RD] 4o (aT6)

reg

Appendix B: Gell-Mann matrices

The Gell-Mann matrices are 3x3 Hermitian matrices that are a representation of generators of SU(3). They are
defined as

010 0 -i0 1 00 001
MN=1100], =111 0 0], A3=10—-10], AM=1000],
000 000 0 0 0 100
(B1)
00 —i 000 00 0 1 (L0 0
AM=(00 0], Ad=1001], A=[00 —i], d=—70=(01 0
i0o0 (010 0i O \@(00—2
[
Appendix C: Topological invariants in the 3-orbital for A =1,2,3 and the Chern-Simons-invariant
model cHVA
0i= G [ ERELBAE, ()
In this Appendix, we evaluate the Chern numbers 87 BZ

i e for the projection on the dispersionless middle band of
Ch* = /d3k F,(k)€Z, (C1)  the three-orbital model defined by Eq. (3.1) in the ther-




modynamic limit. (We have dropped the symbol refer-
ing to the projection for notational simplicity.) For the
three-orbital model defined in Eq. (3.1), the block off-
diagonal projector g(k) defined in Eq. (3.5a) delivers a
natural choice of gauge for the Berry connection of the
flat band

A(k) =q' (k) Vq(k). (C3a)
In this case, A can be decomposed as
Al(ky, ko, kg) + A" (ky, kg, k)
A(k) = A’(kz,kl,k3) - An(kzvkl,k:a) ) (C3b)
AB(kla k2> kd)
where
p _.sink; sinkg
Alk) = T (C3c)
k, sink
Al(k) = 4 LN C3d
(k) = +i g2, (C3d)
.1+ cos ks (cosk; + cosky, — M)
A (k) = — 3 1 2
and

3 3
G(k) =3+ (M — Z cos ku) — Z cos? k. (C3f)
n=1 n=1

It follows that

A/(kp kzv ks) = - Al(*kla k2, k3)

=+ Al(klv _kQa k3) (C4a)
= - A/(kla kj27 _k3)7
as well as
A (ky, kg, kg) = + A" (=ky, kg, k)
= — A" (ky, —ky, k3) (C4b)

=+ A”(kla k2a _k3)7

while A4(k) is an even function of &y, ko, and ks.
As a consequence, all terms appearing in Fj5(k) and
F,5(k) are an odd function of either k, or k,. Thus,

Ch' = Ch? = 0. (C5)

Furthermore,

Ch?® o / Ak F,
BZ

= /dgk’ {04 [A' (g, Ky kg) — A" (kg Ky, k3]
BZ
— 0y [A/(ky, Ky, kg) + A" (ky, Ky, Kig)]} (C6)
= 72/d3k: 0y A" (ko Ky, k3)
BZ
= —2[A"(2m, ky, ks) — A" (0, ky, ks3)]
=0,
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since 0y A" (kq, kq, k3) is a continuous function of k, with
periodicity 2. We conclude that the Chern numbers Ch
defined in Eq. (C1) vanish identically.

To calculate 6 defined in Eqgs. (C2) we consider inte-
grals of the form

/ P’k A,0,A,,
BZ

nAVE N (c)

which are nonvanishing in general. On one hand, defining

1
+6' = g/di”k A 05 A,
. bz (C8a)
— o [ CRA b k)0, Ay by KoK,
BZ
partial integration delivers
(C8b)

1
—0' = = /d3k Az0,A,
BZ

and using the identity As(kq, ko, ks) = As(ko, kq, k) one
obtains

1
0= / A3k A30, Ay,

. bz (C8c¢)
—0' = = /d3k Ay0, As.
BZ
On the other hand, defining
1
+0" = & / d®k A,05A, (C8d)
BZ
partial integration delivers
1
—0" = & / d3k A,0;A,. (C8e)
BZ
Finally, numerical evaluation of
0 = 40" + 20" (C9)

reveals that 0 is quantized in units of m as announced,
while 6" and 0" are not quantized and are not equal in
general (see Fig. 3).

Appendix D: Equivalence of Chern-Simons and
Dirac invariants

The purpose of this Appendix is to prove that the
Abelian Chern-Simons invariant, defined by

1 v
0= E/d?’ke“ AAHE?,,AA,
T3

(D1)
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FIG. 3: (Color online) Numerical evaluation of the topological
invariant ) = (M) (solid line) for the model (3.2) The
parameters 6’ and 6" that sum up to the topological invariant
0 are defined in Egs. (C8a) and (C8d), respectively.

with the Abelian Berry connection A, (k) is equivalent
to the Dirac invariant vy defined in Eq. (3.10) for the
case of a Bloch Hamiltonian with chiral symmetry and
three bands. The topological attributes of such a Hamil-
tonian are characterized by its normalized off-diagonal
part g(k) from Eq. (3.5a) in terms of which the Abelian
Berry connection reads

A, (k) = g7 (k)D,q(k). (D2)
Here, g(k) represents a map from 75 (the BZ) to S5 and
0/7 is the associated winding number. As a member of
S3, q(k) can be parametrized by three angular coordi-

nates
cos v e'?
o= (Gmaes). (D3)
and the Berry connection reads accordingly
AMZiCOSQOfa © +1 sin? ad,v, (D4)

where we suppress the variable k for the moment. As we
shall see, contributions to the winding number (D1) arise
from vortex lines in (k) and 9¥(k). Rewriting

epuA
0= /d3 sin 2« (8 @) (0,9) Oyp

EHVA

gy {y{dzk cos® a (8,9) Oy

/dsk cos® a [(0,0,9) Oy + (9,0,¢) 8,0] },

(D5)

the antisymmetric double derivatives in the last term
contribute a delta-function for k on the vortex lines times
the winding of the vortex.
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Let us now specialize on the model given by Eq. (3.1)
in which case

© = arg(sin k; +1isin k),

3
¥ = arg [sin kg +1 <M—ZCOS k1>

(D6)

, (D7)
i=1

and cosa = 1 in the vortex lines of ¢, while cosa =
0 in the vortex lines of 9. Observe also that the first
term in Eq. (D5) vanishes, since the either of the partial
derivatives 0,0 and 0, ¢ vanishes on each surface with the
normal k,. The four vortex lines of ¢ are parametrized

by

k. = (mm, nm k), m,n € {0,1} (D8)

and their winding numbers are (—1)"*"

simplifies to

a/ﬂ:f% >

. Eq. (D5) then

1mtn /d3k: §(k — k,,,)050

T3
1 mA4n+l_;
:i Z (-1) Slgndkmm;4
(DY)

where we have written the number of phase windings of
© in the vortex line of ¥ as

o . .
dk sign d 4, — signd .
_/ T363ﬂ(kmn) _ BU g, 04 800,154
0 T 2
1

-5

=0

blgn dy,
(D10)

and k,,,,; is defined as in Eq. (3.8). In writing Eq. (D9),
we have recovered the Dirac invariant (3.10).

Appendix E: SMA for a flat band

We present some of the intermediate steps needed to
derive Eq. (4.10a). (For ease of presentation, we use
Latin instead of Greek indices for the momentum com-
ponents in what follows. Summation convention over re-
peated indices is also implied.)

Our aim is to evaluate Eq. (4.3¢) up to order q?k?. The
commutator in Eq. (4.3c) can be conveniently broken into
four contributions,

Je="riet for+ fap+ fak (Ela)

each of which read

1 — ~ —~ ~
Fiw =5 O v { [Pk 00_g) [074q074s] )» (E1D)

q



1 e e
=75 vq< (09 _q+ 0P 1) [0P_ > 014 > (Elc)

q

1 ~ ~ ~ ~
f?’:k = 9 Z Uq <5'O*q [5/),;4, [5,0+q,5p+k]] >a (E1d)
q
and
f4,k = 5 Z Uq< [6p—kv [5p—qﬂ5p+k]] §p+q>' (Ele)
q

The commutator of two projected density operators
can be expressed, with the aid of Eq. (4.8), as
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The nested commutators of three projected density op-
erators can be expressed, with the aid of Eq. (4.8), as

s o i) | =D Mk X Rprgr (F30)
p

where

Apgie = B teqi Mp. -t = Bpgpe Mpygin,—k- (E3D)

Observe here that the identity

R S AN N |

[Pg: Pr) = Z Ry qk Q; Xptq+h: (E2a)
» implies that
where oo =A (E5)
P.q,k rt+q,—q,—k-
R =M, . M -M M, . E2b
pak paTptak pHk.a ok (E2b) Needed is the expansion of R,  , and A, 4 up to
order g2k?. We start with
— ot
Mp g =tp Upiq
. 1 . .
— ot
=uy, - (up +qzaiup+ 5(]1(]] 6iajup+"')
(E6a)
=1+q'u,-0 L il 0,0
=L a Uy Gty 5 4 U OOyt
. 1 . .
=14q dip 5 0'¢ up 0, 05up
where we have introduced the (imaginary-valued) Berry connection
A, p=ul - 0u, (E6D)
and the summation convention over repeated indices ¢,j = 1,--- ,d is implied. The symbol 0; with i =1,--- ,d is to

be regarded as a derivative with respect to the argument of the function on which it acts. Similarly,

p

1. o 1, . o
+ 3 (q‘qjkm + klqum) u'9,0.0 u+ = (kzkiqu + 2qquk3) 8muT - 0,0,0

o) m 2

Mpyqp=1+k A; +¢'K ul - 9;u + ) (KK +2¢'K) u' - 8;0;u

1.
u+ aq’qjkm (')i@juT o)

m

+ 1 ¢ K k™l - 0;0;0,0,,u + 3 E'kiglqm o,ut - 9, 0;0,,u + 3 ¢ k™0, 8juT -0,0,0,u+ -

(E7)

where the summation convention over the repeated indices 4, j,l,m = 1,--- ,d is implied.
We multiply Eq. (E6a) by Eq. (E7) and antisymmetrize with respect to the interchange of ¢ and k. We obtain

R(p.q.k) =g’k (T)) () + (KK g™ — g’ k™) (TS, ) (0) + K g'q™ (TSH,) (), (Esa)
where the summation convention over the repeated indices ¢, j,{,m = 1,--- ,d is implied and we have introduced the
short-hand notation

2
(1) ) = (F,)) (0) = (0,4, - 0, 4,) (), (E8b)
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S
~
Te

~—
~—
=
=

1\9\’—‘

= 5 (Ot 0,0;u— 0,0,ut - 9,0~ 20,ut - 0,0,u ~ 24,0, 4,,) (p), (ESc)

and
(zgg.‘fgm) (p) = i [al Oyl - 0,00 — 0,0,u’ - 0,0, u + 24,0, (ul - 9,0,u) — 24,0, (u' - 8,0,,u) s
+20,u’ - 0,8,0,,u—20,u" - 9, ajamu} (p)
for ¢,5,l,m=1,--- ,d. We evaluate

A(p.q.k) =R(p—k.q,k) M(p,—k) — R(p,q,k) M(p+q +k,—k)
= [R(p.q. k) — K0, R(p.q. k) + - | [1 = K4, (p) + - | — R(p.q. k) [1 = kA, (p) — K*¢"0, A, (p) + -]
=R(p,q,k) — k"0,R(p,q,k) — k"A,(p)R(p,q,k) + -
— R(p,q, k) + k“A,(p)R(p, q. k) + k*¢"0,A,(p)R(p,q, k) + - --
= —k0,R(p,q,k) + k"¢, A,(P)R(p, g, k) + - --
= kg (0,1) 0) + ~a'a k™ (0,15, ) (0) + -+ | + k0,4, ) [’ (TS ) (0) + -+

= — Wk (9,15) () + ¢’k k" (,15),) () + kW0, A, ) (T ) (p) + - -

where the summation convention over the repeated indices a,b,i,j,m = 1,--- ,d is implied.

At last, we are in a position to evaluate the terms contributing to the function f,, in Eq. (E1). We start with

Frw =5 3 va (107107 1504, 7))
q
%ZUQ<ZR —k, qXpo f— qZRp q7k)>A(L/>A(p'+k+q>
q
= % Y vg Y R(p,—k.,—q)R(P.q, k)<ﬂ, Xp—k—q Xy gp,+k+q>
1 B . (E10)
=3 23 v [k =) (TF) )+ | [0 (T) ) + - [ (%] Rp—a Kby R sra)
qa pp

Fu) )] [Ka (Fiy) 0] (R Rposmq Ry Rrira) +

|
|
= N
<
_Q
—
o
=]
)
o
—

SN v (kA Q) B®)] | (kA a) BE)| (X Tprg Xy prhrg) o

where we used that B' = €99,4,, = i €JmF;,, or, equivalently, F;; = €;;,,B™. We now break the Berry field
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strength into two contributions, i.e., B(p) = B + §B(p). If so,

flk:_,zz 2| (k1 a)- (B+0B®)|[(kAQ)- (B+B®) (% Cptg X Xprhrq) -
:—722 {k/\q 7i||:(k:/\q>'§i|<§(\17§(\p—k—q5€;’§<\p'+k+q>

_ % S v (kA a) B[ (k@) 6BW)](R) Rp—q Ky Ty sta)

q pp

B % Z Z Ya (k A q) ’ 5B(p)} [(k A q) E} <5€I’ X\P—k—q )/(\L )/(\p/+k:+q>

q pp

- % 3 Z vg| (k7 a) - 6B(®)| | (kA @) BB (X Xpt—q Xy Ky iera) + (&)

=—*Z o[ k70 B[ (A0 B](5 4 yfira)
TS i B[00 58] 5

32 Z o[ 67 0) 5B [ (k7 0) B (%) Rpota s

q pp

5 Y e[k na) 5B®)|[ (kA @) BE)](Rh Rk T Ty sia)

qa pp

In a uniform liquid-like ground state we have (py ) o< d ¢ and, due to the relation k‘¢®F,, = (kAq)- B, we can
replace Dy q by 00 gt o As a consequence, we can drop the first three terms on the last equality of (E11) up to
order g2k?. We are then left with:

flk:—fzz o e na) 5B [ (kA g)- 6B (yiy )+, (E12)

q pp

where 7, = )?;f, Xp is the number operator projected on the lowest band. Similarly,

Fore =5 3 vq (199_q: 591991, 9,1
q

1 PO o e
=3 Z g ([871es 74110797 1] ) -
=f1 —k
= —% Z Z vq[ kAq) (5B(p)} [(k/\q)-(SB(p’)} <ﬁpAp/> + -
q pp
while
f3k_%zvq<5 q6p k> 5pqa5pk]]>
; q
) > Uq<5 -q Z Alp,q, k Xpo+q> (E14)
5 2% A0 ) (55 T T

The matrix element <5ﬁ_q 5{; Xp +q> vanishes in the limit ¢ — 0 and, therefore, the only term that contributes to
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f3 % up to order q°k?

fon =3 00 vy [ = a0 (0,5) )] (550 T S
, @ 0B o (E15)
=3 g g Vg {(kAq) : <apa) (p)}k“ <6pquI7Xp+Q>‘

The condition (E5) implies that f, , = f3 ;, which then delivers

fik =3 ZZ [~ (kng): (nga)<p>}k“<>zL+q>2p6ﬁq>, (E16)

where we have used that (B(p))" = —B(p).
Putting together all the contributions, we obtain

=3 vg[kna)-6B®)]|| (kA Q) - 6B (it )

q pp (E17)
Z Z (kAq)- apa (P) (00 Xp Xpiq) — (KN Q)" apa (p) <Xp+q Xp 5pq>
where the summation convention over the repeated indices a = 1,- - - , d is implied. Finally, the analytical continuation
= —iB delivers Eq. (4.10a).
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